بسم الله الرحمن الرحيم

Some Software Toolboxes
WAVELAB and LASTWAVE Toolboxes

Numerical experimentations are necessary to fully understand the algorithms and theorems in this book. To avoid the painful programming of standard procedures, nearly all wavelet and time-frequency algorithms are available in the WAVELAB Package, programmed in MATLAB; WAVELAB is a freeware software that can be retrieved through the Internet. 
The correspondence between algorithms and WAVELAB subroutines is explained in Appendix AB.

All computational figures can be reproduced as demos in WAVELAB; LASTWAVE is a wavelet signal and image processing environment, written in C for X11/Unix and Macintosh computers. This stand-alone freeware does not require any additional commercial package. It is also described in Appendix AB.
The textbook algorithms are implemented in WAVELAB and LASTWAVE which are freeware softwares that can be retrieved through the Internet. Nearly all the computational figures of the book are reproduced as demos. 
Other freeware toolboxes are listed in Section AB.3. Pointers to new software and information concerning the Wavelet Digest newsletter is available at http://www.wavelet.org .

Here a recall: Section 1.5 (TRAVEL GUIDE)
Reproducible Computational Science:

The book covers the whole spectrum from theorems on functions of continuous variables to fast discrete algorithms and their applications. Section 1.3.1 argues that models based on continuous time functions give useful asymptotic results for understanding the behavior of discrete algorithms. Yet, a mathematical analysis alone is often unable to predict fully the behavior and suitability of algorithms for specific signals. Experiments are necessary and such experiments ought in principle be reproducible, just like experiments in other fields of sciences.

In recent years, the idea of reproducible algorithmic results has been championed by Claerbout [#] in exploration geophysics. The goal of exploration seismology is to produce the highest possible quality image of the subsurface. Part of the scientific know-how involved includes appropriate parameter settings that lead to good results on real datasets. The reproducibility of experiments thus requires having the complete software and full source code for inspection, modification and application under varied parameter settings. Donoho has advocated the reproducibility of algorithms in wavelet signal processing, through the development of a WAVELAB toolbox, which is a large library of MATLAB routines.
[#] J. Claerbout. Hypertext documents about reproducible research, 1994.
http://sepwww.stanford.edu .
He summarizes Claerbout’s insight in a slogan: [*]:

An article about computational science in a scient8c publication is not the scholarship itself; it is merely advertising of the scholarship.

The actual scholarship is the complete software environment and the complete set of instructions which generated the figures.
[*]  J. B. Buckheit and D. L. Donoho. Wavelab and reproducible research. In Wavelets and Statistics, pages 53-81. Springer-Verlag, Berlin, 1995. A. Antoniadis and G. Oppenheim editors.

Following this perspective, all wavelet and time-frequency tools presented in this book are available in WAVELAB. The figures can be reproduced as demos and the source code is available. The LASTWAVE package offers a similar library of wavelet related algorithm that are programmed in C, with a user-friendly shell interface and graphics. 
Appendix B: 

Appendix B in the textbook explains how to retrieve these toolboxes, and relates their subroutines to the algorithms described in the book:
The Figure Demonstration:
The Wavelab directory has a folder called WaveTour. It contains a subdirectory for each chapter (WTCh01, WTCh02, . . . ); these subdirectories include all the files needed to reproduce the computational figures. Each directory has a demo file. 
For example, the figures of Chapter 4 are reproduced by invoking the file WTCh04Demo in MATLAB. 
A menu bar appears on the screen, listing all computational figures of Chapter 4. When a figure number is activated by a mouse-click, the calculations are reproduced and the resulting graphs are displayed in a separate window.
The command window gives a narrative explaining the results. The file WTCh04Demo.m is in the directory WTCh04. 
The MATLAB source code that computes Figure 4.X is in the file wt04f igX.m in that same directory. Equivalent names are used for all other chapters.
AB.1 WAVELAB

WAVELAB is a library of MATLAB routines for wavelets and related time-frequency transforms. It is improved and maintained at Stanford University by David Donoho with contributions to earlier versions by John Buckheit, Shaobing Chen, Xiaoming Huo, Iain Johnstone, Eric Kolaczyk, Jeffrey Scargle, and Thomas Yu [*]. It requires buying MATLAB which offers an interactive environment for numerical computations and visualizations. MATLAB is a product of The Mathworks Company based in Natick, Massachusetts. The WAVELAB version 0.800 has more than 800 files including programs, data, documentation and scripts, which can be retrieved at: 
http://www-stat.stanford.edu/~wavelab.
[*] J. B. Buckheit and D. L. Donoho. Wavelab and reproducible research. In Wavelets and

Statistics, pages 53-81. Springer-Verlag, Berlin, 1995. A. Antoniadis and G. Oppenheim editors.
Versions are available for Unix workstations, Linux, Macintosh, and PC (Windows).

A partial list of directories inside WaveLab is provided (in bold). For each directory, we give the names of the main computational subroutines, followed by the sections that describe the algorithms and the figures that use them.

The Main Computational Subroutines:

Datasets Synthetic and real signals.

ReadSignal Reads a Signal from a data set of one-dimensional signals.

Figures 4.7, 6.7, 8.19, 9.9 and 9.11.

ReadImage Reads an Image from an image data set. Figure 9.10.

Makesignal Makes a synthetic one-dimensional Signal. Figures 2.1, 4.3,

4.14, 4.13, 4.18, 6.3, 6.6, 9.1, 10.1, 10.5.

MakeImage Makes a synthetic Image. Figure 7.26.

MakeProcess Makes a realization of a stochastic Process. Section 10.6.3.

Figure 10.19.

MakeBrownian Makes a realization of a fractional Brownian motion. Section

6.4.3. Figure 6.20.

Makecantor Makes a generalized Cantor measure. Section 6.4.1. Figures 6.16 and 6.18.
Continuous: Continuous wavelet transform tools.

RWT Real Wavelet Transform. Sections 4.3.1 and 4.3.3. Figures 4.7, 6.1, 6.3,

6.5, 6.6, 6.16 and 6.20.

IRWT Inverse Real Wavelet Transform. Sections 4.3.1 and 4.3.3.

MM_RWT Modulus Maxima of a Real Wavelet Transform. Section 6.2. Figures

6.5, 6.6, 6.7, 6.16 and 6.20.
SkelMap Skeleton Map of maxima curves. Section 6.2. Figures 6.5, 6.6,

6.7 and 6.16.
AWT Analytic Wavelet Transform. Sections 4.3.2 and 4.3.3. Figures 4.11,

4.16 and 4.17.

IAWT Inverse Analytic Wavelet Transform. Sections 4.3.2 and 4.3.3.

Ridge_AWT Ridges of an Analytic Wavelet Transform. Section 4.4.2. Figures

4.15, 4.16 and 4.17.

Fractals Fractal computations.
FracPartition Fractal Partition function based on wavelet modulus maxima.

Section 6.4.2. Figure 6.18.

FracScalExp Fractal Scaling Exponent of the partition function. Section

6.4.2. Figures 6.18 and 6.20.

FracSingSpect Fractal Singularity Spectrum. Section 6.4.2. Figures

6.18 and 6.20.

TimeFrequency Time-frequency distributions.
WindowFT Windowed Fourier Transform. Section 4.2. Figures 4.3, 4.13

and 4.14.

IWindowFT Inverse Windowed Fourier Transform. Sections4.2.1 and4.2.3.

Ridge_WindowFT Ridges of a Windowed Fourier Transform. Section

4.4.1. Figures 4.12,4.13 and 4.14.

WignerDist Wigner-Ville Distribution. Sections 4.5.1 and 4.5.4. Figures

4.18 and4.19.

CohenDist Cohen class time-frequency Distributions. Sections 4.5.3 and

4.5.4. Figures 4.20 and 4.21.

Orthogonal Periodic Orthogonal wavelet transforms.
FWT_PO Forward Wavelet Transform, Periodized and Orthogonal. Sections

7.3.1 and 7.5.1. Figures 7.7 and 9.2.

IWT_PO Inverse Wavelet Transform, Periodized and Orthogonal. Sections

7.3.1 and 7.5.1. Figure 9.2.

FWT_IO Forward Wavelet Transform, on the Interval and Orthogonal. Sections

7.3.1 and 7.5.3. Figure 9.2.

IWT_IO Inverse Wavelet Transform, on the Interval and Orthogonal. Sections

7.3.1 and 7.5.3. Figure 9.2.

FWT2_PO Forward Wavelet Transform of images, Periodized and Orthogonal.

Section 7.7.3. Figure 7.26.

IWT2_PO Inverse Wavelet Transform of images, Periodized and Orthogonal.

Sections 7.7.3.

MakeONFilter Makes Orthogonal conjugate mirror Filters for Daubechies,
                 Coiflets, Symmlets, Haar and Battle-Lemarié wavelets. Sections

                  7.1.3 and 7.2.3. Figure 7.4.

MakeOBFilter Makes Orthogonal Boundary conjugate mirror Filters for Cohen-    

                 Daubechies-Vial wavelets. Section 7.5.3.

MakeWavelet Makes graph of orthogonal Wavelets and scaling functions.

                 Section7.3.1. Figures7.2, 7.5, 7.9and7.10.

Meyer Meyer orthogonal and periodic wavelet transforms.

FWT_YM Forward Wavelet Transform with Yves Meyer wavelets. Sections

7.2.2, 8.4.2 and 8.4.4.

IWT_YM Inverse Wavelet Transform with Yves Meyer wavelets. Sections

7.2.2, 8.4.2 and 8.4.4.

FWT2_YM Forward Wavelet Transform of images with Yves Meyer wavelets.

Sections 7.7.2, 8.4.2 and 8.4.4.

IWT2_YM Inverse Wavelet Transform of images with Yves Meyer wavelets.

Sections 7.7.2, 8.4.2 and 8.4.4.

Biorthogonal Biorthogonal wavelet transforms.

FWT_PB Forward Wavelet Transform, Periodized and Biorthogonal. Sections

7.3.2 and 7.4.

IWT_PB Inverse Wavelet Transform, Periodized and Biorthogonal. Sections

7.3.2 and 7.4.

FWT2_PB Forward Wavelet Transform of images, Periodized and Biorthogonal.

Section 7.7.3.

IWT2_PB Inverse Wavelet Transform of images, Periodized and Biorthogonal.

Section 7.7.3.

MakeBSFilter Makes perfect reconstruction Biorthogonal SyrmnetricFilters.

Section 7.4.3.

MakeBSWavelet Makes graph of Biorthogonal Symmetric Wavelets and

scaling functions. Figures 7.14 and 7.15.

Interpolating Multiscale interpolations.

FWT_DD Forward interpolating Wavelet Transform calculated with Deslauriers-

Dubuc filters. Section 7.6.2.

IWT_DD Inverse interpolating Wavelet Transform calculated with Deslauriers-

Dubuc filters. Section 7.6.2.

Invariant Translation invariant wavelet transforms.
FWT_ATrou Forward dyadic Wavelet Transform calculated with the Algorithme

à Trous. Section 5.5. Figures 5.5 and 6.7.

IWT_ATrou Inverse dyadic Wavelet Transform calculated with the Algorithme

à Trous. Sections 5.5 and 6.7.

FWT_Stat Forward dyadic Wavelet Transform calculated with Stationary

shifts of the signal. Section 10.2.4. Figures 10.4 and 10.5.

IWT_Stat Inverse dyadic Wavelet Transform calculated with Stationary

shifts of the signal. Section 10.2.4. Figures 10.4 and 10.5.

MM_DWT Modulus Maxima of a Dyadic Wavelet Transform. Section 6.2.2.

Figure 6.7.

IMM_DWT Inverse reconstruction of signals from Modulus Maxima of a Dyadic Wavelet Transform. Section 6.2.2. Figure 6.8.

FWT2_ATrou Forward dyadic Wavelet Transform of images calculated with

the Algorithme à Trous. Section 6.3.2. Figures 6.9 and 6.10.

MM2_DWT Modulus Maxima of an image Dyadic Wavelet Transform. Section

6.3.2. Figures 6.9 and 6.10.

IMM2_DWT Inverse reconstruction of an image from Modulus Maxima of a Dyadic Wavelet Transform. Section 6.3. Figure 6.1 1.

Packets Best wavelet packet and local cosine bases.

One-D For one-dimensional signals.

WPTour WavePacket tree decomposition and best basis selection. Sections

8.1 and 9.4. Figures 8.6 and 8.8.

MakeWavelet Packet Makes graph of Wavepacket functions. Section

8.1. Figures 8.2 and 8.4.

CPTour Local Cosine Packet tree decomposition and best basis selection.

 Sections 8.5 and 9.4. Figures 8.19, 9.9 and 9.11.

KLinCP Karhunen-Loève basis estimation in a Cosine Packet tree. Section

10.6.2. Figure 10.19.

Two-D For two-dimensional signals.
WP2Tour WavePacket 2-dimensional decomposition and best basis selection.

Sections 8.2 and 9.4.2.

CP2Tour Local Cosine Packet 2-dimensional decomposition and best basis

selection. Sections 8.5.3 and 9.4.2. Figures 8.22 and 9.10.

Pursuit Basis and matching pursuits.

WPBPursuitTour Wavepacket dictionary for Basis Pursuits. Section

9.5.1. Figure 9.11.

CPBPursuitTour Cosine Packet dictionary for Basis Pursuits. Section

9.5.1.

WPMPursuitTour Wavepacket dictionary for Matching Pursuits. Section

9.5. Figures 9.11 and 9.12.

CPMPursuitTour Cosine Packet dictionary for Matching Pursuits. Section

9.5.

GaborPursuitTour Gabor dictionary for Matching Pursuits. Section

9.5.2. Figures 9.11(b) and 9.12.

DeNoising Removal of additive noises.

ThreshWave Thresholds orthogonal Wavelet coefficients. Section 10.2.4.

Figures 10.4 and 10.5.

ThreshWave2 Thresholds orthogonal Wavelet coefficients of images. Section

10.2.4. Figure 10.6.

ThreshWP Thresholds coefficients of a best Wavepacket basis. Section

10.2.5.

ThreshCP Thresholds coefficients of a best Cosine Packet basis. Section

10.2.5. Figure 10.8.

CohWave Coherent threshold of orthogonal Wavelet coefficients. Section

10.5.1. Figure 10.15.

AB.2 LASTWAVE

LASTWAVE is a wavelet signal and image processing environment, written in C for X1l/Unix and Macintosh computers. This stand-alone freeware does not require any additional commercial package, and can be retrieved through the Internet at:

http://wave.cmap.polytechnique.fr/soft/LastWave/ .

LASTWAVE was created and is maintained by Emmanuel Bacry, at École Polytechnique in France. It includes a command line language, and a high level object-oriented graphic language for displaying simple objects (buttons, strings, ...) and more complex ones (signals, images, wavelet transforms, time-frequency planes...). The computational subroutines and commands are regrouped in independent packages. An extensive on-line documentation is available. New commands are added with the command language or as C subroutines. This software is rapidly evolving with packages provided by users across the Internet. The current contributors include Benjamin Audit, Geoff Davis, Nicolas Decoster, Jérôme Fraleu, Rémi Gribonval, Wen-Liang Hwang, Stéphane Mallat, Jean François Muzy and Sifen Zhong. 
The following gives a list of current packages (in bold) with their main computational commands, and the sections they relate to:
Signal Section 3.3.
s= Arithmetic calculations over signals.
fft  Forward and inverse fast Fourier transforms.
conv Fast convolution.
Wavelet Transform (1d)  Sections 4.3 and 7.3.
cwt Continuous wavelet transform.
owtd, owtr Orthogonal and biorthogonal wavelet transforms, forward and reverse.
wthresh Wavelet coefficient thresholding.

Wavelet Transform Maxima (1d) Section 6.2.

extrema, chain Computes the maxima of a continuous wavelet transform, and chains them through scales.
Wavelet Transform Modulus Maxima Method (ld) Section 6.4.

pf Computes the partition functions and singularity spectra of multifractal signals.

Matching Pursuit  Sections 4.2 and 9.5.2.

stftd Short time windowed Fourier transform.

mp, mpr Matching pursuit in a Gabor dictionary, forward and reverse.

Image Section 3.4.

 i= Arithmetic operations over images.

Orthogonal Wavelet Transform (2d) Section 7.7.2.

owt2d, owt2r Orthogonal and biorthogonal wavelet transforms of images, forward and reverse.

Dyadic Wavelet Transform (2d) Section 6.3.

dwt2d, dwt2r Dyadic wavelet decomposition of images, forward and reverse.

extrema2, extrecons2 Computes the modulus maxima of a dyadic wavelet transform, and reconstructs the image from these maxima.

chain2 Computes the chains of modulus maxima corresponding to edges.

denoise2 Denoising by thresholding the chains of modulus maxima.

Compression (2d) Section 11.4.2.

code2, decode2 Image compression with a wavelet transform code, and reconstruction of the coded image.

AB.3 FREEWARE WAVELET TOOLBOXES
We give a partial list of freeware toolboxes for wavelet signal processing that can retrieved over the Internet.

     EMBEDDED IMAGE COMPRESSION is a C++ software for wavelet image compression (Amir Said and William Pearlman):
http://ipl.rpi.edu/SPIHT
FRACLAB is wavelet fractal analysis toolbox developed at INRIA (Christophe

Canus, Paulo Goncalvès, Bertrand Guiheneuf and Jacques Lévy Véhel):
http://www-syntim.inria.fr/fractales/ .
MEGAWAVE is a collection of command line C subroutines under Unix for

wavelet, wavelet packet and local cosine processing, with sound and image processing applications (Jacques Froment):
http://www.ceremade.dauphine.fr/~mw .

RICE WAVELET TOOLBOX is a wavelet MATLAB toolbox with orthogonal and biorthogonal transforms and applications to denoising (DSP group at Rice university):
http://www-dsp.rice.edu/software/RWT .
SWAVE is an S+ tool box with continuous wavelet transforms and windowed Fourier transforms, including detection of ridges (René Carmona, Wen-Liang Hwang and Bruno Torréani):
http://chelsea.princeton.edu/~rcarmona/TFbook/ .
TIME-FREQUENC is a MATLAB toolbox for the analysis of non-stationary signals with quadratic time-frequency distributions (Francois Auger, Patrick Flandrin, Olivier Lemoine and Paulo Goncalvès):
http://www.physique.ens-lyon.fr/ts/tftb.html .
XWL, WPLIB, DENOISE are libraries of subroutines that implement orthogonal signal decompositions in dictionaries of wavelet packet and local cosine bases, with applications to noise removal and signal compression (wavelet group at Yale University):
http://pascal.math.yale.edu/pub/wavelets/software/ .

WAVELET TOOLBOX IN KHOROS includes orthogonal and biorthogonal wavelet transforms for multidimensional signals (Jonio Cavalcanti and Ramiro Jordon):
http://www.khoral.com/obtain/contrib.html .
The Useful References:

1. A WAVELET TOUR OF SIGNAL PROCESSING, Second Edition by Stéphane Mallat École Polytechnique, Paris; Courant Institute, New York University.
2. Daubechies, “Ten Lectures on Wavelets”, SIAM, 1993.

3. K. Louis, P. Maass, A. Rieder “Wavelets Theory and Applicaitons”, 2nd ed., John Wiley, 2002.

4. For Learning and teaching, formatted overhead transparencies with enlarged figures are available on the Internet: http://www.cmap.polytechnique.fr/~mallat/Wavetour_fig/.

5. Francois Chaplais also offers an introductory Web tour of basic concepts in the book at: http://cas.ensmp.fr/~chaplais/Wavetour_presentation/.
6. “Wavelet Signal Processing” courses in electrical engineering departments at MIT and Tel Aviv University, and in applied mathematics departments at the Courant Institute and École Polytechnique (Paris)
7. Computation of the vectors motion as a least square solution of these wavelet optical flow systems, You may see and compare your implementation with the MATLAB code available at: http://wave.crnap.polytechnique.fr/soft/OF/. 

· You may see problem 11.18 page 589.
