
1 Analytic wavelets and sound processing

A complex signal
f (t) = u (t) + iv (t)

can alternatively be written in polar form as

f (t) = A (t) ei�(t) (1)

with amplitude A (t) � 0 and phase angle � (t) : If we require that, e.g.
0 � � (t) < 2� then the representation (1) is unique. The derivative �0

of � is called the instantaneous frequency. The representation (1) re�ects
our interest in the amplitude and phase angle (or instantaneous frequencies
of the signal). Unfortunately, the lack of localization of wavelets in both
time and frequency as was illustrated by the Heisenberg uncertainty principle
makes it di¢ cult to use wavelet analysis in both time and frequency domains.
On the other hand, one important application of signal processing is sound
processing where amplitudes and frequencies are main issues. In this section
we study how approximately analytic wavelets are used to recover amplitudes
and frequencies from the transformed signal.
Sound signals are superpositions of sinusoidal waves. A generalized sinu-

soidal is one of the form

f (t) = A (t) cos� (t) :

where A (t) � 0 is the amplitude and � (t) is the phase. f (t) is the real
part of fa (t) = A (t) ei�(t): If fa is analytic we call A (t) the analytic am-
plitude. For example, the signal fa (t) = A (t) e�2�i(!0t+�0) with supp bA �
(�!0; !0) is analytic since bfa (!) = e�2�i�0 bA (! � !0) : In this case f (t) =
A (t) cos 2�i (!0t+ �0) :
Speech signals are modeled as

f (t) =
KX
k=1

Ak (t) cos�k (t) ;

which is a useful model for pattern recognition and sound processing.
Such signals are transmitted by one of two methods: amplitude modulation
(changing Ak (t)) or frequency modulation (changing �

0
k (t)). Correspond-

ingly there are two methods for sound compression: by sampling without
changing �0k or with changing �

0
k:
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In the former case, f is synthesized from

g (t) =
KX
k=1

Ak (�t) cos

�
1

�
�k (�t)

�
:

At any time t0, f (�t0) = g (t0) : If � > 1; g is shorter than f but both are
perceived as having the same frequency contents. Observe that the instanta-
neous frequencies for g are

�
1
�
�k (�t)

�0
= �0k (�t) which justi�es the previous

statement.
In the latter case f is synthesized from

g (t) =

KX
k=1

Bk (t) cos (�k (�t)) ;

where
Ak (t) = F (t; �0k (t)) ; Bk (t) = F (t; ��0k (t))

and F (t; !) is a smooth frequency envelop (called the formant in speech
processing).

1.1 The ridge algorithm

For the purpose of sound processing, an approximately analytic wavelet is
chosen. This is achieved with a symmetric wavelet  with compact sup-
port in time. The frequency support of the wavelet is then in�nite. Sinceb (0) is not exactly zero, the admissibility condition is violated and this
means that the reconstruction of the signal is ill posed. In this subsection
we discuss an approximate method of reconstruction from the scalogram
PWf (a; b) = jW f (a; b)j2. The points (a; b) of local maxima of PWf (a; b)
are known as wavelet ridges. The ridge algorithm computes the amplitudes
and instantaneous frequencies from the wavelet ridges.

Exercise 1 Assume that g is a positive even and continuous function with
support in the interval

�
�1
2
; 1
2

�
: Show that bg is even, real and bg (0) �bg (!) for all ! 2 R:

Suppose now that we have a function g with the properties stated in
Exercise 1 and suppose we choose � > 0 su¢ ciently large that bg (!) � 0 for
j!j > �: De�ne the "wavelet"  by

 (t) = g (t) ei�t: (2)
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Then b (0) � 0 and  is approximately analytic. Here
 a;b (t) =

1p
a
g

�
t� b

a

�
ei�

t�b
a

is supported in the interval
�
b� a

2
; b+ a

2

�
:

Exercise 2 Consider the following choices of g (restricted to the interval�
�1
2
; 1
2

�
).

Name g
Recangle 1
Hamming 0:54 + 0:46 cos (2�t)

Gaussian e�18t
2

Hanning cos2 (�t)
Blackman 0:42 + 0:5 cos (2�t) + :08 cos (4�t)

1. Compute and plot bg (!) (Hint: It is the same as the Fourier series).
2. Experiment with the choice of � and make plots of the real and
imaginary parts  (t) as constructed in (2).

Theorem 1 (estimation of wavelet coe¢ cients)
Suppose f (t) = A (t) ei�(t);  is de�ned by (2) and kgk = 1. Then



f;  a;b

�
=

p
af (b) bg�� � a�0 (b)

2�

�
+ � (a; b) (3)

=
p
aA (b) ei�(b)bg�� � a�0 (b)

2�

�
+ � (a; b) ; (4)

where

j� (a; b)j � a3=2p
12

 
sup

t2[b�a=2;b+a=2]
jA0 (t)j+ 2A (b) sup

t2[b�a=2;b+a=2]
j�0 (t)j

!
(5)

� a3=2p
3

sup
t2[b�a=2;b+a=2]

max fjA0 (t)j ; 2A (b) j�0 (t)jg : (6)

Proof. Write
f (t) = A (t) ei�(t) = ef (t) + h (t)
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with ef (t) = A (b) ei(�(b)+(t�b)�
0(b))

= f (b) ei(t�b)�
0(b):

Then 

f;  a;b

�
=
D ef;  a;bE+ 
h;  a;b� :

The �rst term givesD ef;  a;bE = f (b)

Z 1

�1
e�i(t�b)(�=a��

0(b)) 1p
a
g

�
t� b

a

�
dt

= f (b)

Z 1

�1
e�it(�=a��

0(b))Dag (t) dt

= f (b)D1=abg��=a� �0 (b)

2�

�
:

To estimate the second term we write

h (t) = A (t) ei�(t) � A (b) ei(�(b)+(t�b)�
0(b))

= (A (t)� A (b)) ei�(t) + A (b)
�
ei�(t) � ei(�(b)+(t�b)�

0(b))
�

= (A (t)� A (b)) ei�(t) + A (b)
�
ei�(t) � ei�(b)

�
+ f (b)

�
1� ei(t�b)�

0(b)
�

= T1 (t) + T2 (t) + T3 (t) :

Then ��
T1;  a;b��� �
Z 1

�1
jA (t)� A (b)jDag (t� b) dt

=

Z 1

�1
jA (t+ b)� A (b)jDag (t) dt

=

Z a=2

�a=2
jA (t+ b)� A (b)jDag (t) dt

�
Z a=2

�a=2
jA0 (� (t)) tjDag (t) dt;

where � (t) is between t and t+ b: Hence,��
T1;  a;b��� � sup
t2[b�a=2;b+a=2]

jA0 (t)j
Z a=2

�a=2
jtjDag (t) dt:
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Furthermore, Z a=2

�a=2
jtjDag (t) dt

=
1p
a

Z 1=2

�1=2
jatj g (t) adt

= a3=2
Z 1=2

�1=2
jtj g (t) dt � a3=2 kgk

sZ 1=2

�1=2
t2dt

=
a3=2p
12
:

Therefore, ��
T1;  a;b��� � a3=2p
12

sup
t2[b�a=2;b+a=2]

jA0 (t)j :

Similarly

��
T2;  a;b��� � A (b)

Z a=2

�a=2

��ei�(t+b) � ei�(b)
��Dag (t) dt

� a3=2A (b) sup
t2[b�a=2;b+a=2]

j�0 (t)j
Z 1=2

�1=2
jtj g (t) dt

� a3=2p
12
A (b) sup

t2[b�a=2;b+a=2]
j�0 (t)j

and ��
T3;  a;b��� � jf (b)j
Z a=2

�a=2

���1� ei�
0(b)t
���Dag (t) dt

� a3=2A (b) j�0 (b)j
Z 1=2

�1=2
jtj g (t) dt

� a3=2p
12
A (b) sup

t2[b�a=2;b+a=2]
j�0 (t)j :

The smallness of the corrective term � (a; b) can be seen as follows. For
small scales, the CWT emphasizes the local rapid change of f where jA0 (t)j ; j�0 (t)j
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are large. In this case � (a; b) is small because of the coe¢ cient a3=2. For large
scales, the CWT emphasizes the slow local change of f where jA0 (t)j ; j�0 (t)j
are naturally small, which means that � (a; b) is also small.
Real Signals Equation (3) and the estimates (5), (6) do not change

if f is a real signal of the form

f (t) = A (t) cos� (t) :

To see this we put F (t) = A (t) ei�(t): Then

f (t) =
F (t) + F (t)

2

and 

f;  a;b

�
=

1

2



F;  a;b

�
+
1

2



F ;  a;b

�
=

p
a

2
F (b) bg�� � a�0 (b)

2�

�
+

p
a

2
F (b) bg�� + a�0 (b)

2�

�
+
1

2
�1 (a; b) +

1

2
�2 (a; b) :

Since bg is even, bg ��+a�0(b)
2�

�
= bg ���a�0(b)

2�

�
: Therefore,



f;  a;b

�
=

p
a

2

�
F (b) + F (b)

� bg�� � a�0 (b)

2�

�
+ � (a; b)

=
p
af (b) bg�� � a�0 (b)

2�

�
+ � (a; b) ;

where � (a; b) = 1
2
�1 (a; b) +

1
2
�2 (a; b) : Furthermore, since F and F have the

same amplitudes and (up to a sign change) phases, the estimates (5), (6) are
the same for �1; �2 and, hence, for �:
Recovery of the Amplitude and Phase Equation (3) gives the

approximate value of the normalized scalogram as

1

a
jW f (a; b)j2 � A2 (b)

����bg�a� � �0 (b)

2�

�����2 :
Since bg is maximum at ! = 0; the expression on the right is maximum when
��a�0(b)

2�
= 0; giving

�0 (b) =
�

a
(7)
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: The analytic amplitude is given by

A (b) =

q
1
a
PWf (a; b)bg (0) : (8)

The ridge algorithm then works as follows: at a given scale a one �nds
the time instant b at which 1

a
PWf (a; b) achieves its maximum. In other

words, (a; b) is the ridge point at scale a: The instantaneous frequency is
computed from (7) and the amplitude is calculated from (8): The phase � (b)
is calculated as the phase of W f (a; b) at the ridge point. The signal f (t)
is thus synthesized as

f (t) � A (b) ei(�(b)+�
0(b)(t�b)):

In practice the ridge points are found by saving the normalized scalogram in a
matrixW whose rows correspond to scales and whose columns correspond to
time instants and then, for each row, �nding the column where the maximum
occurs.

Exercise 3 How are the amplitude and phase angles recovered for a real
signal?

Exercise 4 Write a program that computes and plots the ridges of the hy-
perbolic chirp

f (t) = cos

�
�

t� �

�
for various values of �; � using a wavelet with g (t) = �[�1=2;1=2] (t) :

Multiple Frequencies Suppose the signal f has the form

f (t) = A1 (t) e
i�1(t) + A2 (t) e

i�2(t):

Then 

f;  a;b

�
=

p
aA1 (b) e

i�1(b)bg�� � a�01 (b)

2�

�
+
p
aA2 (b) e

i�2(b)bg�� � a�02 (b)

2�

�
+ � (a; b) :
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The two components are discriminated if

bg�a j�01 (b)� �02 (b)j
2�

�
� 0

for all b: This means that

j�01 (b)� �02 (b)j �
2��

a
:

In this case � = a�01 (b) creates a ridge point from which we can calculate
A1 (b) and �

0
1 (b) and � = a�02 (b) generates a second ridge point from which

to calculate A2 (b) and �
0
2 (b) :

Assignment 1 Write a program to synthesize a signal of one or two frequen-
cies where the amplitudes and phases are calculated from a wavelet
transform. Experiment with several choices of wavelets and compare
the calculated values with the original ones.

8


