III The Discrete Wavelet Transform

May 5, 2009

1 Wavelet Bases

The continuous wavelet transform offers the capability of analysing the local behvior of a signal. The translations and dilations of wavelets

$$D_a T_b \psi$$

for a>0 and $b\in\mathbb{R}$ provide "more than enough" bases through which reconstruction is possible. The purpose of this chapter is to develop a set of bases consisting of wavelets which will span $L^2(\mathbb{R})$ and at the same time retain the capability of local signal analysis. This will be accomplished by restricting the scales a to the set $\{2^j\}_{j\in\mathbb{Z}}$ and the translations b to the set $\{k\}_{k\in\mathbb{Z}}$. Thus $\psi_{j,k}$ will denote

$$D_{j}T_{k}\psi\left(t\right)=\sqrt{2^{j}}\psi\left(2^{j}\left(t-k\right)\right).$$

Observe the slightly changed definition of the dilation operator. Now higher values of j stand for higer frequencies, or small scales.

2 Multiresolution Analysis

Roughly speaking, a multiresolution analysis is the representation of a signal f by a sequence of signals which capture progressively finer details of f. To introduce the exact definition of a multiresolution analysis we need first the following basic concepts and notation.

The frequency modulators e_n For convenience we will define the frequency modulator functions e_n by

$$e_n(\omega) = e^{2\pi i n \omega}, \ \forall \omega \in \mathbb{R}.$$

Dense Subspace A subspace M of $L^{2}(\mathbb{R})$ is said to be dense in $L^{2}(\mathbb{R})$ if given any $f \in L^{2}(\mathbb{R})$ and any $\epsilon > 0$ there exists a $g \in M$ such that

$$||f - g|| < \epsilon.$$

Closed Subspace A subspace M of $L^{2}(\mathbb{R})$ is said to be closed in $L^{2}(\mathbb{R})$ if given $f \in L^{2}(\mathbb{R})$ there exists a (necessarily unique) function $g \in M$ such that

$$\langle f - g, h \rangle = 0 \ \forall h \in M. \tag{1}$$

Orthogonal projections Let M be a closed subspace of $L^2(\mathbb{R})$. The orthogonal projection $P_M: L^2(\mathbb{R}) \to M$ is defined by $P_M f = g$, where g is the function in (1). The most important properties of P_M are:

- (i) $P_M^2 = P_M$.
- (ii) $\langle P_M f, g \rangle = \langle f, P_M g \rangle \ \forall f, g \in L^2(\mathbb{R})$.

The Span of a set of functions The span of a given sequence of functions $\{f_n\}_{n\in\mathbb{Z}}$, say in $L^2(\mathbb{R})$, is defined to be the set of finite linear combinations of elements of $\{f_n\}_{n\in\mathbb{Z}}$. Put differently, we say that

$$N = \operatorname{span} \left\{ f_n \right\}_{n \in \mathbb{Z}}$$

if every element $g \in N$ can be written in the form

$$g = \alpha_1 f_{n_1} + \alpha_2 f_{n_1} + \ldots + \alpha_m f_{n_m}$$

where m and the complex constants $\alpha_1, \alpha_2, \ldots, \alpha_m$ possibly depend on g. Observe that N is itself a subspace of $L^2(\mathbb{R})$.

Orthonormal basis (ONB) Let M be a (closed) subspace of $L^2(\mathbb{R})$. The orthonormal sequence of functions $\{\eta_n\}_{n\in\mathbb{Z}}$ is called an orthonormal basis for M if every $f\in M$ has the unique decomposition

$$f = \sum_{n} \langle f, \eta_n \rangle \, \eta_n.$$

We are now in a position to introduce the definition of a multiresolution analysis.

Definition 1 (multiresolution analysis MRA)

A sequence $\{V_j\}_{j\in\mathbb{Z}}$ of closed subspaces of $L^2(\mathbb{R})$ is called a multiresolution analysis if

- 1. $V_i \subseteq V_{j+1} \ \forall j \in \mathbb{Z}$.
- 2. $\bigcup_{i\in\mathbb{Z}}V_i$ is dense in $L^2(\mathbb{R})$.
- $3. \cap_{j \in \mathbb{Z}} V_j = \{0\}.$
- 4. $f \in V_j$ if and only if $D_1 f \in V_{j+1}$.
- 5. There exists a function $\varphi \in V_0$ called the associated scaling function such that $\{T_n\varphi\}_{n\in\mathbb{Z}}$ forms an ONB for V_0 .

The following projections are associated with an MRA.

Definition 2 (approximation and detail operators)

Suppose $\{V_j\}_{j\in\mathbb{Z}}$ is a multiresolution analysis.

(i) The sequence of orthogonal projections $P_j := P_{V_j}$ for all $j \in \mathbb{Z}$ is called the sequence of approximation operators.

(ii) The sequence of orthogonal projections $Q_j := P_{j+1} - P_j$ for all $j \in \mathbb{Z}$ is called the sequence of detail operators.

It follows from the definition of an MRA that for:

- 1. $||P_j f|| \le ||f||$ for all $j \in \mathbb{Z}$ and all $f \in L^2(\mathbb{R})$.
- 2. $||P_{j+1}f|| \ge ||P_jf||$ for all $j \in \mathbb{Z}$ and all $f \in L^2(\mathbb{R})$.
- 3. For all $f \in L^2(\mathbb{R})$, $P_j f \to 0$ as $j \to -\infty$.
- 4. For all $f \in L^2(\mathbb{R})$, $P_j f \to f$ as $j \to \infty$.
- 5. For every $f \in V_0$ we can write

$$f = \sum_{n} \langle f, T_n \varphi \rangle T_n \varphi.$$

In an MRA, the sequence $\{T_n\varphi\}_{n\in\mathbb{Z}}$ is called an orthonormal system of translates. What conditions should a function $\varphi\in L^2(\mathbb{R})$ satisfy in order that $\{T_n\varphi\}_{n\in\mathbb{Z}}$ be an orthonormal system of translates? The following lemma gives the answer.

Lemma 3 (conditions for orthonormal systems of translates) $\{T_n\varphi\}_{n\in\mathbb{Z}}$ is an orthonormal system of translates iff

$$\sum_{n} |\widehat{\varphi}(\omega + n)|^2 = 1 \ \forall \omega \in [-1, 1].$$
 (2)

Proof. Suppose $\{T_n\varphi\}_{n\in\mathbb{Z}}$ is an orthnormal system of translates. Then

$$\delta_{k,0} = \langle T_k \varphi, \varphi \rangle = \langle \widehat{T_k \varphi}, \widehat{\varphi} \rangle$$

$$= \langle e_k \widehat{\varphi}, \widehat{\varphi} \rangle = \int_{-\infty}^{\infty} |\widehat{\varphi}(\omega)|^2 e^{2\pi i k \omega} d\omega$$

$$= \sum_{n} \int_{n}^{n+1} |\widehat{\varphi}(\omega)|^2 e^{2\pi i k \omega} d\omega$$

$$= \sum_{n} \int_{0}^{1} |\widehat{\varphi}(\omega + n)|^2 e^{2\pi i k \omega} d\omega$$

$$= \int_{0}^{1} \sum_{n} |\widehat{\varphi}(\omega + n)|^2 e^{2\pi i k \omega} d\omega.$$

The sequence $\{\delta_{k,0}\}_{k\in\mathbb{Z}}$ is nothing but the Fourier series coefficients for the function 1. Therefore, by the uniqueness of the Fourier series, $\sum_{n} |\widehat{\varphi}(\omega+n)|^2 = 1 \ \forall \omega \in [0,1]$. The same steps can be repeated to obtain a Fourier series expansion on [-1,0] and get $\sum_{n} |\widehat{\varphi}(\omega+n)|^2 = 1 \ \forall \omega \in [-1,0]$.

The only if part can be shown by reversing the above steps. \blacksquare

In the case of compactly supported functions, condition (2) can be relaxed as follows.

Lemma 4 (relaxed scaling functions)

Suppose $\varphi_1 \in L^2(\mathbb{R})$ has compact support and satisfies

$$A \leq \sum_{n} |\widehat{\varphi}_{1}(\omega + n)|^{2} \leq B \ \forall \omega \in [-1, 1]$$

and for some A, B > 0. Then there is a function $\varphi \in L^{2}(\mathbb{R})$ such that

- (i) $\{T_n\varphi\}_{n\in\mathbb{Z}}$ is an orthnormal system of translates.
- (ii) $\overline{\operatorname{span}} \{T_n \varphi\} = \overline{\operatorname{span}} \{T_n \varphi_1\}.$

The functions φ_1 and φ in the above lemma are related by

$$\widehat{\varphi}(\omega) = \frac{\widehat{\varphi}_1(\omega)}{\sqrt{\sum_n |\widehat{\varphi}_1(\omega + n)|^2}}.$$

Typically, an MRA is constructed by choosing a function $\varphi \in L^2(\mathbb{R})$ satisfying (2), defining the space V_0 by

$$V_0 = \overline{\operatorname{span}} \left\{ T_n \varphi \right\},\tag{3}$$

the spaces V_j by

$$V_j = \{D_j f : f \in V_0\}, \ j \in \mathbb{Z}, \tag{4}$$

and then proving that Conditions 1-3 of Definition 1 hold.

Exercise 1 Define φ_{jk} by $\varphi_{jk} = D_j T_k \varphi$. Prove that, for each $j \in \mathbb{Z}$, $\{\varphi_{jk}\}_{k \in \mathbb{Z}}$ is an orthonormal basis for V_j .

3 Properties of the Scaling Function

We present in this section some important properties of the scaling function for an MRA.

Theorem 5 (necessary condition for the scaling function)

Suppose $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function $\varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Then $\widehat{\varphi}$ is continuous and

$$\left| \int_{-\infty}^{\infty} \varphi\left(t\right) dt \right| = 1$$

Proof. Let $f \in L^2(\mathbb{R})$ be such that \widehat{f} is continuous and supp $\widehat{f} \subset [-R, R]$. Then since $\{\varphi_{jk}\}_{k\in\mathbb{Z}}$ is an orthonormal basis for V_j ,

$$P_{j}f = \sum_{k} \langle f, \varphi_{jk} \rangle \varphi_{jk}$$
$$= \sum_{k} \langle \widehat{f}, D_{-j} e_{k} \widehat{\varphi} \rangle \varphi_{jk}.$$

Taking the Fourier transform on both sides we get

$$\widehat{P_j f} = D_{-j} \left(\widehat{\varphi} \sum_{k} \left\langle \overline{\widehat{\varphi}} D_j \widehat{f}, e_k \right\rangle e_k \right).$$

Since supp $D_j\widehat{f}\subset [-R/2^j,R/2^j]$, then, for sufficiently large $j,R/2^j\leq 1$. Hence, the series on the right is the Fourier series expansion of $\overline{\widehat{\varphi}}$ $D_{2^j}\widehat{f}$ in $L^2(0,1)$. Hence,

$$\widehat{P_j f} = D_{-j} \left(|\widehat{\varphi}|^2 D_j \widehat{f} \right)$$
$$= \sqrt{2^j} D_{-j} |\widehat{\varphi}|^2 \widehat{f}.$$

Taking the limit as $j \to \infty$, and noting that $P_j f \to f$, $\widehat{P_j f} \to \widehat{f}$ and $\sqrt{2^j} D_{-j} |\widehat{\varphi}|^2 (\omega) = |\widehat{\varphi}|^2 (\frac{\omega}{2^j}) \to |\widehat{\varphi}(0)|^2$ we get

$$\widehat{f}(\omega) = |\widehat{\varphi}(0)|^2 \widehat{f}(\omega).$$

Therefore,

$$|\widehat{\varphi}(0)| = 1, \tag{5}$$

which is the same as

$$\left| \int_{-\infty}^{\infty} \varphi\left(t\right) dt \right| = 1.$$

Corollary 6 (properties of φ)

Assume $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function φ . Then $\widehat{\varphi}(n) = 0$ for all $n \in \mathbb{Z}$.

Proof. This follows immediately from (2) and (5).

Lemma 7 (the two scale dilation equation)

Suppose $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function φ . Then there exists a square summable sequence $\{h_k\}_{k\in\mathbb{Z}}$ such that

$$\varphi(t) = \sum_{k} h_{k} \varphi_{1,k}(t). \tag{6}$$

Furthermore,

$$\widehat{\varphi}\left(\omega\right) = m_0\left(\frac{\omega}{2}\right)\widehat{\varphi}\left(\frac{\omega}{2}\right),\tag{7}$$

where

$$m_0 = \sqrt{2} \sum_k h_k e_k \tag{8}$$

and where the infinite sum exists for all $\omega \in \mathbb{R}$.

Proof. Equation (6) follows immediately from the facts that $V_0 \subset V_1$ and that $\{\varphi_{1,k}\}_{k\in\mathbb{Z}}$ is an orthomormal basis for V_1 . We explicitly have

$$h_k = \langle \varphi, \varphi_{1,k} \rangle \ \forall k \in \mathbb{Z}.$$

Taking the Fourier transform on both sides of (6) gives

$$\widehat{\varphi}(\omega) = \sum_{k} h_{k} \widehat{D_{1} T_{k} \varphi}(\omega)$$

$$= \sum_{k} h_{k} D_{-1} \widehat{T_{k} \varphi}(\omega)$$

$$= \sum_{k} h_{k} D_{-1} e^{2\pi i k \omega} \widehat{\varphi}(\omega)$$

$$= \sqrt{2} \sum_{k} h_{k} e^{\pi i k \omega} \widehat{\varphi}\left(\frac{\omega}{2}\right)$$

$$= m_{0} \left(\frac{\omega}{2}\right) \widehat{\varphi}\left(\frac{\omega}{2}\right).$$

This is equation (7) with the function m_0 given by (8). \blacksquare Some elementary properties of the function m_0 are given in the following lemma.

Lemma 8 (properties of m_0)

Let m_0 be the function defined by (8). Then the following properties hold.

- (i) m_0 is a periodic function of period 1.
- (ii) $m_0(n) = 1 \ \forall n \in \mathbb{Z}$.
- (iii) We have

$$\left|m_0(\omega)\right|^2 + \left|T_{1/2}m_0(\omega)\right|^2 = 1 \ \forall \omega \in \mathbb{R}.$$

(iv)
$$m_0\left(\frac{2n+1}{2}\right) = 0 \ \forall n \in \mathbb{Z}.$$

Proof. We only show (iii). Since $\{T_n\varphi\}$ is an orthonormal system of translates, $\forall \omega \in [-1,1]$

$$1 = \sum_{n} |\widehat{\varphi}(\omega + n)|^{2} = \sum_{n} \left| m_{0} \left(\frac{\omega + n}{2} \right) \right|^{2} \left| \widehat{\varphi} \left(\frac{\omega + n}{2} \right) \right|^{2}$$

$$= \sum_{k} \left| m_{0} \left(\frac{\omega + 2k}{2} \right) \right|^{2} \left| \widehat{\varphi} \left(\frac{\omega + 2k}{2} \right) \right|^{2} + \sum_{k} \left| m_{0} \left(\frac{\omega + 2k + 1}{2} \right) \right|^{2} \left| \widehat{\varphi} \left(\frac{\omega + 2k + 1}{2} \right) \right|^{2}$$

$$= \left| m_{0} \left(\frac{\omega}{2} \right) \right|^{2} \sum_{k} \left| \widehat{\varphi} \left(\frac{\omega}{2} + k \right) \right|^{2} + \left| m_{0} \left(\frac{\omega + 1}{2} \right) \right|^{2} \sum_{k} \left| \widehat{\varphi} \left(\frac{\omega + 1}{2} + k \right) \right|^{2}$$

$$= \left| m_{0} \left(\frac{\omega}{2} \right) \right|^{2} + \left| m_{0} \left(\frac{\omega + 1}{2} \right) \right|^{2}.$$

For $\omega \in [-1/2, 1/2]$ we may replace ω by 2ω in the above equation, which yields the result for $\omega \in [-1/2, 1/2]$. The period 1 of m_0 implies the result for all $\omega \in \mathbb{R}$.

Definition 9 (scaling filter)

Suppose $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function φ . The sequence $\{h_k\}_{k\in\mathbb{Z}}$ is called the scaling filter associated with φ . The function $m_0(\omega)$ given by (8) is called the auxiliary function associated with φ .

3.1 Orthomormal Wavelet Bases

We show in this section how an MRA gives rise to a wavelet analysis. So, we assume that $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function φ . Since $V_j\subset V_{j+1}$ we may write

$$V_{j+1} = V_j \oplus W_j$$

$$= V_{j-1} \oplus W_{j-1} \oplus W_j$$

$$= \cdots$$

$$= \bigoplus_{k=-\infty}^{j} W_k$$

and thus, we have the decomposition of $L^{2}(\mathbb{R})$ into a seuquence of orthogonal subspaces

$$L^{2}\left(\mathbb{R}\right) = \bigoplus_{j \in \mathbb{Z}} W_{j}.$$

We want to show that the sequence of subspaces $\{W_j\}_{j\in\mathbb{Z}}$ is spanned by the dilations and translations of a single function ψ . This function is called

Exercise 2 Prove that if $\{T_n\psi\}_{n\in\mathbb{Z}}$ is an ONB for W_0 then $\{\psi_{ij}\}_{n\in\mathbb{Z}}$ is an ONB for W_j , where $\psi_{ij}=D_jT_n\psi$.

Thus it is enough to construct the function ψ whose translations form an ONB for W_0 . Since

$$W_0 = V_1 \ominus V_0$$

 ψ is required to satisfy the two conditions:

- 1. $\psi \in V_1$,
- $2. \psi \perp V_0.$

The first of these two conditions implies that ψ can be written in terms of the basis $\{\varphi_{1,n}\}_{n\in\mathbb{Z}}$ for V_1 , that is

$$\psi = \sum_{n} g_n D_1 T_n \varphi,$$

or,

$$D_{-1}\psi = \sum_{n} g_n T_n \varphi.$$

Taking the Fourier Transform on both sides we get

$$D_1 \widehat{\psi} = \sum_n g_n e_n \widehat{\varphi}$$
$$= m_1 \widehat{\varphi},$$

where

$$m_1(\omega) = \sum_n g_n e^{2\pi i n \omega}.$$
 (9)

Therefore,

$$\widehat{\psi} = D_{-1} \left(m_1 \widehat{\varphi} \right). \tag{10}$$

The second condition means

$$\langle \psi, T_n \varphi \rangle = 0 \ \forall n \in \mathbb{Z}.$$

From this condition we get the following theorem.

Theorem 10 (determination of the function m_1) If ψ is orthogonal to V_0 then

$$m_1 \overline{m}_0 + T_{1/2} \left(m_1 \overline{m}_0 \right) = 0 \tag{11}$$

on \mathbb{R} .

Proof. For any $n \in \mathbb{Z}$ we have

$$0 = \langle \psi, T_n \varphi \rangle = \left\langle \widehat{\psi}, e_n \widehat{\varphi} \right\rangle$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i n \omega} \widehat{\psi} \left(\omega \right) \overline{\widehat{\varphi}} \left(\omega \right) d\omega$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i n \omega} m_1 \left(\frac{\omega}{2} \right) \widehat{\varphi} \left(\frac{\omega}{2} \right) \overline{\widehat{\varphi}} \left(\omega \right) d\omega$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i n \omega} m_1 \left(\frac{\omega}{2} \right) \widehat{\varphi} \left(\frac{\omega}{2} \right) \overline{m}_0 \left(\frac{\omega}{2} \right) \overline{\widehat{\varphi}} \left(\frac{\omega}{2} \right) d\omega$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i n \omega} m_1 \left(\frac{\omega}{2} \right) \overline{m}_0 \left(\frac{\omega}{2} \right) \left| \widehat{\varphi} \left(\frac{\omega}{2} \right) \right|^2 d\omega$$

$$= \int_{0}^{1} e^{-2\pi i n \omega} \sum_{k} m_1 \left(\frac{\omega + k}{2} \right) \overline{m}_0 \left(\frac{\omega + k}{2} \right) \left| \widehat{\varphi} \left(\frac{\omega + k}{2} \right) \right|^2 d\omega$$

$$= \int_{0}^{1} e^{-2\pi i n \omega} \left(m_1 \left(\frac{\omega}{2} \right) \overline{m}_0 \left(\frac{\omega}{2} \right) + m_1 \left(\frac{\omega + 1}{2} \right) \overline{m}_0 \left(\frac{\omega + 1}{2} \right) \right) d\omega.$$

The last expression gives the Fourier coefficients for the function $m_1\left(\frac{\omega}{2}\right)\overline{m}_0\left(\frac{\omega}{2}\right)+m_1\left(\frac{\omega+1}{2}\right)\overline{m}_0\left(\frac{\omega+1}{2}\right)$. Since all these coefficients are zeros, we must have

$$m_1\left(\frac{\omega}{2}\right)\overline{m}_0\left(\frac{\omega}{2}\right) + m_1\left(\frac{\omega+1}{2}\right)\overline{m}_0\left(\frac{\omega+1}{2}\right) = 0 \forall \omega \in [0,1]$$
(12)

For $\omega \in [0, 1/2]$, replacing ω by 2ω in the above equation yields

$$\left(m_1\overline{m}_0 + T_{1/2}\left(m_1\overline{m}_0\right)\right) = 0$$

on [0, 1/2]. A similar argument shows that (12) holds also on [-1/2, 0]. The periodicity of m_1 and m_0 yields the result on all of \mathbb{R} .

Definition 11 (the wavelet filter)

Suppose $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA in $L^2(\mathbb{R})$ with associated scaling function φ . Any solution m_1 of (11) is called the dual auxiliary function and its Fourier coefficients $\{g_k\}_{k\in\mathbb{Z}}$ given by (9) is called the wavelet filter. The function ψ defined by (10) is called the wavelet (or the morher wavelet) determined by the MRA.

The following lemma gives a family of solutions of (11).

Lemma 12 A class of solutions of (11) is given by the formula

$$m_1 = QT_{1/2}\overline{m}_0, \tag{13}$$

where $Q \in L^2(0,1)$ with |Q| = 1 and $Q + T_{1/2}Q = 0$.

If we choose

$$Q\left(\omega\right) = e^{2\pi i\omega}$$

then (13) becomes

$$\sum_{n} g_{n}e^{2\pi in\omega} = e^{2\pi i\omega} \sum_{n} \overline{h}_{n}e^{-2\pi in(\omega+1/2)}$$

$$= e^{2\pi i\omega} \sum_{n} (-1)^{n} \overline{h}_{n}e^{-2\pi in\omega}$$

$$= \sum_{n} (-1)^{n} \overline{h}_{n}e^{-2\pi i(n-1)\omega}$$

$$= \sum_{n} (-1)^{n-1} \overline{h}_{1-n}e^{2\pi in\omega}$$

which holds identically on [0, 1/2]. This results in the relations

$$g_n = (-1)^{n-1} \overline{h}_{1-n} \ \forall n \in \mathbb{Z}.$$

Corollary 13 $m_1(0) = 0$.

Proof. For $\omega = 0$, $m_1(0)\overline{m}_0(0) + m_1(\frac{1}{2})\overline{m}_0(\frac{1}{2}) = 0$. Since $\overline{m}_0(0) = 1$, $\overline{m}_0(\frac{1}{2}) = 0$, we get $m_1(0) = 0$.

Corollary 14 $\widehat{\psi}(0) = 0$.

Proof. Follows immediately from equation (10) and the above corollary.
It now follows that $\int \psi = 0$, i.e., ψ is integrable, and, by the Reimann-Lebesgue Lemma, $|\widehat{\psi}| \to 0$ as $|\omega| \to \infty$. In other words, ψ is a band-pass filter.

3.2 Wavelet Construction

To construct a wavelet ψ , a suitable 2π periodic function G satisfying Theorem 10 has to be chosen.

We show next that this choice of ψ produces an orthonormal basis for W_0 .

Lemma 15 Let $f \in V_1$ and define $F_0(\omega) := \sum_n f_n^0 e^{2\pi i \omega}$, where $f_n^0 = \langle f, \varphi_{0,n} \rangle$ and $F_1(\omega) := \sum_n f_n^1 e^{2\pi i \omega}$, where $f_n^1 = \langle f, \varphi_{1,n} \rangle$. Then

$$D_1 F_0 = F_1 \overline{m}_0 + T_{1/2} \left(F_1 \overline{m}_0 \right)$$

on [0, 1/2].

Proof. Since $f = \sum \langle f, \varphi_{n,1} \rangle \varphi_{1,n} = \sum f_n^1 D_1 T_n \varphi$,

$$\widehat{f} = \sum_{n} f_n^1 D_{-1} e_n \widehat{\varphi}
= D_{-1} \widehat{\varphi} \sum_{n} f_n^1 e_n
= D_{-1} F_1 \widehat{\varphi}.$$

Hence,

$$f_{n}^{0} = \langle f, \varphi_{0,n} \rangle = \langle f, T_{n} \varphi \rangle = \langle \widehat{f}, e_{n} \widehat{\varphi} \rangle$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i n \omega} \widehat{f}(\omega) \, \overline{\widehat{\varphi}}(\omega) \, d\omega$$

$$= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-2\pi i n \omega} F_{1}\left(\frac{\omega}{2}\right) \, \widehat{\varphi}\left(\frac{\omega}{2}\right) \, \overline{\widehat{\varphi}}(\omega) \, d\omega$$

$$= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-2\pi i n \omega} F_{1}\left(\frac{\omega}{2}\right) \, \overline{m}_{0}\left(\frac{\omega}{2}\right) \, \left|\widehat{\varphi}\left(\frac{\omega}{2}\right)\right|^{2} \, d\omega$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{1} e^{-2\pi i n \omega} \sum_{k} F_{1}\left(\frac{\omega+k}{2}\right) \, \overline{m}_{0}\left(\frac{\omega+k}{2}\right) \, \left|\widehat{\varphi}\left(\frac{\omega+k}{2}\right)\right|^{2} \, d\omega$$

$$= \int_{0}^{1} e^{-2\pi i n \omega} \left(F_{1}\left(\frac{\omega}{2}\right) \, \overline{m}_{0}\left(\frac{\omega}{2}\right) + F_{1}\left(\frac{\omega+1}{2}\right) \, \overline{m}_{0}\left(\frac{\omega+1}{2}\right)\right) \, d\omega.$$

Therefore,

$$\sqrt{2}F_{0}\left(\omega\right)=F_{1}\left(\frac{\omega}{2}\right)\overline{m}_{0}\left(\frac{\omega}{2}\right)+F_{1}\left(\frac{\omega+1}{2}\right)\overline{m}_{0}\left(\frac{\omega+1}{2}\right)\ \forall\omega\in\left[0,1\right]$$

For $\omega \in [0, 1/2]$ we may replace ω by 2ω in the above equation to obtain

$$D_1 F_0 = F_1 \overline{m}_0 + T_{1/2} \left(F_1 \overline{m}_0 \right)$$

on [0, 1/2].

Theorem 16 If (13) holds, then the set $\{T_n\psi\}_{n\in\mathbb{Z}}$ is an ONB for W_0 .

Proof. We calculate

$$\sum_{n} \left| \widehat{\psi} \left(\omega + n \right) \right|^{2} = \sum_{n} \left| \left(m_{1} \left(\frac{\omega + n}{2} \right) \widehat{\varphi} \left(\frac{\omega + n}{2} \right) \right) \right|^{2}$$

$$= \left| m_{1} \left(\frac{\omega}{2} \right) \right|^{2} + \left| m_{1} \left(\frac{\omega + 1}{2} \right) \right|^{2}$$

$$= \left| \overline{m}_{0} \left(\frac{\omega + 1}{2} \right) \right|^{2} + \left| \overline{m}_{0} \left(\frac{\omega}{2} \right) \right|^{2}$$

$$= \left| m_{0} \left(\frac{\omega + 1}{2} \right) \right|^{2} + \left| m_{0} \left(\frac{\omega}{2} \right) \right|^{2} = 1,$$

where we used equation (13) to write $|m_1| = T_{1/2} |H|$. This shows that $\{T_n \psi\}_{n \in \mathbb{Z}}$ is an ONB.

Next we show that $\{T_n\psi\}_{n\in\mathbb{Z}}$ is complete in W_0 . Suppose $f\in W_0$ is orthogonal to $\{T_n\psi\}_{n\in\mathbb{Z}}$. Then $f\in V_1\ominus V_0$. Therefore, $F_0=0$. By Lemma 15,

$$F_1 \overline{m}_0 = -T_{1/2} F_1 \overline{m}_0. \tag{14}$$

On the other hand we can show that

$$0 = \langle f, T_n \psi \rangle = \frac{1}{\sqrt{2}} \left(F_1 \overline{m}_1 + T_{1/2} \left(F_1 \overline{m}_1 \right) \right),$$

giving

$$F_1\overline{m}_1 = -T_{1/2}\left(F_1\overline{m}_1\right). \tag{15}$$

Finally, since we also have

$$m_1 \overline{m}_0 = -T_{1/2} m_1 \overline{m}_0, \tag{16}$$

multiplying (14) by the conjugate of (16),

$$F_{1}\overline{m}_{1} |m_{0}|^{2} = T_{1/2} (F_{1}\overline{m}_{1} |m_{0}|^{2})$$

$$= T_{1/2} (F_{1}\overline{m}_{1}) T_{1/2} |m_{0}|^{2}$$

$$= -F_{1}\overline{m}_{1} T_{1/2} |m_{0}|^{2}.$$

Since $|m_0|^2 + T_{1/2} |m_0|^2 = 1$,

$$F_1\overline{m}_1=0.$$

Similarly,

$$F_1\overline{m}_0=0.$$

Hence,

$$0 = |F_1 \overline{m}_0|^2 + |F_1 \overline{m}_1|^2 = |F_1|^2 (|\overline{m}_0|^2 + |\overline{m}_1|^2).$$

Therefore, $F_1=0$ on [0,1/2]. Consequently $f_n^1=0$ for all $n\in\mathbb{Z}$. Hence, f=0 since $f\in V_1$. \blacksquare