# 1 The Continuous Wavelet Transform

# 1.1 The Fourier Transform

• We use the terms signal and function interchangeably.

**Definition 1** (*The Fourier Transform*)

The Fourier Transform  $\widehat{f}$  of a function  $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$  is defined by

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \omega t} dt.$$

If f is only square integrable, then its Fourier transform is given by

$$\widehat{f}(\omega) = \lim_{n \to \infty} \int_{-n}^{n} f(t) e^{-2\pi i \omega t} dt.$$

- The following elementary operators will be of great use later:
  - The reflection operator  $\mathcal{R}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$  defined by

$$\mathcal{R}f(t) = f(-t).$$

- The translation operator (associated with  $b \in \mathbb{R}$ )  $T_b : L^2(\mathbb{R}) \to L^2(\mathbb{R})$  defined by

$$T_b f(t) = f(t-b).$$

- The dilation operator (associated with  $a \in \mathbb{R}^+$ )  $D_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$  defined by

$$D_a f(t) = \frac{1}{\sqrt{a}} f\left(\frac{t}{a}\right).$$

All these operators are unitary;  $\mathcal{R}^* = \mathcal{R}$ ,  $T_b^* = T_{-b}$ ,  $D_a^* = D_{1/a}$ .

• The Fourier transform has the following elementary properties:

$$- \alpha \widehat{f + \beta}g = \alpha \widehat{f} + \beta \widehat{g}$$
$$- \widehat{D_a f} = D_{1/a}\widehat{f}$$
$$- \widehat{T_b f} = e^{-2\pi i \omega b}\widehat{f}$$

$$- \ \widehat{\mathcal{R}f} = \mathcal{R}\widehat{f}$$
$$- \ \widehat{\overline{f}} = \mathcal{R}\overline{\widehat{f}}$$

• We can define an operator  $\mathcal{F} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$  by  $\mathcal{F}f = \widehat{f}$ . It turns out that  $\mathcal{F}$  is a unitary operator, that is,

$$\langle \mathcal{F}f, \mathcal{F}g \rangle = \langle f, g \rangle$$

for all  $f,g\in L^{2}\left(\mathbb{R}\right)$ . This can also be restated as

$$\left\langle \widehat{f}, \widehat{g} \right\rangle = \left\langle f, g \right\rangle.$$

In particular, when f = g, we get

$$\left\|\mathcal{F}f\right\| = \left\|f\right\|.$$

• For unitary operators,  $\mathcal{F}^{-1} = \mathcal{F}^*$ . Thus,

$$f = \mathcal{F}^{-1}\widehat{f} = \mathcal{F}^*\widehat{f}$$

which means

$$f\left(t\right) = \int_{-\infty}^{\infty} \widehat{f}\left(\omega\right) e^{2\pi i \omega t} d\omega$$

for  $\widehat{f} \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$  and

$$f(t) = \lim_{n \to \infty} \int_{-n}^{n} \widehat{f}(\omega) e^{2\pi i \omega t} d\omega$$

if  $\widehat{f}$  is only square integrable.

### **Definition 2** (convolution)

The convolution of two functions  $f, g \in L^2(\mathbb{R})$  is a function f \* g given by

$$f * g(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau.$$

• We have

$$\widehat{f \ast g} = \widehat{f}\widehat{g}.$$

Thus  $f * g \in L^2(\mathbb{R})$  if and only if  $\widehat{fg} \in L^2(\mathbb{R})$ . Also,(f \* g) \* h = f \* (g \* h) as can be seen by taking the Fourier transform on both sides.

**Example** (a function whose convolution with itself is not square integrable)

Let  $\widehat{f}(\omega) = \begin{cases} \sqrt{n}, & \omega \in \left[n, n + \frac{1}{n^3}\right] \\ 0, & \text{Otherwise} \end{cases}$ . Then  $\widehat{f} \in L^2(\mathbb{R})$  but  $\widehat{f}^2 \notin L^2(\mathbb{R})$ . Therefore,  $f * f \notin L^2(\mathbb{R})$ .

### **1.2** The Continuous Wavelet Transform CWT

#### **Definition 3** (wavelets)

A wavelet is a function  $\psi \in L^{2}(\mathbb{R})$  with the following properties

(i)  $\|\psi\| = 1$ ,

(ii) 
$$\int_{-\infty}^{\infty} \psi(t) dt = 0$$
,

(iii)  $c_{\psi} := \int_0^\infty \frac{\left|\widehat{\psi}(\omega)\right|^2}{\omega} d\omega < \infty.$ 

- Condition (i) is merely a normalization condition. Its importance will be clear when whe dicuss wavelet coefficients.
- Condition (ii) implies that  $\psi \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ . It also means that  $\psi$  has zero mean value. We can show that  $\widehat{\psi}$  is a continuous function.
- The previous comment together with (iii) imply that  $\widehat{\psi}(0) = 0$ . Observing that  $\widehat{\psi}(0) = \int_{-\infty}^{\infty} \psi(t) dt$ , we see that condition (ii) can be replaced by (iii) and the requirement that  $\widehat{\psi}$  is continuous.
- The constant  $c_{\psi}$  is called the admissibility condition. It is necessary to obtain the inverse of the wavelet transform as we shall see later.
- Given a wavelet  $\psi$  (also known as a mother wavelet), a > 0 and  $b \in \mathbb{R}$ , we define the dilated and translated version  $\psi_{a,b}$  of  $\psi$  by

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right) = T_b D_a \psi(t)$$

 $-\psi_{a,b}$  is obtained by dilating  $\psi$  by a "scale factor" *a* and shifting the dilated wavelet to the time instant *b*. The coefficient  $\frac{1}{\sqrt{a}}$  is introduced to preserve the normalization of the resulting (child) wavelet  $\psi_{a,b}$ . Hence,

$$\left\|\psi_{a,b}\right\| = 1 \ \forall (a,b) \in \mathbb{R}^+ \times \mathbb{R}.$$

Examples of wavelets 1. The Haar Wavelet



The Haar wavelet has compact support (the interval 
$$[-1/2, 1/2]$$
)  
and its Fourier transform has the infinite support  $(-\infty, \infty)$ .

2. Shannon Wavelets

$$\psi(t) = e^{3\pi i t} \frac{\sin \pi t}{\pi t}, \qquad \widehat{\psi}(\omega) = \chi_{[1,2)}(\omega)$$



The Shannon wavelet is a complex wavelet with infinite support while its Fourier transform has compact support.

**3.** The Mexican Hat wavelet

$$\psi(t) = (1 - t^2) e^{-t^2/2}, \qquad \widehat{\psi}(\omega) = 4\sqrt{2}\pi^{5/2}\omega^2 e^{-2\pi^2\omega^2}$$



The wavelet and its Fourier transform have infinite support but they die out quicly.

**Exercise 1** Work out the details for the Fouier transforms of the wavelets in the above examples.

# **Definition 4** (The Continuous Wavelet Transform)

Given a wavelet  $\psi$ , the continuous wavelet transform with respect to  $\psi$  of a function  $f \in L^2(\mathbb{R})$  is the function  $\tilde{f}$  defined by

$$\widetilde{f}(a,b) = \int_{-\infty}^{\infty} f(t) \,\overline{\frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right)} dt, \,\,\forall \,(a,t) \in \mathbb{R}^+ \times \mathbb{R}.$$

• Observe that the CWT is a function of two variables a and b. We can show that  $\tilde{f}$  is square integrable on  $\mathbb{R}^+ \times \mathbb{R}$  with respect to the weight function  $w(a) = \frac{1}{c_{\psi}a^2}$ . That is

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \left| \widetilde{f}(a,b) \right|^{2} w(a) \, dadb < \infty.$$

We will denote the space of these functions by  $L^2_w\left(\mathbb{R}^+\times\mathbb{R}\right).$ 

• We can also state the continuous wavelet transform as

$$\widetilde{f}(a,b) = \left\langle f, \psi_{a,b} \right\rangle = f * D_a \mathcal{R} \overline{\psi}(b)$$

- Thus, the wavelet transform  $\tilde{f}(a, b)$  is the component of f in the direction of the reflected, dilated (by scale a) and shifted (to time instant b) version of  $\psi$ .
- Small values of a (small scales) correspond to rapidly changing modes (high frequencies) and vice versa. Thus, a small value of  $\tilde{f}(a, b)$  indicates weak correlation of f with the shape of the wavelet at scale a and time instant b, whereas a large value of  $\tilde{f}(a, b)$  indicates strong correlation with the shape of the wavelet at scale a and time instant b.

**Example** (Wavelet Toolbox)

The chirp  $f(t) = \sin(2\pi(1+t)t), t \in [0, 16]$  is analized using a Morlet wavelet



• We can define a wavelet transform operator  $W_{\psi} : L^2(\mathbb{R}) \to L^2_w(\mathbb{R}^+ \times \mathbb{R})$ by  $W_{\psi}f = \tilde{f}$ . We can show that  $W_{\psi}$  is an isometric operator, that is,

$$\langle W_{\psi}f, W_{\psi}g \rangle = \langle f, g \rangle.$$

Its domain is all of  $L^2(\mathbb{R})$  but its range is a proper closed subspace M of  $L^2_w(\mathbb{R}^+ \times \mathbb{R})$ . Thus,  $W^{-1}_{\psi} = W^*_{\psi}$  on M. In particular, if f = g,

$$||W_{\psi}f||^2 = ||f||^2.$$

• This gives us the inversion formula (or the reconstruction formula)

$$f(t) = \int_{0}^{\infty} \int_{-\infty}^{\infty} \widetilde{f}(a,b) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) w(a) dbda$$
  
$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} f * D_{a} \mathcal{R} \overline{\psi}(b) D_{a} \psi(t-b) w(a) dbda$$
  
$$= \int_{0}^{\infty} f * D_{a} \mathcal{R} \overline{\psi} * D_{a} \psi(t) w(a) da.$$

To see this, let

$$z(t) = \int_0^\infty f * D_a \mathcal{R}\overline{\psi} * D_a \psi(t) w(a) \, da.$$

Taking the Fourier transform on both sides we get

$$\begin{aligned} \widehat{z}(\omega) &= \int_{0}^{\infty} \widehat{f}(\omega) \, \widehat{D_{a}\mathcal{R}\psi}(\omega) \, \widehat{D_{a}\psi}(\omega) \, w(a) \, da \\ &= \widehat{f}(\omega) \int_{0}^{\infty} D_{1/a}\mathcal{R}\widehat{\psi}(\omega) \, D_{1/a}\widehat{\psi}(\omega) \, w(a) \, da \\ &= \widehat{f}(\omega) \int_{0}^{\infty} D_{1/a}\overline{\widehat{\psi}}(\omega) \, D_{1/a}\widehat{\psi}(\omega) \, w(a) \, da \\ &= \widehat{f}(\omega) \int_{0}^{\infty} \left| D_{1/a}\widehat{\psi}(\omega) \right|^{2} w(a) \, da \\ &= \widehat{f}(\omega) \int_{0}^{\infty} a \left| \widehat{\psi}(a\omega) \right|^{2} w(a) \, da \\ &= \widehat{f}(\omega) \int_{0}^{\infty} \left| \widehat{\psi}(a\omega) \right|^{2} w(a) \, da \end{aligned}$$

Using the change of variable  $\gamma=a\omega$  gives

$$\widehat{z}(\omega) = \frac{1}{c_{\psi}}\widehat{f}(\omega) \int_{0}^{\infty} \frac{\left|\widehat{\psi}(\gamma)\right|^{2}}{\gamma} d\gamma = \widehat{f}(\omega).$$

• The explicit form of  $W_{\psi}^* : L^2_w \left( \mathbb{R}^+ \times \mathbb{R} \right) \to L^2 \left( \mathbb{R} \right)$  is

$$\left(W_{\psi}^{*}g\right)(t) = \int_{0}^{\infty} g\left(a,\cdot\right) * D_{a}\psi\left(t\right)w\left(a\right)da.$$

• We also have the "reproducing kernel" identity

$$g(a_0, b_0) = \int_{-\infty}^{\infty} \int_0^{\infty} K(a_0, b_0, a, b) g(a, b) w(a) \, dadb \, \forall g \in M, \quad (1)$$

where

$$K\left(a_{0}, b_{0}, a, b\right) = \left\langle \psi_{a_{0}, b_{0}}, \psi_{a, b} \right\rangle$$

It can be seen by observing that

$$g = W_{\psi} W_{\psi}^* g$$

for every g in the range M of the wavelet transform  $W_{\psi}$ .

**Exercise 2** Prove the identity (1).

**Definition 5** (the energy density; scalograms)

The energy density of a function f with respect to the wavelet transform  $W_{\psi}$  at scale a and time b is defined as

$$P_W f(a,b) := \left| W_{\psi} f(a,b) \right|^2.$$

The energy density is called a scalogram. The normalized scalogram is defined as

$$\frac{1}{a}P_{W}f\left( a,b\right) .$$

The scaling function The idea behind the scaling function is to accumu-

late the action of the wavelet transform for large scales (i.e., scales  $a > a_0$  for some  $a_0 > 0$ ). To do this we write

$$f(t) = \int_{0}^{\infty} f * D_{a} \mathcal{R} \overline{\psi} * D_{a} \psi(t) w(a) da$$
  
= 
$$\int_{0}^{a_{0}} f * D_{a} \mathcal{R} \overline{\psi} * D_{a} \psi(t) w(a) da + \int_{a_{0}}^{\infty} f * D_{a} \mathcal{R} \overline{\psi} * D_{a} \psi(t) w(a) da$$

As before putting  $z(t) = \int_{a_0}^{\infty} f * D_a \mathcal{R} \overline{\psi} * D_a \psi(t) w(a) da$  and taking the Fourier transform we obtain

$$\begin{aligned} \widehat{z}(\omega) &= \widehat{f}(\omega) \int_{a_0}^{\infty} \left| D_{1/a} \widehat{\psi}(\omega) \right|^2 w(a) \, da \\ &= \frac{1}{c_{\psi}} \widehat{f}(\omega) \int_{a_0}^{\infty} \frac{\left| \widehat{\psi}(a\omega) \right|^2}{a} \, da = \frac{1}{c_{\psi}} \widehat{f}(\omega) \int_{a_0\omega}^{\infty} \frac{\left| \widehat{\psi}(\gamma) \right|^2}{\gamma} \, d\gamma. \end{aligned}$$

Let  $\phi$  be any function such that

.

$$\left|\widehat{\phi}\left(\omega\right)\right|^{2} = \int_{\omega}^{\infty} \frac{\left|\widehat{\psi}\left(\gamma\right)\right|^{2}}{\gamma} d\gamma.$$

Then

$$\widehat{z}(\omega) = \frac{1}{a_0 c_{\psi}} \widehat{f}(\omega) \left| D_{1/a_0} \widehat{\phi}(\omega) \right|^2$$
$$= \frac{1}{a_0 c_{\psi}} \widehat{f}(\omega) D_{a_0} \widehat{R\phi}(\omega) D_{a_0} \widehat{\phi}(\omega)$$

and

$$z(t) = \frac{1}{a_0 c_{\psi}} f * D_{a_0} \mathcal{R} \overline{\phi} * D_{a_0} \phi(t)$$
  
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) \frac{1}{\sqrt{a_0}} \overline{\phi} \left(\frac{\tau - b}{a_0}\right) \frac{1}{\sqrt{a_0}} \phi\left(\frac{t - b}{a_0}\right) d\tau db$$
  
$$= \int_{-\infty}^{\infty} f^{\dagger}(a_0, b) \phi_{a_0, b}(t) db,$$

where

$$f^{\dagger}\left(a_{0},b\right) = \frac{1}{a_{0}c_{\psi}}\int_{-\infty}^{\infty}f\left(\tau\right)\overline{\phi}_{a_{0},b}\left(\tau\right)d\tau = \frac{1}{a_{0}c_{\psi}}\left\langle f,\phi_{a_{0},b}\right\rangle.$$

# **Time-Frequency Resolution**

**Definition 6** (energy spread of a signal) Suppose  $f \in L^2(\mathbb{R})$  is a signal. The energy center  $(t_c, \omega_c)$  of f is defined by

$$t_{c} = \frac{\int_{-\infty}^{\infty} t |f(t)|^{2} dt}{\|f\|^{2}},$$
  
$$\omega_{c} = \frac{\int_{-\infty}^{\infty} \omega \left|\widehat{f}(\omega)\right|^{2} d\omega}{\left\|\widehat{f}\right\|^{2}},$$

respectively. The energy spread of f is defined to be the box in the t- $\omega$  plane centered at  $(t_c, \omega_c)$  with spread  $\sigma_t$  in the t-direction and  $\sigma_{\omega}$  in the  $\omega$ -direction, where

$$\sigma_t^2 = \int_{-\infty}^{\infty} (t - t_c)^2 |f(t)|^2 dt,$$
  
$$\sigma_{\omega}^2 = \int_{-\infty}^{\infty} (\omega - \omega_c)^2 \left| \widehat{f}(\omega) \right|^2 d\omega.$$

- The Heisenberg uncertainty principle: Suppose  $\psi$  is a wavelet with spreads  $\sigma_t, \sigma_{\omega}$ . It can be shown that the spreads of  $\psi_{a,b}$  are  $a\sigma_t$  and  $\sigma_{\omega}/a$ . Therefore, in all cases the size of the energy spread is  $\sigma_t \sigma_{\omega}$ . This shows that by controlling the scale we can improve the time resolution of the wavelet or the frequency resolution but not both.
- **Real wavelets** Real wavelets are cabable of analysing the degree of smoothness of a signal, detecting breaks in either the signal or its derivatives and the fractal structure of the signal.
- **Analytic wavelets** Analytic wavelets are used to analyze (sound) tones with time dependent frequencies. The use of complex wavelets enables the separation of the phase and amplitude of the signal.

[Example: signal1.mat, Gauss4 wavelet, 1:.2:12, current+all scales, 1-gray, 256 colors]

**Definition 7** (analytic functions)

- (i) A function  $f \in L^2(\mathbb{R})$  is called analytic if  $\widehat{f}(\omega) = 0$  for  $\omega < 0$ .
- (ii) for a given  $f \in L^2(\mathbb{R})$ , the analytic part  $f_a$  of the function f is defined as

$$f_{\mathsf{a}} = 2\mathcal{F}^{-1}\left(\widehat{f}\chi_{[0,\infty)}\right).$$

In words

$$\widehat{f}_{\rm a} = \left\{ \begin{array}{c} 2\widehat{f}\left(\omega\right), \ \omega \geq 0 \\ 0, \qquad \omega < 0 \ , \end{array} \right. \label{eq:fa}$$

which means that the analytic part of a function is the inverse Fourier transform of twice the Fourier transform of the original function reduced to zero for negative values of  $\omega$ . An anlytic function f is completely determined by its real part. To see this we write

$$f\left(t\right) = u\left(t\right) + iv\left(t\right),$$

then

$$u(t) = \frac{f(t) + \overline{f(t)}}{2}$$

and

$$\widehat{u}(\omega) = \frac{\widehat{f}(\omega) + \widehat{f}(\omega)}{2} \\ = \frac{\widehat{f}(\omega) + \overline{\widehat{f}}(-\omega)}{2}.$$

If  $\omega \ge 0$  then  $\widehat{u}(\omega) = \frac{\widehat{f}(\omega)}{2}$ . Hence,

$$\widehat{f}(\omega) = \begin{cases} 2\widehat{u}(\omega), \ \omega \ge 0\\ 0, \qquad \omega < 0. \end{cases}$$

**Exercise 3** Show that if  $f \in L^2(\mathbb{R})$  is real, then  $f = \operatorname{Re}(f_a)$ . [Hint: if f is real then  $\overline{\widehat{f}}(\omega) = \widehat{f}(-\omega)$ .]

**Theorem 8** (properties of analytic wavelet transforms) Suppose  $\psi$  is an analytic wavelet. Then

(a) for any  $f \in L^2(\mathbb{R})$ 

$$W_{\psi}f\left(a,b
ight) = rac{1}{2}W_{\psi}f_{\mathsf{a}}\left(a,b
ight).$$

(b) If  $f \in L^2(\mathbb{R})$  is real then

$$f(t) = \frac{1}{2} \operatorname{Re}\left[\int_{0}^{\infty} \int_{-\infty}^{\infty} W_{\psi} f_{\mathsf{a}}(a,b) D_{a}\psi(t-d) w(a) db da\right]$$

and

$$||f||^2 = \frac{1}{2} ||W_{\psi}f_{\mathsf{a}}||^2.$$

**Proof.** We prove only part (a), leaving part (b) as an exercise. Since

$$W_{\psi}f(a,b) = f * D_a \mathcal{R}\overline{\psi}(b) ,$$

we may take the Fourier transform on both sides with respect to b and get

$$\widehat{W_{\psi}f(a,\cdot)}(\omega) = \widehat{f}(\omega) D_{1/a}\overline{\widehat{\psi}}(\omega) = \frac{1}{2}\widehat{f_{a}}(\omega) D_{1/a}\overline{\widehat{\psi}}(\omega) ,$$

since  $\widehat{\psi}(\omega) = 0$  for  $\omega < 0$ . Thus,

$$W_{\psi}f(a,b) = \frac{1}{2}f_{\mathsf{a}} * D_{a}\mathcal{R}\overline{\psi}(b)$$
$$= \frac{1}{2}W_{\psi}f_{\mathsf{a}}(a,b).$$

**Exercise 4** Prove part (b) of the previous theorem.

An analytic wavelet can be constructed by taking an even function  $\widehat{g} \in L^2(\mathbb{R})$  with unit norm and support contained in the interval  $(-\eta, \eta)$  and define the wavelet  $\psi$  by

$$\psi(t) = g(t) e^{2\pi i \eta t}.$$
(2)

Then  $\psi$  satisfies all the conditions of a wavelet,  $\widehat{\psi}(\omega) = 0$  for  $\omega < 0$  (i.e.,  $\psi$  is an analytic wavelet) and its energy center  $(t_c, \omega_c) = (0, \eta)$ .

- **Exercise 5** Check the above properties of the analytic wavelet  $\psi$  given by (2).
- **Exercise 6** Construct an analytic wavelet from the function g for which  $\widehat{g}(\omega) = \chi_{[-1/2,1/2]}(\omega)$ .
- **Approximately analytic wavelets** If the function  $\hat{g}$  is such that  $\hat{g}(\omega) \approx 0$  for  $|\omega| > \eta$  then  $\psi$  is considered "approximately analytic". An example is the *Gabor wavelet* for which

$$\widehat{g}(\omega) = \sqrt{2\pi}\sigma e^{-2\pi\sigma^2\omega^2},$$

$$g(t) = \frac{1}{(\sigma^2\pi)^{1/4}}e^{-\frac{t^2}{2\sigma^2}}.$$

If  $\sigma^2 \eta^2 \gg 1$  then  $\widehat{g}(\omega) \approx 0$  for  $|\omega| > \eta$ .

**Exercise 7** For the Gabor wavelet, compute the energy center and spreads and check that  $\sigma_t \sigma_{\omega} \geq \frac{1}{2}$ . Make plots of  $\hat{g}(\omega)$  for various values of  $\sigma$  and experiment with the choices of  $\eta$  such that  $\hat{g}(\omega) \approx 0$  for  $|\omega| > \eta$ .