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1 Lipschitz Regularity

Definition 1 (Lipschitz reqularity of functions)
Suppose f is a function defined on R, o > 0.

(1) f is said to be Lipschitz a (or Lipa for short) at a point v € R if there
exists a polynomial p, of degree m := |« and a constant K = K (v) >

0 such that
£ —p () < Klt—of* VteR (1)

(ii) f is said to be uniformly Lipa on [a,b] C R if it is Lipa at every point
v € [a,b] with the constant K independent of v.

(iii) The Lipschitz reqularity of f at v is the sup of all a such that f is Lipa
at v.

If f is Lip0 at v then f is bounded but may be discontinuous. If f is
Lipa but not Lipa + 1 at v we say that f has a « singularity at v. The
Lipschitz regularity of f may vary from one v to the other. In other words,
Lipschitz regularity is a local property of the function f. One may construct
multifractal functions f with distinct Lipschitz regularity at distinct points.
In contrast, uniform Lipschitz reguarity expresses a global propery of f. The
following lemma gives some immediate consequences of Definition 1.

Lemma 2 (properties of Lipschitz reqularity)

1. If a > m and f is Lipa at v then the polynomial p, is unique.



2. If a > m, f is Lipae and [ is m times continuously differentiable at v
then p, is the Taylor polynomial of degree m at v:

(k) (y .
p()=3 T ()

3. fa>m, fis Lipa and f is m times continuously differentiable at v
then f%) is Lip(a — k) at v for all k < m.

4. If a > m and f is uniformly Lipa on [a,b] then f is m times continu-
ously differentiable on (a,b) .

2
Excercise 1 Let f(t) = { ‘i T 1 |’tt|‘<>11 . Show that f is Lipa at 0 if
and only if a € (1,2]. -
t—1], [|t|<1
Ecercise 2 Let f(t) = { (|t| —2)®, |t| €[1,3] . Discuss the a-regularity
0, [t| >3

of fat 0, 1 and 2.

Excercise 3 Give an example of a function f which is not Lipa for any
a > 0. Justify your answer.

The Fourier transform can provide information on the global regularity
of a function f as in the following theorem.

Theorem 3 (Fourier Transform and global requarity)
A function f is bounded and uniformly Lipa on R if

/OO ‘f\(w)’ (1+ |w|¥) dw < 0.

—00



2 Vanishing moments and rate of decay

It is clear from Theorem 3 that the local regularity of a function f at a
particular point v cannot be determined from the decay rate of its Fourier
transform. This can more efficiently be done with a wavelet transform. To
study the relation between the regularity of a function f and the decay rate of
its wavelet transform we need to introduce the notion of vanishing moments
and rate of decay. Let us denote by C}' (R) the space of functions that are
continuous and bounded together with their first n derivatives.

Definition 4 (vanishing moments)

(1) A function f € C} (R) is said to have n € N vanishing moments if

/ t*f(t)dt =0 for 0 <k <n.

(ii) A function f € C}' (R) is said to have decay rate m € N if there exists a
constant C' such that

C,
B < " _ 0<k<n, VteR.

(iii) A function f € Cp°(R) is said to have fast decay if f is infinitely
differentiable on R and for all k,1 € N

tFfO(8)] < Cu VEER.

It follows from the definition that a function f with n vanishing moments
is "orthogonal" to all polynomials of degree less than n. A function has fast
decay if and only if it has decay rate m for all m € N.

Lemma 5 (vanishing moments of translated and dilated wavelets)
If Y € CF (R) is a wavelet with n vanishing moments then for all (a,b) €
R* xR

/OO (t—b)k¢a,b(t)dt=0for0§/€<n.

—00

The following facts from advanced calculus will be useful.



o If f € CF(R) and fU)(0) =0, 0 < j < k then there exists a function
g € Cy (R) such that f (t) = t*g (t) for every t € R.

e If a function f € Cj (R) has decay rate m then fe C"? (R).

Theorem 6 (characterization of wavelets with vanishing moments)
Assume m and n are integers with m > n + 2.

(a) A wavelet ip € Cf (R) has n vanishing moments and decay rate m if and
only if there exists a function 0 € CZ" (R) with decay rate m such that

dro
Y = (—2mi)" T (2)

(b) Moreover, v has no more than n wvanishing moments if and only if
2 6(t)dt #0.
Proof. Since ¢ has decay rate m > n + 2,

D (1+t™Hdt < C,, —— 0t .
[y e < /Oo it <

—00

Since Fip = R4, it follows from Theorem 3 that ¢ € CI" "% (R) C CI' (R).

Furthermore, since 1) has n vanishing moments and F (tkw) (w) = (L) F QZ(

0o k
0:/ tk@/z(t)dt:(%) 770), 0<k <n.

~ ~(k
Thus, ¢ € CJ (R) and w( )(O), 0 < k < n. Hence, there exists a function
0 € C, (R) such that

211

) =) = (—55) 70 @) 3)

This verifies (2). The decay rate of # can be shown by induction on n. For
n=1,1w)=wl(w) =—5=F0 (w); thus

0 (t) = ———o (1)

211
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and

Chn/2m
0 ()] < — .
| ()I_HWm
Also, we may write
00 =5 [ ws =5 [ v
T o ) YW T o ) Viees

Then, for ¢t > 0
o0 o0 1
L+¢m = 7™ 14tm
The expression on the right is a continuous fucntion which has finite value

at ¢ = 0 since m > 2 and tends to zero as t — oo . This means that this
function is bounded for all ¢ > 0. It follows that

Chn < Lds
o) < Sndemm g
20 1 +tm

A similar estimate can also be established for ¢ < 0. Thus 6 has decay rate
m for n = 1. The rest of the induction steps are straighforward.
Conversely, if (2) for some 6 € C?" (R) with decay rate m then (3) holds

which shows that zz(k) (0) = 0 and thus, ¢ has n vanishing moments. Fur-

thermore,

Chn

Wv) (t)) = (27)" 0<k<n, VteR.

g(n+k) (t)’ <

To prove (b) we compute

/_ g @dt = (—2mi) /_ T d0

00 [e's) datn
oo o] dn—le
— ! dt| .
=

A0
The boundary term vanishes since m > n and

= (—2m)" [t”

dtnfl

dv—1o
dtnfl

1"

t?’b

< Kn——m — 0as |t|—>oo
1+ |t



Using induction we get

00 0 dr=10
n = (=927 n n—1
/ t" (t) dt (—2mi) /_ t ) dt

—0o0 [e.e]

= (2mi)" /Oo 0 (t) dt.

Hence, [ "4 (t)dt # 0 if and only if [*° 0 (t)dt #0. =

Corollary 7 (vanishing moments of fast decaying wavelets)

A wavelet 1y has fast decay and n vanishing moments if and only if there
exists a function 0 with fast decay such that (2) is satisfied. Moreover, 1 has
no more than n vanishing moments if and only if ffooo 0 (t)dt # 0.

3 Regularity Measurements with Wavelets

Theorem 8 (wavelet measurement of regularity)
Suppose a wavelet ¢ € CJ' (R) has n vanishing moments and decay rate
m. If f € L? (R) is uniformly Lipa with « < n at v then there exists A > 0
such that
b—wv
a

Wy f (a,b)] < Aa®T1/? (1 + ‘

) V(a,b) € RT x R. (4)
Conwversely, if « < n is not an integer and there exists a constant A > 0 and
o/ < « such that
b—wv

a

W f (a,b)] < Aa>+V/2 (1 ; ‘

) V(a,b) eR* xR (5)

then f is Lipa at v.

Corollary 9 (wavelet measurment of uniform reqularity)

Suppose a wavelet 1 € C}' (R) has n vanishing moments and decay rate
m. If f € L?(R) is uniformly Lipa with o < n over I = [by, by then there
exists a constant A > 0 such that

Wy f (a,b)| < Aa®TV2 Y (a,b) € RT x I (6)

Conversely, suppose that f is bounded and W, f satisfies (6) for an o < n
that is not an integer. Then f is uniformly Lipae on I, := [by + €,by — €] for
any € > 0.



Cone of influence If a wavelet ¢ is supported in [~C, C] then v,
is supported in [b —aC,b+ aC]. Any local behavior of a signal f at an
instant v in its domain will be "reported" by all wavelets v, , for which
v e b—aC,b+aC] or
b—wv

a

<C. (7)
This leads us to the following definition.
Definition 10 (cone of influence of a point)

The cone of influence of a point v is the set of points (a,b) such that (7)

is satisfied.

If the signal f is Lipa at v and (a, b) is in the cone of influence of v then
equations (4), (5) take the form

(W f (a,b)] < Ala®H/2,

On the other hand if f has a singularity at v then its cone of influence
produces high amplitude coefficients |W, f (a,b)| . See the figure below




3.1 Application to Detecting Oscillating Singularities

The wavelet transform amplitude of a Lipa signal continue to be controlled
outside the cone of influence. Indeed if a signal f is Lipa at a point v then
for all (a, b) outside the cone of influence, that is, for all [b — v| > aC, we get

al

b—w
Ca

Then equations (4), (5) take the form
Wy f (a,b)] < Ala®=+1/2|p —o|*.

This behavior outside the cone of influence is necessary to determine for
sure that the analysed function is Lipa. The following lemma shows that if
we restrict our attention to the cone of influence and analyze with a smooth
wavelet we may get the false impression that the analyzed function is smooth.

Lemma 11 Suppose the analyzing wavelet ¢ € C?(R) has two vanishing
moments, fast decay and support in [—C,C|. Let f be Lip0 in a neighborhood
ofv=20. Then

Wy f (a,0)] < Aa®? (8)

for all sufficiently small a,b in the cone of influence of 0. In particular, if f
is a bounded function, then (8) holds for all (a,b) in the cone of influence of
0.

Proof. Assume f is bounded, say by M in the neighborhood (—e¢,€) of 0.
Using Theorem 6 we may write

(1) =06"(t).

Then
Da’éb = a'2 (Dae)”

and

b+aC
Wof (a,0)] = |{f. Dagd)| = a? / £ () (Dab) (t — b) dt

—aC




For sufficiently small a,b the we have 0 € [b—aC,b+ aC] C (—¢,¢) and
(a,b) is in the cone of influence of 0. This is the case, for example, if aC < €
and |b| < min{aC, e —aC'}. Then

b+aC
Wof (a,b)] < MQZ/b (D0 (¢ — b)) dt

—aC
aC aC

— Ma2/ |(Da0)" (t)\dt:Mcﬁ/?/ lg" (t)| dt
—aC —aC

< 2MNCa®? = Ad®.

where g (£) = 0 (£) and N is the maximum of ¢” in the interval [—aC, aC].
]

Signals f with singularity at v may then produce small amplitude wavelet
coefficients inside the cone of influence, but then high amplitude coefficients
will be produced outside the cone of influence. As an example we will show
that signals f with oscillating singularities do produce high amplitude coef-
ficients outside the cone of influence. For simplicity we will take the model
case

f@) = sin%

which represents a bounded signal that has an oscillating singularity at 0.
Analysing with a Gabor wavelet, ¥ (t) = g () e>™" we learned in the pre-
vious section that the modulus maxima of the normalised scalogram (i.e,
\/La |Wyf (a,b)|) appear at the ridge points (a, b) where

where wy is the point where g (w) assumes its maximum. For f (¢) = sin1{,
¢ (t) = 1+Z and ¢’ (b) = —1/b*. The ridge points are located on the parabola

a = (wy —n) b2

Of course, points on this parabola are outside the cone of influence at
0. The following figures shows that high amplitude coefficients are indeed
produced on this parabola.
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