I1.3 MULTIFRACTALS

1. FRACTAL SETS AND SELF SIMILAR FUNCTIONS

Let S C R™ be a bounded set. S is called self similar if there ex-
ist disjoint sets 51,55, ... Sk and affine transformations Ky, K, ..., Kj
representing scaling, translation or rotation such that S; = K;S and

Example 1.1. The von Kotch curve
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Example 1.2. The Cantor set
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2. FRACTAL DIMENSION

Definition 2.1. (capacity dimension)
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Let S C R™ be a bounded set. The capacity dimension of S is defined
as

D = —liminf M
a—0 oga

where N (a) is the number of balls in R™ of radius a needed to cover S.
Example 2.2. For the von Kotch curve, since [, = (%)k , we need 4*
balls of radius a; = 3% to cover [;. Thus

log N (ax) log4 _log4
logay  logi  log3

and
log 4
=225
log 3
Example 2.3. For the Cantor set, we need 2*balls of radius a; = 3%
to cover [j. In this case we easily find D = igg; < 1.

Definition 2.4. (the measure of a fractal set)

Suppose the set S has fractal dimension D. Then its measure M is
defined by

M = limsup N (a) a®.
a—0

Roughly speaking, if a set S has fractal dimension D, then the num-
ber of balls of radius a needed to cover S is proportional to a~”. That
is,

N(a) ~a™ P

for sufficiently small a.
Self-similar functions Let’s define the special affine transfor-
mation A on L? (R) by

Af(t) =c+pf (L(t—r))

where ¢, p are complex numbers and [, are real numbers with [ > 0.
The tuplet (¢, p;1,r) will be called the associated tuplet.

Definition 2.5. (self-similar functions)
Let f € L*>(R). f is called self-similar on a set S if there exists an
affine transformation A such that

Af(t) = f(t) Vtes.

f is called self-similar if its domain can be partitioned into a finite
number of disjoint sets Sy, Ss,...S such that f is self-similar on each
Siyi=1,2,... k.

Lemma 2.6. (invariance of affine transformations wrt wavelet trans-
forms)
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Let A be an affine transformation on L? (R) with associated tuplet
(¢,p;l,7) and let A" be the affine transformation on L% (RT x R) with

associated tuplet (O, \%; L, (0, r)) . Then

Ww.A - A/Ww.

Proof. For f € L* (R),

WoAf @) = [~ rpfte-n) oo (S0 a

_ %/_Zf(l(t—r))zp(t;b) dt.

Using the change of variable 7 = [ (t — r) we get

WoAf (0,) = 5%/jf@»¢(1:%§:2)m-

- P a -
= Vel lalb=1))

p
= %Wwf (1 ((a,b) = (0,7)))
= A/Wwf(a,b).
U

Corollary 2.7. (invariance of the wavelet transform of self similar
sets)
Suppose the wavelet v is supported in [—C,C]. If f is self-similar on

the interval S = [a, 5] then W, f is self-similar on S= [0, 52;00‘] X [, B].

Proof. 1t is easy to check that, for (a,b) € S, 1, is supported in S.
For (a,b) € S,

AWt (0.8) = Wolif (@)= [ Ag O, (0
= [AF @ 0= [ @, 0
S S
— [ £ 00 0d =W (@),
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It follows from the above corollary that if a signal is self similar, then
its wavelet transform modulus maxima is also self similar.
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3. SINGULARITY SPECTRUM

When a function f has nonisolated a-singularities with possibly vary-
ing values of « it is called a multifractal. A multifractal f is said to be
homogenous if it has the same a-singularity at all its singular points.
The Lipschitz exponent of a multifractal cannot be computed because
of the above mentioned variation of the Lipschitz constant o. We de-
velop in this section ways to deal with multifractals. The first step is to
partition the domain of a multifractal f into subsets, each associated
with a specific value of «. Let

Se :={t € R: f has an a-singularity at t} .
Next we define the dimension function
D (a) := dim S,
where dim S, means the fractal dimension of S,,.

Definition 3.1. (the spectrum of singularity)
The spectrum of singularity of a function f is defined to be the sup-
port of the dimension function D (-). Here

supp D (1) = {a: S, # ¢}



6 II.3 MULTIFRACTALS

Partition function The wavelet transform modulus maxima
can be interpretted as a covering of the singular support of f with
domains of wavelets at scale a. Take an € > 0. For each scale a > 0, par-
tition the domain of Wy f (a,-) into subintervals I, = [ozp, Bp] , DEL
of width ae. In each interval I, choose b, such that

Wy f (a,b,)] = max W, f (a, b)]
The partition function is defined by
(1) Z(g.0) =) [Wef(a.b,)l’
p

In order to determine the decay rate of Z (q,a) with the scale a
(Z(q,a) ~ a™@) we define

log Z
7 (q) = lim inf 062 \0 (g, a).
a—0+ loga

Theorem 3.2. (the decay rate of Z)
Let supp D (+) = A = [Qmin, Omax) - Let ¥ be a wavelet with n > appay
vanishing moments. If f is self-similar then

r(g)= inf (q (w%) —D(a)) |
Proof. (ouline)

For each a, the measure of S, ~ a~P© and |W,f (a,b)| ~ a*tz.
Then

Z(q,a) ~ a?(e+3) =P g

—

= aq(a+§)7D(a)da

S a'T(q) [amax - amin] .

Proposition 3.3. (properties of 7(-) and D (-))
(i): 7 () is convez increasing.
(ii): If f is self similar, then D (-) is convex.
(iii): If D (-) is convex then

@) D)=t (4(a+3) -7 ).

Numerical Calculations

(1) Compute Wy f (a,b) and the modulus maxima at each scale a.
Chain the maxima across scales.

(2) Compute the partition function Z (¢, a) from (1)

(3) Compute 7 (q) as the slope of the linear relation between log Z (g, a)
and log a.
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(4) Compute D («) from (2).

Assignment 3: The temperature record from the weather station
in Arar (Saudi Arabia) for the period (Jan-1990 to Dec-2006) is posted
on the web page in the form of a mat file (tarar.mat). Use this data
to compute the fractal dimension of the weather signal and plot your
results as a function of q.



