
II Wavelet Zoom

March 31, 2009

1 Lipschitz Regularity

De�nition 1 (Lipschitz regularity of functions)
Suppose f is a function de�ned on R; � � 0:

(i) f is said to be Lipschitz � (or Lip� for short) at a point v 2 R if there
exists a polynomial pv of degree m := b�c and a constant K = K (v) >
0 such that

jf (t)� pv (t)j � K jt� vj� 8t 2 R: (1)

(ii) f is said to be uniformly Lip� on [a; b] � R if it is Lip� at every point
v 2 [a; b] with the constant K independent of v:

(iii) The Lipschitz regularity of f at v is the sup of all � such that f is Lip�
at v:

If f is Lip0 at v then f is bounded but may be discontinuous. If f is
Lip� but not Lip� + 1 at v we say that f has a � singularity at v: The
Lipschitz regularity of f may vary from one v to the other. In other words,
Lipschitz regularity is a local property of the function f: One may construct
multifractal functions f with distinct Lipschitz regularity at distinct points.
In contrast, uniform Lipschitz reguarity expresses a global propery of f: The
following lemma gives some immediate consequences of De�nition 1.

Lemma 2 (properties of Lipschitz regularity)

1. If � > m and f is Lip� at v then the polynomial pv is unique.
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2. If � > m; f is Lip� and f is m times continuously di¤erentiable at v
then pv is the Taylor polynomial of degree m at v:

pv (t) =

mX
k=0

f (k) (v)

k!
(t� v)k :

3. f � > m; f is Lip� and f is m times continuously di¤erentiable at v
then f (k) is Lip(�� k) at v for all k � m:

4. If � > m and f is uniformly Lip� on [a; b] then f is m times continu-
ously di¤erentiable on (a; b) :

Excercise 1 Let f (t) =
�

t2; jtj < 1
jt� 1j ; jtj � 1 : Show that f is Lip� at 0 if

and only if � 2 (1; 2] :

Ecercise 2 Let f (t) =

8<:
jt� 1j ; jtj < 1

(jtj � 2)2 ; jtj 2 [1; 3]
0; jtj > 3

: Discuss the �-regularity

of f at 0; 1 and 2.

Excercise 3 Give an example of a function f which is not Lip� for any
� � 0: Justify your answer.

The Fourier transform can provide information on the global regularity
of a function f as in the following theorem.

Theorem 3 (Fourier Transform and global reguarity)
A function f is bounded and uniformly Lip� on R ifZ 1

�1

��� bf (!)��� (1 + j!j�) d! <1:
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2 Vanishing moments and rate of decay

It is clear from Theorem 3 that the local regularity of a function f at a
particular point v cannot be determined from the decay rate of its Fourier
transform. This can more e¢ ciently be done with a wavelet transform. To
study the relation between the regularity of a function f and the decay rate of
its wavelet transform we need to introduce the notion of vanishing moments
and rate of decay. Let us denote by Cn

b (R) the space of functions that are
continuous and bounded together with their �rst n derivatives.

De�nition 4 (vanishing moments)

(i) A function f 2 Cn
b (R) is said to have n 2 N vanishing moments ifZ 1

�1
tkf (t) dt = 0 for 0 � k < n:

(ii) A function f 2 Cn
b (R) is said to have decay rate m 2 N if there exists a

constant C such that��f (k) (t)�� � Cm
1 + jtjm ; 0 � k � n; 8t 2 R:

(iii) A function f 2 C1b (R) is said to have fast decay if f is in�nitely
di¤erentiable on R and for all k; l 2 N��tkf (l) (t)�� � Ckl 8t 2 R:

It follows from the de�nition that a function f with n vanishing moments
is "orthogonal" to all polynomials of degree less than n. A function has fast
decay if and only if it has decay rate m for all m 2 N:

Lemma 5 (vanishing moments of translated and dilated wavelets)
If  2 Cn

b (R) is a wavelet with n vanishing moments then for all (a; b) 2
R+ � R Z 1

�1
(t� b)k  a;b (t) dt = 0 for 0 � k < n:

The following facts from advanced calculus will be useful.
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� If f 2 Ck
b (R) and f (j) (0) = 0; 0 � j < k then there exists a function

g 2 Cb (R) such that f (t) = tkg (t) for every t 2 R:

� If a function f 2 Cb (R) has decay rate m then bf 2 Cm�2
b (R) :

Theorem 6 (characterization of wavelets with vanishing moments)
Assume m and n are integers with m � n+ 2:

(a) A wavelet  2 Cn
b (R) has n vanishing moments and decay rate m if and

only if there exists a function � 2 C2nb (R) with decay rate m such that

 = (�2�i)n d
n�

dtn
: (2)

(b) Moreover,  has no more than n vanishing moments if and only ifR1
�1 � (t) dt 6= 0:

Proof. Since  has decay rate m � n+ 2,Z 1

�1
j (�t)j

�
1 + jtjm�2

�
dt � Cm

Z 1

�1

1 + jtjm�2

1 + jtjm dt <1:

Since Fb = R ; it follows from Theorem 3 that b 2 Cm�2
b (R) � Cn

b (R) :
Furthermore, since  has n vanishing moments andF

�
tk 
�
(!) =

�
1
2�i

�k b (k) (!) ;
0 =

Z 1

�1
tk (t) dt =

�
1

2�i

�k b (k) (0) ; 0 � k < n:

Thus, b 2 Cn
b (R) and b (k) (0) ; 0 � k < n: Hence, there exists a functionb� 2 Cb (R) such that

b (!) = !nb� (!) = �� 1

2�i

�n
F�(n) (!) : (3)

This veri�es (2). The decay rate of � can be shown by induction on n. For
n = 1; b (!) = !b� (!) = � 1

2�i
F�0 (!) ; thus

�0 (t) = � 1

2�i
 (t)
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and

j�0 (t)j � Cm=2�

1 + jtjm :

Also, we may write

� (t) = � 1

2�i

Z t

�1
 (s) ds = � 1

2�i

Z 1

t

 (s) ds:

Then, for t � 0 R1
t
j (s)j ds
1 + tm

� Cm

R1
t

1
1+sm

ds

1 + tm
:

The expression on the right is a continuous fucntion which has �nite value
at t = 0 since m > 2 and tends to zero as t ! 1 : This means that this
function is bounded for all t � 0: It follows that

j� (t)j � Cm
2�

R1
t

1
1+sm

ds

1 + tm
� Km:

A similar estimate can also be established for t < 0: Thus � has decay rate
m for n = 1: The rest of the induction steps are straighforward.
Conversely, if (2) for some � 2 C2nb (R) with decay rate m then (3) holds

which shows that b (k) (0) = 0 and thus,  has n vanishing moments. Fur-
thermore,��� (k) (t)��� = (2�)n ����(n+k) (t)��� � Cm

1 + jtjm ; 0 � k � n; 8t 2 R:

To prove (b) we computeZ 1

�1
tn (t) dt = (�2�i)n

Z 1

�1
tn
dn�

dtn
dt

= (�2�i)n
�
tn
dn�1�

dtn�1

����1
�1

�
Z 1

�1
tn�1

dn�1�

dtn�1
dt

�
:

The boundary term vanishes since m > n and����tndn�1�dtn�1

���� � Km
jtjn

1 + jtjm ! 0 as jtj ! 1:
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Using induction we getZ 1

�1
tn (t) dt = � (�2�i)n

Z 1

�1
tn�1

dn�1�

dtn�1
dt

= : : :

= (2�i)n
Z 1

�1
� (t) dt:

Hence,
R1
�1 t

n (t) dt 6= 0 if and only if
R1
�1 � (t) dt 6= 0:

Corollary 7 (vanishing moments of fast decaying wavelets)
A wavelet  has fast decay and n vanishing moments if and only if there

exists a function � with fast decay such that (2) is satis�ed. Moreover,  has
no more than n vanishing moments if and only if

R1
�1 � (t) dt 6= 0:

3 Regularity Measurements with Wavelets

Theorem 8 (wavelet measurement of regularity)
Suppose a wavelet  2 Cn

b (R) has n vanishing moments and decay rate
m: If f 2 L2 (R) is uniformly Lip� with � � n at v then there exists A > 0
such that

jW f (a; b)j � Aa�+1=2
�
1 +

����b� v

a

������ 8 (a; b) 2 R+ � R: (4)

Conversely, if � < n is not an integer and there exists a constant A > 0 and
�0 < � such that

jW f (a; b)j � Aa�+1=2

 
1 +

����b� v

a

�����0
!
8 (a; b) 2 R+ � R (5)

then f is Lip� at v:

Corollary 9 (wavelet measurment of uniform regularity)
Suppose a wavelet  2 Cn

b (R) has n vanishing moments and decay rate
m: If f 2 L2 (R) is uniformly Lip� with � � n over I = [b1; b2] then there
exists a constant A > 0 such that

jW f (a; b)j � Aa�+1=2 8 (a; b) 2 R+ � I: (6)

Conversely, suppose that f is bounded and W f satis�es (6) for an � < n
that is not an integer. Then f is uniformly Lip� on I� := [b1 + �; b2 � �] for
any � > 0:
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Cone of in�uence If a wavelet  is supported in [�C;C] then  a;b
is supported in [b� aC; b+ aC] : Any local behavior of a signal f at an
instant v in its domain will be "reported" by all wavelets  a;b for which
v 2 [b� aC; b+ aC] or ����b� v

a

���� � C: (7)

This leads us to the following de�nition.

De�nition 10 (cone of in�uence of a point)
The cone of in�uence of a point v is the set of points (a; b) such that (7)

is satis�ed.

If the signal f is Lip� at v and (a; b) is in the cone of in�uence of v then
equations (4), (5) take the form

jW f (a; b)j � A0a�+1=2:

On the other hand if f has a singularity at v then its cone of in�uence
produces high amplitude coe¢ cients jW f (a; b)j : See the �gure below
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3.1 Application to Detecting Oscillating Singularities

The wavelet transform amplitude of a Lip� signal continue to be controlled
outside the cone of in�uence. Indeed if a signal f is Lip� at a point v then
for all (a; b) outside the cone of in�uence, that is, for all jb� vj > aC; we get����b� v

Ca

�����0 > 1:
Then equations (4), (5) take the form

jW f (a; b)j � A0a���
0+1=2 jb� vj�

0
:

This behavior outside the cone of in�uence is necessary to determine for
sure that the analysed function is Lip�: The following lemma shows that if
we restrict our attention to the cone of in�uence and analyze with a smooth
wavelet we may get the false impression that the analyzed function is smooth.

Lemma 11 Suppose the analyzing wavelet  2 C2b (R) has two vanishing
moments, fast decay and support in [�C;C] : Let f be Lip0 in a neighborhood
of v = 0: Then

jW f (a; b)j � Aa5=2 (8)

for all su¢ ciently small a; b in the cone of in�uence of 0: In particular, if f
is a bounded function, then (8) holds for all (a; b) in the cone of in�uence of
0:

Proof. Assume f is bounded, say by M in the neighborhood (��; �) of 0:
Using Theorem 6 we may write

 (t) = �00 (t) :

Then
Da = a2 (Da�)

00

and

jW f (a; b)j = jhf;Da;b ij = a2
����Z b+aC

b�aC
f (t) (Da�)

00 (t� b) dt

����
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For su¢ ciently small a; b the we have 0 2 [b� aC; b+ aC] � (��; �) and
(a; b) is in the cone of in�uence of 0: This is the case, for example, if aC < �
and jbj < min faC; �� aCg : Then

jW f (a; b)j � Ma2
Z b+aC

b�aC

��(Da�)
0 (t� b)

�� dt
= Ma2

Z aC

�aC

��(Da�)
00 (t)

�� dt =Ma3=2
Z aC

�aC
jg00 (t)j dt

� 2MNCa5=2 = Aa5=2:

where g (t) = �
�
t
a

�
and N is the maximum of g00 in the interval [�aC; aC] :

Signals f with singularity at v may then produce small amplitude wavelet
coe¢ cients inside the cone of in�uence, but then high amplitude coe¢ cients
will be produced outside the cone of in�uence. As an example we will show
that signals f with oscillating singularities do produce high amplitude coef-
�cients outside the cone of in�uence. For simplicity we will take the model
case

f (t) = sin
1

t

which represents a bounded signal that has an oscillating singularity at 0:
Analysing with a Gabor wavelet,  (t) = g (t) e2�i�t we learned in the pre-
vious section that the modulus maxima of the normalised scalogram (i.e,
1p
a
jW f (a; b)j) appear at the ridge points (a; b) where

a =
� � !0
�0 (b)

where !0 is the point where bg (!) assumes its maximum. For f (t) = sin 1t ;
� (t) = 1

t
+ �
2
and �0 (b) = �1=b2: The ridge points are located on the parabola

a = (!0 � �) b2:

Of course, points on this parabola are outside the cone of in�uence at
0. The following �gures shows that high amplitude coe¢ cients are indeed
produced on this parabola.
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