Matrices
Solutions
The following is the MAPLE sheet to solve these two examples.
> with(linalg);
Warning, the protected names norm and trace have been redefined and unprotected
> A:=matrix(3,3,[2,-3,2,0,-1,7,6,-1,1]);
> B:=matrix(3,3,[-1,1,5,2,-3,1,9,0,-2]);
> C:=matrix(3,1,[5,1,3]);
> X:=matrix(3,1,[x^2,ln(x),(1-x)]);
> evalm(2*B);
> #b]
> V:=multiply(A,B);
> #c]
> multiply(A,inverse(A));
> #d]
> inverse(V);
> transpose(B);
> transpose(multiply(B,C));
> #g]
> evalm(-10*V);
> #h]
> evalm(A^3);
> #j]
> matadd(multiply(A,C),X);
> #i]
> evalm(-10*multiply(A,X));
> #k]
> det(transpose(B));
> #l]
> evalm(det(inverse(evalm(A^3)))*B);
>
> #EXample 2
> A:=matrix(2,2,[6,-5,-2,9]);
> eigenvects(A);
> v1:=matrix(2,1,[1,-1]);
> v2:=matrix(2,1,[5/2,1]);
> evalm(A&*v1=11*v1);
> evalm(A&*v2=4*v2);
> #b]
> A:=matrix(3,3,[-4,0,6,2,4,-4,2,0,7]);
> eigenvects(A);
> v1:=matrix(3,1,[-6,16/9,1]):v2:=matrix(3,1,[0,1,0]):v3:=matrix(3,1,[1,-3/2,2]):
> evalm(A&*v1=-5*v1);
> evalm(A&*v2=4*v2);
> evalm(A&*v3=8*v3);
> #c]
> A:=matrix(3,3,[2,-3,1,2,-3,0,6,-45,12]);
> charpoly(A,lambda);
> eigenvects(A);
Ø # the rest of the example is left as an exercise.
Ø