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1 Introduction

The goal of signal compression is to reduce the storage or transmission requirements of a signal. A scheme
which achieves this goal is called a transform coding scheme.
A transform coding scheme consists of 3 steps:

1. The transform step.

2. The quantization step.

3. The coding step.

The purpose of the transform step is to decorrelate the data by removing redundancy. This is acheived
mainly by replacing the signal with a sequence of transform coe¢ eicnts. This step is usually done with
an invertible transform (Fourier Transform, Gabor Transform, Wavelet Transform, ... etc). Since the
transform is invertible, this step is lossless. No information is lost.
The quantization step reduces the typically large set of transform coe¢ cients by a representative �nite

set of integer values. This process is not invertible and therefore, it is lossy.
The coding step takes advantage of the large number of zeros produced in the transform step and the

quantization step to produce a compressed coded image.

2 The transform step

When a signal contains large regions of constant or smoothly changing values, its wavelet transform with
wavelets that have a su¢ cient number of vanishing moments produce very small coe¢ cients. In the next
section we will see how this can be used to achieve a high compression ratio.
For a given signal f; it is possible to choose a "best" wavelet basis, e.g., one which maximizes the

number of coe¢ cients below a prespeci�ed threshold. The disadvantage, of course, is the added overhead
required to specify information about the wavelet basis. This disadvantage can be greatly reduced by
specifying a best basis for a group of signals rather than one for each signal. This is the case, for example,
with �ngerprinting. The ridges on a typical �ngerprint translate to a rapid oscillation in pixel values;
thus, it is not surprising that standard wavelet basis does not give the optimal representation.
Factors governing the choice of a wavelet basis include the following considerations.

a. Symmetry: Many signals in applications are symmetric, e.g., periodic signals and images. The
orthogonal wavelet trasfrom of these signals produce arti�cial oscillations due to sudden jumps.
The presence of these oscillations means large coe¢ cients which compromise the goal of compress-
ing signals by producing as many small coe¢ cients as possible. Symmetric �lters are desirable
because they eliminate the arti�cial oscillations. Since orthogonal wavelets cannot be symmetric,
biorthogonal wavelets are used, whenever appropriate, with signal processing.

b. Vanishing moments: A large number of vanishing moments results via smoothness of the wavelet
in small coe¢ cients on the analysis side and less blocking artifacts on the reconstruction side.
Therefore, it is desirable to have wavelets with a large number of vanishing moments.
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c. Filter size: Although long �lters mean smooth wavelets and hence, good compression properties,
such �lters tend to be oscillating. Such oscillations can be visible in the reconstructed signal.
Therefore, we seek �lters with the shortest possible length. The 9/7 biorthogonal wavelets provide
a good compromise between the number of vanishing moments and the length of the �lter. In fact
these are the wavelets used for �ngerprint compression.

3 Thresholding and the quantization step

The trasform step replaces the signal f with a sequence F of M (possibly) high-precision �oating-point
coe¢ cients. Quantization reduces the number of values that these coe¢ cients take by representing this
set of coe¢ cients by means of a �nite set of integers. One way to implement such a quantization is called
scalar quantization. The procedure is as follows.

1. Suppose all coe¢ cients are in the range [��;�] ; that is, Fk 2 [��;�] ; and they are to be quantized
by a number of 2q levels. Partition the interval [��;�] into 2q equal intervals [x�q+1; x�q+2) ; [x�q+2; x�q+3) ;
� � � ; [xq�1; xq] ; where x�q+1 = ��; xi+1 � xi = 2�=q:

2. De�ne a quantization map Q : [��;�]! f�q + 1;�q + 2; � � � ; qg by

Q (x) =

�
j if x 2 [xj ; xj+1) and xj+1 � 0;

j + 1 if x 2 [xj ; xj+1) and xj � 0
:

The graph of this quantization map is shown below.

­ Λ Λ

The quantization function Q

Observe that the quantization function Q maps the double-wide interval [x�1; x1) =
h
��
q ;

�
q

�
to

zero. If the signal is smooth, this interval contains most of the wavelet coe¢ cients. In this respect, the
quantization process works as a threshold. More generally, a threshold parameter � > 0 is set such that
all coe¢ cients of absolute value less than � is set to zero before applying the quantization. There are

2



­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
­5

­4

­3

­2

­1

0

1

2

3

4

5

­ λ λ

Hard Thresholding

two types of thresholding: hard thresholding and soft thresholding. Hard thresholding is implemented as
follows

Thard (x) =

�
0 if jxj � �
x if jxj > � :

Soft thresholding is implemented as follows

Tsoft (x) =

8<: 0 if jxj � �
x� � if x > �
x+ � if x < ��

:

The combined e¤ect of applying thresholding and quantization is the composition Q � T:

3.1 The coding step

At this stage a signal of length M is transformed and quantized as a string of M integers in the range
f�q + 1;�q + 2; � � � ; qg : Coding consists of assigning binary values to each integer in the quantized signal
for storing or transmission purposes. We make use of the relative frequencies with which these values
occur in order to reduce the number of bits required to represent the signal.

Example 1 Suppose q = 2 and M = 16: Then a signal is a string of the form

AABCDAAABBADAAAA;

where we replaced the integers �1 : 2 with the symbols A�D: A possible coding scheme is

A ! 00

B ! 01

C ! 10

D ! 11
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Accordingly, the coded image is

00000110110000000101001100000000;

a total of 32 bits. On the other hand, observing that the symbol A appears far more frequently than the
other symbols, we may take advantage of this by assigning A the shortest code word, namely 0. We can
repeatedly do this and devise the coding scheme

A ! 0

B ! 10

D ! 110

C ! 111

According to this coding scheme, the image is coded as

0010111110000101001100000;

a total of 25 bits and a saving of about 22%:

3.2 Sources and codes

In this subsection we present some basic concepts of information and coding theory and introduce the
concept of entropy of a symbolic source.

De�nition 2 (symbol sources, codewords, binary codes, coding schemes and average codeword lenght)

(i) A symbol source is a pair (S; P ) where S is �nite sequence S = fs1; s2; � � � ; sqg and P is a corre-
sponding sequence of assigned probabilities P = fp1; p2; � � � ; pqg ; where pi = P (si) ; 0 � pi � 1;
1 � i � q;and

Pq
i=1 pi = 1:

(ii) A codeword, w; is a �nite string of binary digits:

w = d1d2 : : : dk; where dj 2 f0; 1g ; 1 � j � k:

(iii) A binary code, C; is a �nite sequence of codewords:

C = fw1; w2; : : : ; wpg :
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(iv) A coding scheme is a one to one mapping � : S ! C:

(v) The average codeword length ACL (�) of a coding scheme � is de�ned as

ACL (�) =

qX
i=1

pi` (wi) ;

where wi = � (si) ; 1 � i � q and ` (w) is the length of the codeword w:

Example 3 In the previous example, the symbol source (S; P ) is S = fA;B;C;Dg and P =
�
5
8 ;

3
16 ;

1
16 ;

1
8

	
;

where P (A) = 5
8 ; P (B) =

3
16 ; P (C) =

1
16 ; P (D) =

1
8 : The two coding schemes discussed above are

1. The codewords are w1 = 00; w2 = 01; w3 = 10 and w4 = 11; the binary code C = f00; 01; 10; 11g
and the coding scheme � is � (A) = 00; � (B) = 01; � (C) = 10; � (D) = 11: For this scheme

ACL (�) =
5

8
� 2 + 3

16
� 2 + 1

16
� 2 + 1

8
� 2 = 2;

which is not surprising since each codeword has length 2.

2. The codewords are w1 = 0; w2 = 10; w3 = 11 and w4 = 111; the binary code C = f0; 10; 11; 111g
and the coding scheme � is � (A) = 0; � (B) = 10; � (C) = 111; � (D) = 110:For this scheme

ACL (�) =
5

8
� 1 + 3

16
� 2 + 1

16
� 3 + 1

8
� 3 = 1: 562 52:

The average codeword for this scheme is about 78% as long as the less e¢ cient scheme 1.

In order that a coding scheme be uniquely deciphered, we require that no codeword should be the
pre�x of another codeword. (Consider, for example, the binary code in part 2 of the previous example.)

3.3 Entropy and information

The entropy H (S) of a symbol source (S; P ) is de�ned to be

H (S) = �
qX
i=1

pi log2 (pi) :

It measures the degree of uncertainty of information associated with the source. This is because the
function x log2 (x) = 0 at x = 0 and x = 1: This means that any symbol with probability of occurring 0
does not add anything to the uncertainty of the information content of the source. The same holds true
if a symbol has probability of occurring 1 (there can be at most one, the rest having probability zero).
In this case, H (S) = 0: A simple exercise with Lagrange multipliers will show that H (S) is maximum
when each symbol is equally likely to appear. The common probability is pi = 1

q and H (S) = log2 (q) :
In this case, if one symbol is put out by the source, it is still uncertain which symbol is to be put out
next. The entropy function has the following property.

Lemma 4 If two symbol sources A = fa1; a2; � � � ; aqg and B = fb1; b2; � � � ; brg are independent then

H (AB) = H (A) +H (B) ;

where AB is the source de�ned by
AB = faibjg1�i�q;1�j�r :
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Proof. Since the sources A and B are independent, then P (aibj) = pipj : Hence,

H (AB) = �
qX
i=1

rX
j=1

pipj log2 (pipj)

= �
qX
i=1

pi

rX
j=1

pj (log2 (pi) + log2 (pj))

= �
qX
i=1

pi (log2 (pi) +H (B))

= � (H (A) +H (B)) :

3.4 Coding and compression

Given a symbol source S = fs1; s2; � � � ; sqg with assigned probabilities pi = P (si) ; suppose that q = 2s:
Then each symbol can be coded in s bits. If messages (signals, images, ... etc.) of length M are put
out by the source, then each message can be stored in sM bits. A coding scheme � tries to reduce
this storage requirement by seeking alternative coding sets. For a given coding scheme �; the average
storage requirement of a message is ACL (�)M bits. We then say that � has a bit rate of ACL (�) : The
compression ratio of � is s=ACL (�) :

Theorem 5 (best coding scheme)
Let m (S) = min� ACL (�) ; then

H (S) � m (S) � H (S) + 1:

Example 6 Suppose an image is quantized with q = 32 and that 95% of the transform coe¢ cients are
quantized to zero. Suppose further that the remaining 31 quantized values have the same probability of
occurrence. Then

P (0) = :95; P (i) = :05=31 � :0061; 1 � i � 31:
The entropy of this source is

H (S) = �:95 log2 (:95)� :05 log2 (:0061) � 0:534 11:

Therefor, the best possible coding for this source has bit rate of 0:534 11 and compression ratio of 5=0:534 11 �
9: 4:

The theoretical bit rate 0:53 in previous example is not achievable since any codeword of a coding
scheme has length � 1: Therefore, ACL (�) � 1: For example, the two schemes used in Example 3 have
ACL (�) = 2; and 1:56, respectively. Thus there is a need to improve upon Theorem 5 to get as close as
possible to the theoretical minimum. This is achieved by group coding.

De�nition 7 (symbol source extensions)
Let S = fs1; s2; � � � ; sqg be a symbol source with associated probabilities fp1; p2; : : : ; pqg : The nth

extension Sn of S is de�ned by

Sn = ffsi1si2 ; : : : ; sing : 1 � i1; i2; � � � ; in � qg :

Observe that Sn is the set of all strings of length n of the symbols of S: There are qn such strings.
Since the symbols in S are independent, the associated probabilities for Sn are

fpi1pi2 � � � ping1�i1;i2;��� ;in�q :

Theorem 8 H (Sn) = nH (S) :

Proof. This is a straightforward consequence of Lemma 4 and induction.
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Theorem 9

H (S) � m (Sn)

n
� H (S) + 1

n
:

Since any coding scheme for Sn can be regarded as a coding scheme for S; the above theorem means
that by considering coding schemes for the nth extensions of S we can �nd a coding scheme whose ACL
is arbitrarily close to the theoretical minimum.

Example 10 Let S = fA;B;C;Dg and consider the 64 symbol message

AABCAAAAAAAAAAAAAAAABCAAAAAAAAAAAAAAAAAAAAAAAADA

AAAAAAAAACAAAAAA:

This message can be considered as a message composed of the symbols of

S2 = fAA;AB;AC;AD;BA;BB;BC;BD;CA;CB;CC;CD;DA;DB;DC;DDg

The associated probabilities are

P (AA) = 23=32; P (BC) = 2=32; P (DA) = 1=32; P (AC) = 1=32;

the remaining probabilities being zeros. Using the coding scheme

AA ! 0

BC ! 10

DA ! 110

AC ! 111

the message is coded as
01000000000100000000000001100000111000;

a total of 38 bits. This is a 38=32 � 1:19 bits per symbol if we consider the message to be of length 32
made up of the symbols of S2; but a 38=64 � :59 bits per symbol if we consider the message be of length
64 made up of the symbols of S: The theoretical optimal value in this case is 0:5857:

Although group coding produces bit rates closer to the optimal values, the price we pay is the overhead
required to store or transmit the coding scheme. The size of Sn is qn and if q = 64 and n = 5; then
645 > 1 billion. This is a prohibitively high price.

3.5 The binary Hu¤man code

The binary Hu¤man code is a dynamical programming algorithm that constructs a coding scheme with
minimum ACL for a given symbol source. It is de�ned recursively as follows.

Proposition 11 (Hu¤man) Let S = fs1; s2; � � � ; sqg be a simple source with associated probabilities
fp1; p2; � � � ; pqg where the symbols are arranged such that p1 � p2 � � � � � pq: Let s12 = fs1; s2g and assign
it the probability p12 = p1 + p2: An optimal coding scheme for S is obtained recursively by constructing
an scheme for S1 = fs12; s3; � � � ; sqg and then dividing the symbol s12 into its constituents s1; s2:

Example 12 We construct the optimal scheme for the 6 symbol source S = fs1; s2; s3; s4; s5;s6g with
probabilities f0:05; 0:1; 0:1; 0:15; 0:2; 0:4g : Following is the sequence of recursive constructs together with
the associated probabilities.

S1 = fs3; s12; s4; s5;s6g ; f0:1; 0:15; 0:15; 0:2; 0:4g
S2 = fs4; s5;s123; s6g ; f0:15; 0:2; 0:25; 0:4g
S3 = fs123; s45; s6g ; f0:25; 0:35; 0:4g
S4 = fs6; s12345g ; f0:4; 0:6g

The coding scheme is best explained by the following tree diagram. The codewords assigned to each symbol
is shown below the symbol.
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The Hu¤man optimal coding scheme for the 6-symbol source.

Therefore, we have the following coding scheme.

s1 ! 1110;

s2 ! 1111;

s3 ! 110;

s4 ! 100;

s5 ! 101;

s6 ! 0:

The ACL for this scheme is

ACL (�) = :05 � 4 + 0:1 � 4 + 0:1 � 3 + 0:15 � 3 + 0:2 � 3 + 0:4 � 1 = 2: 35

The optimal bit rate for this source is

H (S) = � (:05 � log2 (:05) + 2 � 0:1 � log2 (:1) + 0:15 � log2 (:15) + 0:2 � log2 (:2) + 0:4 � log2 (:4))
= 2: 284 2:

Let us compare the bit rate of the Hu¤man coding scheme to that of the coding scheme

s1 ! 11111;

s2 ! 1110;

s3 ! 1110;

s4 ! 110;

s5 ! 10;

s6 ! 0:

This scheme has a bit rate of

ACL (�) = :05 � 5 + 0:1 � 5 + 0:1 � 4 + 0:15 � 3 + 0:2 � 2 + 0:4 � 1 = 2: 4

which is higher than the bit rate of the Hu¤man scheme.
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4 Image compression

A black and white image is anM�M array of integers in the range [0; L� 1] : Each entry is called a picture
element or a pixel. Each pixel value represents the gray scale level of that pixel, with 0 representing black
and L� 1 representing white. Usually, M is 256 or 512 and L = 256 (8 bits). Storing or transmitting an
image requires 256 � 256 � 8 = 524 288 bits. The goal of image compression is to reduce the storage or
transmission requirements of an image. A scheme which achieves this goal is called a transform coding
scheme.

4.1 MATLAB examples

The MATLAB wavelet toolbox has the capability of compressing images. The compression is performed
by taking the wavelet transform of an image, remove detail coe¢ cients that are close to zero and then
reconstruct the image. See the help documentation in MATLAB for more details.
The following image is analyzed with the Haar wavelet down to level 5 then compressed. 87:42% of

the detail coe¢ cients are set to zero. The reconstruction retains 98:92% of the original image energy.
Observe the blocking artifact of the Haar wavelet

Compression with the Haar Wavelet

The next �gure shows the same image analyzed with the wavelet sym6 and thresholding set so that 90:4%
of the detail (at all levels) set to zero and 99:76% of the image energy is retained.

Compression with sym6
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Observe the denoizing e¤ect of compression.
Assignment 4(optional)

1. Make a record of you own voice (reading a passage in a book for example).

2. Import the voice signal in Matlab.

3. Have Matlab play the signal to check that it is correctly imported.

4. Apply the discrete wavelet transform to the voice signal.

5. Compress the voice signal using wavelet shrinkage with soft thresholding and hard thresholding.

6. Compare between the results of using various wavelets and biorthogonal wavelets.

7. Report on the best wavelet that seems to give the highest level of compression before the recon-
structed signal becomes unintelligible.
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