0.1 Maximum Principle in RV

Let € be an open set of RY.
Theorem. (Maximum Principle for the Dirichlet problem).

Let a;; € L>(9) satisfying the ellipticity (coercivity) condition and f € L3(Q). If
u € HY(Q) N C(Q) satisfies

/Z o +uo= [ fo. vo e m@ (1)

then
min{irrlfu, igf f1 <u(z) < max{arlp u, Slslzp I} (2)

Proof. Let’s use the transaction method of Stampacchia. For this, take G € C*(R)
such that

(i) |G'(s)| < M, Vs € R

(ii) G is strictly increasing over (0, +00)

(iii) G(s) =0, Vs<0

We will prove the right-hand part of (2). Suppose that

K = Max{supu, sup f} < +0o0
r Q

Otherwise (2) is satisfied.
Set v = G(u — K). We distinguish two cases:
a) Q2] < 400
In this case, v € H'(Q) and v(z) =0, Vz € T hence
v e H}(Q). Then use it in (1) to obtain

/Za”%%g k)+/Q(u—k)G(u—k):/Q(f—k)G(u—k) (3)

This gives

But

where
Q. ={zeQ/u—k>0}
1



By using (4) and the fact that (u — k)G(u — k) > 0 in 2, then we have
OS/ (u—k)G(u—Fk) <0
Q4

Thus, the measure (24) =0=u—k <0 a.e. in .
u(z) < ka.e. infQ.

b) [Q] = +oo.

In this case, k > 0 (since f(z) < k a.e. in Q and f € L*Q)}. Take &' < k > 0 and

set v=CG(u—k). Thenv € H'(Q), alsov € C(Q) withv=0o0nT. So, v € H}(Q).

We then use it in (1) to get (3); hence the result is established u(z) < k" a.e. z in €.
Since k' is arbitrary < k then u(z) < k a.e. in €. This complete the proof.

Remark 1. Since || = 400, we need [, G(u— k") < +oo. This is certainly true since

/G(u—k') :/ G(u— k),

Q o

where ', = {x € Q / u > k'}. So, by using
Glu—kK)=|Gu—-Fk)—G(-K)| < Mlu|

we easily arrive at

o<k [
Q

Remark 2. The left-hand side of (2) can be proved by considering — f and —u.

Corollary. Let f € L*(Q) and u € HY() N C(Q) satisfying (1). we have the
following;:
a) Ifu>0onT and f > 0in € then v > 0 in ), with

G(u—k')g/ uM|u|:M/ u? < 4o0.
. w4

!
+

]| Lo @) < Maz{||ull oo (ry, || f Il @)l

In particular, we have

b) If f =0 in Q then ||lul| =) < [Jullz=m)

&) It u = 0 on T then [ull (o) < || fll (o)

Theorem. Let a;; € L*(Q) satisfying the ellipticity (coercivity) condition and
a, € L®, 0< k<N, withay>0in Q. Let f € L}(Q) andu € HYQ)NC(Q)
such that

<
<

Ou 0¢ al ou B
/gl;jaija—aiia—aij+/§zgak8xi¢+/§laou¢_/fd)’ vqseHé(Q) (5)

Then

(u>0and T') and(f > 0in Q) = (v > 0 in Q) (6)



If ag = 0 and €2 is bounded. Then

(f20inQ):>(u2irF1fuinQ) (7)
(szinQ):>(irrlfugugsupuinﬂ) (8)

r
Proof. We only prove the case ap, = 0 < k < N. For the general case, we refer to

Gilbarg & Trudinger (Elliptic PDE’s of second order, Theorem 8.1).
Now, we prove (6), or equivalently

(u<0oT)and (f<0in Q) = (u <0in Q) (9)

Let ¢ = G(u), where G is defined earlier.
So, (5) gives

ou au
<
/Zal ax,(?x] (u) <0

/Q|vu|2c:’(u) <

But G is nondecreasing. So, [, |[Vu|*G'(u) = 0. Therefore |Vu|*G'(u) = 0. Hence
u < 0.

Next, we establish (7). Set k = infr u < —oo;otherwise (7) is valid. Alsow =u—k
satisfies (5) since ap = 0 and w € H'(Q). since Q is bounded. Applying (6) to obtain
w > 0 that is u > k = infr f u.

Finally (8) follows from (7) and the fact that

hence

(f<0in Q)= (u <supuin Q) (10)
r

which is equivalent to (7).
Theorem (Maximum principle for the Neumann problem)

Let a;; € L™ (Q) satisfying the ellipticity (coercivity) condition and f € L*(Q). If
u € HY(Q) satisfies

/Qvu.v¢+/ﬂu¢=/ﬂf¢, Vo ¢ H'(Q)
then

inf f <w(x) <supf, Vraein Q
w Q

Proof. Similar to the case of Dirichlet problem.



