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1 Introduction

Developing the discrete wavelet transform involves the transition from the continuous
time domain to the discrete time domain. Signals are replaced by sequences which may
be thought of as samples of the signal at discrete time steps. The more accurate point of
view, however, is not to consider these sequences as signal samples but as coe¢ cients of
approximations of the signal in a suitable space VJ of a multiresolution analsysis. This
means that care should be taken when collecting signal samples. We will not dwell on
this point anyfurther. In the discrete time domain, the scaling �lter h and the wavelet
�lter g naturally replace the scaling function ' and the wavelet  :
In this chapter we detail the transition from continuous time to discrete time.

2 Notation and terminology

We begin by introducing some de�nitions and notations. We will use lower case letters
c; d; ... etc to denote in�nite sequences of complex numbers of the form

c = (cn) = (: : : ; c�2; c�1; c0; c1; c2; : : :) ;

d = (dn) = (: : : ; d�2; d�1; d0; d1; d2; : : :) ; : : : :

The operation of addition of two sequences is de�ned by adding the corresponding com-
ponenets:

c+ d : = (cn + dn)

= (: : : ; c�2 + d�2; c�1 + d�1; c0 + d0; c1 + d1; c2 + d2; : : :) :

Similarly, the operation of multiplying a sequence by a number is de�ned by multiplication
componentwise:

�c : = (�cn)

= (: : : ; �c�2; �c�1; �c0; �c1; �c2; : : :) :

Given a sequence c = (cn) we use the notation

kck2 :=
X
n

jcnj2 (1)
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if the ini�nite sum exists. If it does, we say that the sequence c is square summable. The
space of all square summable sequences is denoted by `2 (Z) : With the two operations
de�ned above, `2 (Z) is a linear space. With the norm de�ned by (1), `2 (Z) is a Hilbert
space. The inner product associated with this norm is

hc; di = h(cn) ; (dn)i =
X
n

cndn:

The space `2 (Z) has a special set of orthonormal basis f�kgk2Z where

�k = (: : : ; 0; 1; 0; : : :)| {z }
"

kth position

:

This basis is called the standard basis. One can write any sequence c 2 `2 (Z) as

c =
X
k

ck�k:

The re�ection and translation operators on `2 (Z) take the forms

�c = (c�n) ;

� kc = (cn�k) ;

respectively. The dilation operator is given by

�jc = (c2jn) ;

where it is understood that c2jn = 0 if 2jn is not an integer. In particular,

�1c = (: : : ; c�4; c�2; c0; c2; c4; : : :) ;

while
��1c = (: : : ; c�2; 0; c�1; 0; c0; 0; c1; 0; c2; : : :) :

Therefore, �1c "throws away" all the odd indexed components of c while ��1c pads the
sequence c with zeros. The operator �1 is called a downsampling operator and ��1 is
called an upsampling operator. The operators �j and ��j are no longer unitary (they are
not even invertible), however, they are mutually adjoint:

h�jc; di = hc; ��jdi :

The convolution of two sequences c; d 2 `2 (Z) is de�ned by

c � d =
 X

k

ck dn�k

!
:

The space L2 (0; 1) will also be useful to us in what follows. There are two Fourier
transforms associated with L2 (0; 1) and `2 (Z) : The discrete Fourier transform

Fd : L2 (0; 1)! `2 (Z)
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de�ned by
Fdf = bf = (hf; eni)

and the Fourier series transform

Fs : `2 (Z)! L2 (0; 1)

de�ned by
Fsc = bc =X

n

cnen:

It is straight forward to show that F�
s = Fd = F�1

s and F�
d = Fs = F�1

d : The familiar
change of convlution to multiplication is still valid for these two Fourier transforms:

dc � d = bcbd;
[f � g = bf ~ bg;

where the notation in the last equation needs the following explanation:

f � g =
Z 1

0

f (�) g (t� �) d�

with g (and f) extended outside the interval (0; 1) by periodicity, and bf~bg is the sequence
obtained from bf and bg by componentwise multiplication.
The down sampling operator introduces aliasing as we shall see from the Fourier

transforms.

Lemma 1

c�1c =
p
2D�1

�bc+ T1=2bc� ; (2)d��1c =
1p
2
D1bc: (3)

Proof. (of (2)).

bc+ T1=2bc =
X
n

cnen +
X
n

(�1)n cnen

= 2
X

c2ne2n

=
p
2D1

X
c2nen

=
p
2D1

c�1c:
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3 The Approximation and Detail Operators and their
adjoints

Let fVjgj2Z be an MRA with scaling function '; mother wavelet  ; scaling �lter h = (hn)
and wavelet �lter g = (gn) : Recall that h; g 2 `2 (Z) : In order to work e¢ ciently with
sequences, we need to introduce the operators Aj; Bj : L2 (R) ! `2 (Z) associated with
the MRA which are di�ned by

Ajf =
�

f; 'j;n

��
;

Bjf =
�

f;  j;n

��
8f 2 L2 (R) :

So for each function f 2 L2 (R) ; Ajf gives the sequence of coe¢ cients of Pjf whereas
Bjf gives the sequence of coe¢ cients of Qjf .

Exercise 1 Obtain fromulas for A�j and B
�
j and show that

(a) for all f 2 L2 (R) ;

A�jAjf = Pjf;

B�
jBjf = Qjf ;

(b) for all sequences c in the range of Aj (range of Bj),

AjA
�
jc = c;

BjB
�
j c = c

De�ne the convolution operators H;G : `2 (Z)! `2 (Z) by

Hc = (hc; �nhi) = c � �h;
Gc = (hc; �ngi) = c � �g:

Exercise 2 Show that the adjoints of H;G are given by

H�c = c � h; G�c = c � g;

respectively.

Observe the following Fourier transforms:

m0 (!) = Fsh = bh =X
n

hnen;

m1 (!) = Fsg = bg =X
n

gnen:

Exercise 3 Show that TnDj = DjT2jn:

Lemma 2 (two scale identities)
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(i) 'j;n =
P

k hk�2n'j+1;k

(ii)  j;;n =
P

k gk�2n'j+1;k:

Proof. It su¢ ces to show (i) only. Since 'j;n 2 Vj+1;

'n;j =
X
k



'j;n;'j+1;k

�
'j+1;k = DjTnhkD1Tk'

=
X
k

hDjTn';Dj+1Tk'i'j+1;k =
X
k

hTn';D1Tk'i'j+1;k

=
X
k

h'; T�nD1Tk'i'j+1;k =
X
k

h';D1Tk�2n'i'j+1;k

=
X
k



'; '1;k�2n

�
'j+1;k =

X
k

hk�2n'j+1;k:

We then have the following recursions.

Lemma 3 (decomposition recursion relations)
The following decomposition relations hold:

Ajf = �1HAj+1f; (4)

Bjf = �1GAj+1f (5)

for all f 2 L2 (R) :

Proof. We show only (4). For any n 2 Z;

Ajf =
�

f; 'n;j

��
=

 *
f;
X
k

hk�2n'k;j+1

+!

=

 X
k

hk�2n


f; 'k;j+1

�!
= (hAj+1f; � 2nhi)

= �1 (hAj+1f; �nhi)
= �1HAj+1f:

The decomposition process is often depicted as shown below.

H     2

G     2

Cj+1 Cj

Dj
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We should remark here that equations (4, 5) express the fact that the approxima-
tion and detail coe¢ cients at the coarser resolution j can be directly computed from
the approximation coe¢ cients at the �ner resolution j + 1 without having to recalculate
the discretization coe¢ cients. In other words, Pjf and Qjf can be computed directly
from Pj+1f: We will proceed to show that this process is completely reversible: the ap-
proximation coe¢ cients at the �ner resolution j + 1 can be directly computed from the
approximation and detail coe¢ cients at the next coarser resolution j:

Lemma 4 (reconstruction recursion relation)
At the reconstruction level

Aj+1f = H���1Ajf + G���1Bjf: (6)

Proof. Since

Pj+1 = Pj +Qj;

A�j+1Aj+1 = A�jAj +B�
jBj;

using Lemma 3,

A�j = (�1HAj+1)
�

= A�j+1H
���1

and
B�
j = A�j+1G

���1:

Hence,
A�j+1Aj+1 = A�j+1 (H

���1Aj +G���1Bj) :

Multiplying both sides of the above equation by Aj+1 (and using Exercise 2) gives;

Aj+1 = H���1Aj +G���1Bj: (7)

The reconstruction process is often depicted as follows:

    2

    2

H*

G*Dj

Cj Cj+1

Equation (7) expresses the perfect reconstruction of a signal at a higher resolution
level (�ner scale) from its approximation and detail at a lower resolution (coarser scale)
level.
Operations count: Given an approximation Aj+1f of a signal of length N; the

decomposition step into approximation and detail (equations 4, 5) costs about 2N mul-
tiplications and additions because we do not need to compute the discarded terms when
downsampling. After the decomposition step, Ajf and Bjf both have length N=2: There-
fore, the reconstruction step (7) costs about 4N=2 = 2N multiplications and additions.
The operation count for the discrete wavelet algorithm is, thus, O (N) which is a sub-
stantial improvement over the Fast Fourier Transform in which the operation count is
O (N logN) :
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4 Further Properties of the QMF

The Fourier transforms involving these operators are given below.

Lemma 5 (Fourier transform properties)
The following Fourer transforms hold:

[�1Hc =
p
2D�1

�bc m0 + T1=2 (bc m0)
�
;

[�1Gc =
p
2D�1

�bc m1 + T1=2 (bc m1)
�
;

\H���1c =
1p
2
(D1bc)m0;

\G���1c =
1p
2
(D1bc)m1:

Proof. We will show the �rst of these identities.

[�1Hc =
p
2D�1

�cHc+ T1=2cHc� = p2D�1

�
\c � �h+ T1=2

\c � �h
�

=
p
2D�1

�bc m0 + T1=2 (bc m0)
�
:

Exercise 4 Work out the details of the remaining three relations in the previous lemma.

Next we investigate the relationships between the operators de�ned above and the
identities involving the functions H and G:

Theorem 6 (correspondence between auxiliary functions and operators)

(i) The conditions jm0j2 + T1=2 jm0j2 = jm0j2 + T1=2 jm1j2 = 1 are equivalent to

�1HH
���1 = �1GG

���1 = I:

(ii) The condition m1m0 + T1=2m1m0 = 0 is equivalent to

�1GH
���1 = �1HG

���1 = 0:

(iii) The conditions jm0j2 + T1=2 jm0j2 = 1; m1 = Qm0 with jQj = 1 and Q + T1=2Q = 1
are equivalent to

��1 (H
�H +G�G) �1 = I:

Proof. To prove the �rst equivalence in (i), we calsulate

\�1HH���1c =
p
2D�1

�
\H���1c m0 + T1=2

�
\H���1c m0

��
= D�1

�
(D1bc)m0 m0 + T1=2 ((D1bc) m0 m0)

�
= D�1

�
D1bc jm0j2 + T1=2 (D1bc) jm0j2

�
= D�1

�
D1bc jm0j2 + T1=2 (D1bc)T1=2 jm0j2

�
= D�1

�
D1bc jm0j2 + (D1T1bc)T1=2 jm0j2

�
= bc �jm0j2 + T1=2 jm0j2

�
:
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If jm0j2 + T1=2 jm0j2 = 1; then \�1HH���1c = bc; which means that �1HH���1 = I: On the

other hand, if �1HH���1 = I; then \�1HH���1c = bc for all c 2 `2 (Z) : In particular, for
c = �0 (bc = 1),

jm0j2 + T1=2 jm0j2 = 1:
To prove the equivalence in (iii) we proceed with similar calculation to that of part (i):

\��1 (H�H +G�G) �1c = bc jm0j2 +m0T1=2 (bc m0) + bc jm1j2 +m1T1=2bc m1

=
�bc �jm0j2 + jm1j2

�
+ T1=2bc �m0T1=2m0 +m1T1=2m1

��
:

If jm0j2 + T1=2 jm0j2 = 1 and m1 = QT1=2m0 with jQj = 1; T1=2Q = �Q then

m0T1=2m0 +m1T1=2m1 = m0T1=2m0 +QT1=2m0T1=2
�
QT1=2m0

�
= m0T1=2m0 +Qm0T1=2m0T1=2Q

= m0T1=2m0

�
1 +QT1=2Q

�
= m0T1=2m0

�
1� jQj2

�
= 0

and
jm0j2 + jm1j2 = jm0j2 + T1=2 jm0j2 = 1:

Therefore,
\��1 (H�H +G�G) �1c = bc

from which we get
��1 (H

�H +G�G) �1 = I:

On the other hand, if ��1 (H�H +G�G) �1 = I then

bc = �bc �jm0j2 + jm1j2
�
+ T1=2bc �HT1=2m0 +m1T1=2m1

��
for all c 2 `2 (Z) : Choosing c = �0 and c = �1; we obtain

1 = jm0j2 + jm1j2 + T1=2
�
m0T1=2m0 +m1T1=2m1

�
;

e1 = e1
�
jm0j2 + jm1j2

�
+ T1=2

�
e1
�
m0T1=2m0 +m1T1=2m1

��
= e1

�
jm0j2 + jm1j2 � T1=2

�
m0T1=2m0 +m1T1=2m1

��
:

Solving this system we get

jm0j2 + jm1j2 = 1; (8)

m0T1=2m0 +m1T1=2m1 = 0: (9)

The second of these equations gives

m0T1=2m0 = �m1T1=2m1:

Taking the square moduli on both sides, substituting from equation (8) and simplifying
we get

jm1j2 = T1=2 jm0j2 :
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Then
m1 = QT1=2m0;

where jQj = 1 and T1=2Q = �Q:
We remark that the aliasing introduced by the downsampling operator is completely

negated at the reconstruction step because of the property

m0T1=2m0 +m1T1=2m1 = 0:

Exercise 5 Prove part (ii) of the previous theorem.

Other properties of H and G in terms of the sequences h and g are given in what
follows.

1. Integrating the equation
jm0j2 + T1=2 jm0j2 = 1 (10)

between 0 and 1 gives

km0k2L2(0;1) =
1

2
:

Therefore,
khk2 = 1;

or X
jhnj2 = 1:

Equivalently,
k'k = 1:

Since we also have a similar equation for m1;

jm1j2 + T1=2 jm1j2 = 1;

we similarly conclude that

km1k2L2(0;1) =
1

2
;

kgk2 = 1;X
jgnj2 = 1;

k k = 1:

2. Taking the discrete Fourier transform of (10) gives�
h � �h

�
n
+ (�1)n

�
h � �h

�
n
= �n0:

Therefore, �
h � �h

�
2n
=
1

2
�n0:

Explicitly, X
hkhk�2n = �n0:
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3. The equation m0 (0) = 1 gives
P
hn =

p
2:

4. The equation m1 (0) = 0 gives
P
gn = 0:

5. The equation m0

�
1
2

�
= 0 gives

P
(�1)n hn = 0; which is equivalent to

P
h2n =P

h2n+1:

6. Taking the discrete Fourier transform of the equation

m1m0 + T1=2m1m0 = 0

yields �
g � �h

�
n
+ (�1)n

�
g � �h

�
n
= 0:

Therefore, �
g � �h

�
2n
= 0:

Explicitly X
k

gkhk�2n = 0:

7. Taking the discrete Fourier transform of the equation

jm0j2 + jm1j2 = 1

yields
h � �h+ g � �g = �0:

Since �
h � �h

�
2n

= �n0;

(g � �g)2n = �n0:

Explicitly, X
k

gkgk�2n = �n0:
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