III The Discrete Wavelet Transform
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1 Wavelet Bases

The continuous wavelet transform offers the capability of analysing the local behvior of a
signal. The translations and dilations of wavelets

DaTb¢

for a > 0 and b € R provide "more than enough" bases through which reconstruction is
possible. The purpose of this chapter is to develop a set of bases consisting of wavelets
which will span L? (R) and at the same time retain the capability of local signal analysis.
This will be accomplished by restricting the scales a to the set {27} jez and the translations
b to the set {k}, ., . Thus ¢, will denote

DT (t) = V2 (2]’ (t — k)) .

Observe the slightly changed definition of the dilation operator. Now higher values of j
stand for higer frequencies, or small scales.

2 Multiresolution Analysis

Roughly speaking, a multiresolution analysis is the representation of a signal f by a
sequence of signals which capture progressively finer details of f. To introduce the exact
definition of a multiresolution analysis we need first the follwoing basic concepts and
notation.

The frequency modulators e, For convenience we will define the frequency

modulator functions e,, by
en (W) = > Vw € R.

Dense Subspace A subspace M of L?(R) is said to be dense in L? (R) if given
any f € L?(R) and any € > 0 there exists a ¢ € M such that

If =gl <e

Closed Subspace A subspace M of L* (R) is said to be closed in L? (R) if given
f € L*(R) there exists a (necessarily unique) function g € M such that

(f —g,h)y =0Vh € M. (1)
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Orthogonal projections Let M be a closed subspace of L? (R) . The orthogonal
projection Py : L? (R) — M is defined by Py f = g, where g is the function in (1). The
most important properties of P, are:

(i) P% = Py.
(i) (Puf,g) = (f, Pug) Vf,g € L* (R).

The Span of a set of functions The span of a given sequence of functions
{fu},ez ., say in L? (R), is defined to be the set of finite linear combinations of elements
of {fu},cz - Put differently, we say that

N = span {fn}nez

if every element g € N can be written in the form

g = alfnl + a2fn1 + ...+ amfnm

where m and the complex constants aq, as, ..., a,, possibly depend on g. Observe that
N is itself a subspace of L* (R).

Orthonormal basis (ONB) Let M be a (closed) subspace of L? (R). The or-
thonormal sequence of functions {7,}, ., is called an orthonormal basis for M if every
f € M has the unique decomposition

F= {0 -

We are now in a position to introduce the definition of a multiresolution analysis.

Definition 1 (multiresolution analysis MRA)
A sequence {V;},., of closed subspaces of L2 (R) is called a multiresolution analysis if

~

ViCVin VjieZ

2. UjezV; is dense in L* (R).

3. NjezV; ={0}.

4. feV;ifand only if Dif € V.
5

. There exists a function o € Vy called the associated scaling function such that
{Tn¢},.cp forms an ONB for Vj.

The following projections are associated with an MRA.

Definition 2 (approximation and detail operators)
Suppose {V},, is a multiresolution analysis.

(i) The sequence of orthogonal projections Pj := Py, for all j € Z is called the sequence
of approximation operators.



(ii) The sequence of orthogonal projections QQ; := Pjy1 — P; for all j € Z is called the
sequence of detail operators.

It follows from the definition of an MRA that for :

L ||Pif] < |If]| for all j € Z and all f € L* (R).
2. [|[Pisaf|| > |P;if|l for all j € Z and all f € L*(R).
3. Forall fe L?(R), Pjf —0asj— —oo.

4. Forall f € L>(R), Pif — f as j — oo.

5. For every f € Vj we can write

F=Y (. Top) Tup.

In an MRA, the sequence {7},¢}, ., is called an orthonormal system of translates.
What conditions should a function ¢ € L?(R) satisfy in order that {T,,¢},., be an
orthonormal system of translates? The following lemma gives the answer.

Lemma 3 (conditions for orthonormal systems of translates)
{Tn¢} ez is an orthnormal system of translates iff

d @ w+n)f =1Vwe[-1,1]. (2)
Proof. Suppose {T,¢}, ., is an orthnormal system of translates. Then

oo = (Trp, ) = <7/7c%\0= @>

— (e B) = / 1B (@) i
n+1 = )

- 3 [ BePem
— Z/ |®(w—|—n)|2 2Tk .,

n 0

1 .

— / Z 1P (w+ n)|2 ek d .

0 n

The sequence {6 0},., is nothing but the Fourier series coefficients for the function 1.

Therefore, by the uniqueness of the Fourier series, 3. [p(w+n)]* = 1 Vw € [0,1].
The same steps can be repeated to obtain a Fourier series expansion on [—1,0] and get
S @ w+n)f =1Vwe[-1,0.

The only if part can be shown by reversing the above steps. =

In the case of compactly supported functions, condition (2) can be relaxed as follows.
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Lemma 4 (relaxed scaling functions)
Suppose o, € L? (R) has compact support and satisfies

A<D @ (w+n)P < BVwe [-1,1]

and for some A, B > 0. Then there is a function p € L? (R) such that
(i) {Tnp},.cz is an orthnormal system of translates.
(ii) span{T.p} = span{T, ¢} .

The functions ¢, and ¢ in the above lemma are related by

(CU) — /951 (w) )
V121 @+ )P

Typically, an MRA is constructed by choosing a function ¢ € L? (R) satisfying (2),
defining the space Vj by

e

the spaces V; by
Vi={Dif:feW}, j€L, (4)

and then proving that Conditions 1-3 of Definition 1 hold.
Exercise 1 Define ¢, by ¢, = D;Tip. Prove that, for each j € Z, {Spjk}kez is an

orthonormal basis for V;.

3 Properties of the Scaling Function
We present in this section some important properties of the scaling function for an MRA.

Theorem 5 (necessary condition for the scaling function)
Suppose {V;},c; is an MRA in L? (R) with associated scaling function ¢ € L' (R) N

L?(R). Then % is continuous and
' / @ (t) dt‘ =1

Proof. Let f € L?(R) be such that J?is continuous and supp ]? C [-R, R]. Then since
{onk}kez is an orthonormal basis for V;,

Pif = Z <f, ¢jk> Pik
k

=y <fA7 D—jek@> Pik-
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Taking the Fourier transform on both sides we get

Pif =D (@Z <$Djj?, €k> ek) :
p

Since supp Dij [—R/27, R/27], then, for sufficiently large j, R/27 < 1. Hence, the series
on the right is the Fourier series expansion of  Ds; fin L? (0,1) . Hnence,

Fif = D (el D;f)
= V2Dl f.
Taking the limit as j — oo, and noting that P;f — f, ]/D;Tf — f and V2ID_; |3 (w) =
—~12 w ~ 2
21" (55) = [2(0) we get ~

fw) =120 fw).

Therefore,

which is the same as

[ a1

Corollary 6 (properties of @)
Assume {V},, s an MRA in L? (R) with associated scaling function p. Then p (n) =
0 for alln € Z.

Proof. This follows immediately from (2) and (5). =

Lemma 7 (the two scale dilation equation)
Suppose {V;},., is an MRA in L? (R) with associated scaling function . Then there
exists a square summable sequence {hy},c, such that

o ()= huprs(t). (6)

Furthermore,
P =mo(5)7(5) (7)
where

mo = \/52 hkek (8)

and where the infinite sum exists for all w € R.



Proof. Equation (6) follows immediately from the facts that Vo C V; and that {¢, , } rer
is an orthomormal basis for V;. We explicitly have

hi = (¢, 1) VEEZ.

Taking the Fourier transform on both sides of (6) gives

Plw) = §jha7ﬁ@<>

= Z heD 1T (w
_ Z th_1€27rzkw® (CU)
k

= V2) hpe™p (g)
- m(3)7 ()

This is equation (7) with the function mg given by (8). =
Some elementary properties of the function mg are given in the following lemma.
Lemma 8 (properties of myg)
Let myg be the function defined by (8). Then the following properties hold.
(1) mo is a periodic function of period 1.
(ii) mo(n) =1Vn € Z.

(iii) We have
Imo (w)]* + ‘T1/2mo (w)‘z =1VYweR.

(iv) mo (%) =0Vn € Z.

Proof. We only show (iii). Since {7,¢} is an orthonormal system of translates, Vw €

[=1,1]
() P(E)

U= Y Rwrnf=Y
w2k +1 w2k + 1\
Mo\ ") 1Y\ 2

w—+1 2
—+k
(7 +1)

2 2

2

I
E
A

&
ro | T
)
>~
~_

For w € [—1/2,1/2] we may replace w by 2w in the above equation, which yields the result
for w € [-1/2,1/2]. The period 1 of mg implies the result for all w € R. =
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Definition 9 (scaling filter)

Suppose {V;},cy is an MRA in L? (R) with associated scaling function ¢. The sequence
{hi} ey is called the scaling filter associated with ¢. The function mg (w) given by (8) is
called the auziliary function associated with .

3.1 Orthomormal Wavelet Bases

We show in this section how an MRA gives rise to a wavelet analysis. So, we assume that
{Vj},cz is an MRA in L* (R) with associated scaling function ¢. Since V; C V,;; we may
write

Vi = VoW,
= V}—l@Wj—l@VVj

J
- DOm
k=—o0
and thus, we have the decompositoin of L? (R) into a seuquence of orthogonal subspaces
L*R)=Ew;.
JEL

We want to show that the sequence of subspaces {VV]}j <z 18 spanned by the dilations and
translations of a single function . This function is called

Exercise 2 Prove that if {77}, ., is an ONB for W then {wij}nel is an ONB for W},

Thus it is enogh to construct the function 1) whose translations form an ONB for Wj.
Since
WO = ‘/1 o %a

1 is required to satisfy the two conditions:
L. ¢YeW,
2. Y1V,

The first of these two conditions implies that ¢ can be written in terms of the basis
{@Ln}nez for Vi, that is

= Z gnDlTn907

or,

D_1¢ = Z gnTn(p



Taking the Fourier Transform on both sides we get

Dy = Zgnen@
= ml@a

where

my (w) = Zgne%m‘*’. 9)

Therefore, R
Y =D_y (mip). (10)

The second condition means
(U, Thp) =0Vn € Z.
From this condition we get the following theorem.

Theorem 10 (determination of the function m;y)
If ¥ is orthogonal to Vi then

mlmg + T1/2 (m1m0> =0 (11)
on R.

Proof. For any n € Z we have

0 = (), Thp) = <@7en@>

o0

- [

)l

£
8
S

- [ (m@m ) e () m (5))

The last expression gives the Fourier coefficients for the function m, (%) mo (%) +my (“—1) mo (

Since all these coefficients are zeros, we must have
1 1
ma (g) o (g) o (%) o (%) — Ovw € [0, 1] (12)
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For w € [0,1/2], replacing w by 2w in the above equation yeilds
(mlmg + T1/2 (mlmo)) =0

on [0,1/2]. A similar argument shows that (12) holds also on [—1/2,0]. The periodicity
of m; and mg yeilds the result on all of R. =

Definition 11 (the wavelet filter)

Suppose {V;},.; is an MRA in L? (R) with associated scaling function . Any solution
myof (11) is called the dual auxiliary function and its Fourier coefficients {gi},c, given
by (9) is called the wavelet filter. The function ¢ defined by (10) is called the wavelet (or
the morher wavelet) determined by the MRA.

The following lemma gives a family of solutions of (11).
Lemma 12 A class of solutions of (11) is given by the formula
my = QT 2mo, (13)
where Q@ € L*(0,1) with |Q| =1 and Q + T} ,2Q = 0.

If we choose 4
Q (w) — e27rzw
then (13) becomes

2 :gn€27r'mw — 627mw § hn6727rm(w+1/2)
n n

— 2miw Z (_1)71 Ene—%rinw

n

- Z (-1)" T, e~ 2min—1w

n

_ Z (_1>n*1 El_n€2m‘nw

n

which holds identically on [0,1/2]. This results in the relations
gn=(=1)""hy_, Vn € Z.
Corollary 13 m, (0) = 0.

Proof. For w = 0, my (0) g (0) + my (%) Mo (
get my (0) =0. m

1) = 0. Since 7 (0) = 1,7 (1) = 0,we

Corollary 14 @(0) =0.

Proof. Follows immediately from equation (10) and the above corollary. =
It now follows that f Y = 0, i.e., 1 is integrable, and, by the Reimann-Lebesgue

Lemma,

;ﬂ\‘ — 0 as |w| — oo. In other words, v is a band-pass filter.
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3.2 Wavelet Construction

To construct a wavelet 1, a suitable 27 periodic function G satisfying Theorem 10 has to
be chosen.
We show next that this choice of 1) produces an orthonormal basis for .

Lemma 15 Let f € Vi and define Fy(w) = Y., f2e*™, where [0 = (f, ¢y, )and
Fi (@) = 5, £1e7 where 1 = (f, gy} Then

D1 Fy = Fimg + T2 (Fimy)
on [0,1/2].
Proof. Since f =) <f, gpn’1> Orin =2 fED T,
fo=> fiDed
= D.BY  fren

= D_Fip.
Hence,
fa = <f,¢o,n>=<f,Tn<p>=<ﬁen®>
= [ e B d
- L5 [ ()3 ()R
= Al m ) PG -
L) ()
e () n () ()
Therefore,

V2F, (W) = F, (g) o (g) +F (MTH) Mo (MTH) Yw € [0, 1]

For w € [0, 1/2] we may replace w by 2w in the above equation to obtain
Dy Fy = Fymg + Ty 2 (Fimo)
on[0,1/2]. m

Theorem 16 If (13) holds, then the set {T,,%}, ., is an ONB for Wj.
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Proof. We calculate

> [P w+n)

Y

n

w
= m(3)
_ (wH+ I\ w2
= | (T) +mo (3)
w—+1\|? w |2
= Mo (T) o (5)] =1,
where we used equation (13) to write |my| = Tio |H|. This shows that {T},1},, is an
ONB.

Next we show that {7},7}, ., is complete in W;. Suppose f € W, is orthogonal to
{To4b} e - Then f e Vi © V4. Therefore, Fy = 0. By Lemma 15,

2
+m1

Flmo = —T1/2F1m0. (14)

On the other hand we can show that
1

0= (f,Th) = NG (Fimy + Tijp (Fim))
giving
Fymy = —=Tyyp (Fimy) . (15)
Finally,since we also have
mimgy = —172m1Mmyg, (16)

multiplying (14) by the conjgate of (16),

Fmy lmo|* = Tip (Fim |m0|2)
Ty jg (Fymy) T o |mo|2

= —FlmlTl/g |m0|2 .

Since |m0\2 +T1)2 |mo|2 =1,

Fym, = 0.
Similarly,
Flmo = 0.
Hence,
2 — 2
0 = |Fimo|” + |Fimy|

= |R? ([mol” + | ) -

Therefore, F; = 0 on [0,1/2]. Consequently f} = 0 for all n € Z. Hence, f = 0 since
fevi m
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