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Abstract

We consider the problem of two fluids flow through a porous medium governed by a
nonlinear law. We prove the existence of a weak solution, establish the local Lipschitz
continuity of this solution in the zone above the lower fluid, and prove the continuity of
the upper free boundary. In the rectangular case, we prove the existence of a monotone
solution with respect to the vertical variable, and the continuity of the lower free boundary.
Finally, we prove the uniqueness of a monotone solution with respect to x and y, when the
dam is rectangular and the flow obeying to the linear Darcy law.
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1 Introduction

The dam problem with one fluid has been studied by many authors (see [9], [10], [11], [12],
[13], [1], [2], [3], [16], [7], [17], [27], [19], etc.) However to the best of our knowledge, the two-
fluid dam problem has been considered only in [6] in the case where the flow is governed by
the well known linear Darcy law. The authors established the existence of a weak solution,
which is locally Lipschitz continuous, and that the upper free boundary is an analytic curve
x = k(y). In the rectangular case, they proved the existence of a monotone solution with respect
to both variables x and y. Finally they proved that the lower free boundary is a continuously
differentiable curve y = φ(x).
In this paper, we would like to reconsider the model studied by Alt-Caffarelli-Friedman, assum-
ing the flow governed by a nonlinear Darcy’s law. The dam is represented by the open set Ω
(see Figure 1)

Ω = {(x, y) ∈ R2 / x ∈ (0, a), s−(x) < y < s+(x) },
where s− and s+ are C1 functions defined on [0, a] such that s−(x) < s+(x) ∀x ∈ (0, a),
s−(0) = s+(0), and s−(a) = s+(a). We denote by T the point of ∂Ω of coordinates (x0, s+(x0))
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such that s+(x0) = max
x∈[0,a]

s+(x), and

s′+(x) ≥ 0 for all x ∈ (0, x0) and s′+(x) ≤ 0 for all x ∈ (x0, a). (1.1)

The dam is supplied by two reservoirs. The left (resp. right) one contains two fluids at levels
H1 and H2 (resp. h1 and h2) with 0 < h2 < H2 < H1 and h2 < h1 < H1 < s+(x0).
We assume the flow through the porous medium obeying to the following nonlinear Darcy’s law

|v|m−1v = −k∇φ, m > 0 (1.2)

where v is the fluid velocity, k is the permeability of the medium which we assume constant
and equal to 1, φ = p + γy is the piezometric head, p is the fluids pressure, and γ is given by

γ = δ1χ(Ω1) + δ2χ(Ω2), with δ1, δ2 > 0

where δi (i = 1, 2) represents the specific weight of the ith fluid occupying the domain Ωi of Ω,
χ(E) denotes the characteristic function of the set E. We shall also denote the restriction of a
function f to Ωi by fi,.
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The lower liquid is assumed to be the heavier one, which means that δ = δ2− δ1 > 0. Moreover
the flow is assumed to be incompressible, that is

div(vi) = 0 in Ωi. (1.3)

The bottom
_

AB of the dam is assumed to be impervious. So if ν = (νx, νy) is the outward unit
normal vector to ∂Ω, we have

v2 · ν = 0 on
_

AB . (1.4)

Using the continuity of the pressure across
_

AA1 and
_

BB2, and the fact that p + δiy is constant
in the ith reservoir, we obtain

φ = cst on
_

AA1 and on
_

BB2 . (1.5)

Assuming there is overflow on
_

B1O1, we obtain by taking into account (1.2)

φ = δ1y and − ∂φ

∂ν
≥ 0 on

_

B1O1 . (1.6)

Since p + δ1y = δ1h1 to the right of
_

B2O2, and φ = p + δ2y to the left of
_

B2O2, we obtain

φ = (δ2 − δ1)y + δ1h1 on
_

B2O2 . (1.7)

We also assume that we have overflow on
_

B2O2. Therefore we obtain by taking into account
(1.2)

−∂φ

∂ν
≥ 0 on

_

B2O2 . (1.8)

Since p + δ1y = δ1h1 to the right of
_

O2B1, and φ = p + δ1y to the left of
_

O2B1, we obtain

φ = δ1h on
_

O2B1 . (1.9)

On the upper free boundary Γ0,1, separating Ω1 from the dry region, we have

p = 0 and v · ν = 0 on Γ0,1 (1.10)

that is

φ = δ1y and
∂φ

∂ν
= 0 on Γ0,1. (1.11)

The continuity of the pressure at the lower free boundary Γ1,2 separating Ω1 from Ω2, and the
immiscibility of the two fluids reads

p1 = p2 and v1 · ν = v2 · ν = 0 on Γ1,2 (1.12)

which is equivalent to
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φ1 − φ2 = (δ1 − δ2)y and
∂φ1

∂ν
=

∂φ2

∂ν
= 0 on Γ1,2. (1.13)

Assuming that Ωi (i = 1, 2) is a simply connected domain, we deduce (see [4]) that there exist

functions ψi : Ωi → R such that for q = m + 1, r =
1
m

+ 1, m > 0

∆qψi = 0 in Ωi. (1.14)

vi = Rotψi =
(∂ψi

∂y
,−∂ψi

∂x

)
= −|∇φi|r−2∇φi in Ωi. (1.15)

Taking into account (1.15), we have for τ = (−νy, νx) the tangent unit vector to ∂Ω

vi.τ = −∂ψi

∂ν
= −|∇φi|r−2 ∂φi

∂τ
and vi.ν =

∂ψi

∂τ
= −|∇φi|r−2 ∂φi

∂ν
. (1.16)

Using (1.16) and the fact that |∇ψi| = |∇φi|r−1, we obtain

|∇ψi|q−2 ∂ψi

∂ν
=

∂φi

∂τ
. (1.17)

From (1.12) and (1.16 ), we deduce that ψi are constant on Γ1,2. We normalize ψi by choosing
the constant to be zero, which determines ψi uniquely. Setting ψ = χ(Ω1)ψ1 + χ(Ω2)ψ2, we get

ψ = 0 on Γ1,2. (1.18)

By (1.11), we have

∂φ

∂τ
= δ1

∂y

∂τ
= δ1νx on Γ0,1.

Using (1.17), we obtain

|∇ψ|q−2∇ψ.ν = δ1νx on Γ0,1. (1.19)

Now from the first formula in (1.13), we obtain

∂φ1

∂τ
− ∂φ2

∂τ
= (δ1 − δ2)

∂y

∂τ
= (δ1 − δ2)νx on Γ1,2

which can be written by (1.17)

|∇ψ1|q−2∇ψ1.ν − |∇ψ2|q−2∇ψ2.ν = (δ1 − δ2)νx on Γ1,2. (1.20)

Using (1.4) and (1.16), we deduce that

∂ψ2

∂τ
= 0 on

_

AB .

4



This means that ψ2 = c2 is constant along
_

AB. Similarly we get ψ1 = c1 is constant along Γ0,1.

From (1.5) and (1.9), we know that φ is constant and therefore
∂φ

∂τ
= 0 along

_

AA1 ∪
_

BB2

∪
_

O2B1. It follows from (1.17) that

|∇ψ|q−2∇ψ.ν = 0 on
_

AA1 ∪
_

BB2 ∪
_

O2B1 . (1.21)
Differentiating the first formula in (1.6), we obtain

∂φ

∂τ
= δ1

∂y

∂τ
= δ1νx on

_

B1O1 .

Using (1.16)-(1.17) and (1.6), we deduce that

∂ψ

∂τ
≥ 0 and |∇ψ|q−2∇ψ.ν = δ1νx on

_

B1O1 . (1.22)

Similarly we obtain

∂ψ

∂τ
≥ 0 and |∇ψ|q−2∇ψ.ν = (δ2 − δ1)νx on

_

B2O2 . (1.23)

Finally, we claim that c1 > 0. Indeed assume that c1 ≤ 0 and let m = min
Ω1

ψ.

First due to (1.14), (1.22) and the maximum principle(see [30]), we have ψ > m in Ω1.
Next due to (1.14), (1.21) and the maximum principle(see [30]), ψ cannot achieve its minimum

on
_

A2A1 ∪
_

O2B1. Moreover since ψ = 0 on
_

A2O2, ψ ≤ 0 on
_

A1O1 and
∂ψ

∂τ
≥ 0 on

_

B1O1, ψ

achieves necessarily its minimum at B1. But this leads by the maximum principle to
∂ψ

∂ν
(B1) <

0, which is in contradiction with (1.21)-(1.22).

Arguing as above, one can verify that c2 < 0. Thus there exists Q1, Q2 > 0 such that

ψ = −Q2 on
_

AB and ψ = Q1 on Γ0,1.

Hence we obtain the following strong formulation





∆qψ = 0 in Ωi, i = 1, 2

ψ = −Q2 on
_

AB

|∇ψ|q−2∇ψ.ν = 0 on
_

AA1 ∪
_

BB2 ∪
_

O2B1

|∇ψ|q−2∇ψ.ν = δ1νx and
∂ψ

∂τ
≥ 0 on

_

B1O1

|∇ψ|q−2∇ψ.ν = (δ2 − δ1)νx and
∂ψ

∂τ
≥ 0 on

_

B2O2

|∇ψ|q−2∇ψ.ν = δ1νx and ψ = Q1 on Γ0,1

|∇ψ1|q−2∇ψ1.ν − |∇ψ2|q−2∇ψ2.ν = (δ1 − δ2)νx

and ψ = 0 on Γ1,2.
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Using the strong formulation and arguing as in [6], we obtain the following weak formulation

(P )





Find (ψ, γ, γ̃) ∈ W 1,q(Ω)× L∞(Ω)× L∞(
_

AT ∪
_

BB2) such that :

(i)
∫

Ω

(|∇ψ|q−2∇ψ − γex

)
.∇ζ +

∫
_

AT∪
_

BB2

γ̃ζνx = δ

∫
_

B2B1

ζνx + δ2

∫
_

B1T

ζνx

∀ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB,

(ii) γ ∈ H(ψ) a.e. in Ω, γ̃ ∈ H(ψ) a.e. in
_

AT ∪
_

BB2,

(iii) ψ = −Q2 on
_

AB,

where H is the monotone graph
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H(t) =





0 if t < 0
−δ if 0 < t < Q1

−δ2 if t > Q1

[−δ, 0] if t = 0
[−δ2,−δ] if t = Q1.

In the next section, we prove the existence of a solution (ψ, γ, γ̃) of the problem (P ). In section
3, we prove that ψ is locally Lipschitz continuous above the lower free boundary. In section
4, we prove that the upper free boundary is represented by a curve of a continuous function
Φ(y). In section 5, we give some properties of the set ψ = Q1. In section 6, we specialize in the
rectangular case, and show the existence of a monotone solution with respect to y, and then
prove that the lower free boundary is represented by a curve of a continuous function f(x).
Finally in section 7, we prove the uniqueness of a monotone solution with respect to x and y,
when the dam is rectangular and the Darcy law is linear.

2 Existence of a solution

The first step in the existence proof of a solution consists on approximating the problem (P ) by a
family of problems (Pε). Indeed for ε > 0 small enough, we consider the following approximated
problem:

(Pε)





Find ψε ∈ W 1,q(Ω) such that :

(i)
∫

Ω

(|∇ψε|q−2∇ψε −Hε(ψε)ex

)∇ζ +
∫

Ω

ε|ψε|q−2ψεζ

+
∫

_
AT∪

_
BB2

Hε(ψε)ζνx = δ

∫
_

B2B1

ζνx + δ2

∫
_

B1T

ζνx

∀ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB

(ii) ψε = −Q2 on
_

AB

where

Hε(t) =





0 if t < 0

−δ

ε
t if 0 ≤ t ≤ ε

−δ if ε < t < Q1

−δ1

ε
(t−Q1)− δ if Q1 ≤ t ≤ Q1 + ε

−δ2 if t ≥ Q1 + ε.

(2.1)

Then we have

7



Theorem 2.1. There exists a solution ψε of (Pε).

Proof. Let V = {v ∈ W 1,q(Ω)/ v = 0 on
_

AB} and K = {v ∈ W 1,q(Ω)/ v = −Q2 on
_

AB}.
Consider the operator A defined by : u ∈ K 7−→ A(u) ∈ (W 1,q(Ω))′ with

A(u) : W 1,q(Ω) −→ R, ζ 7−→ < A(u), ζ > =
∫

Ω

|∇u|q−2∇u.∇ζ + ε|u|q−2uζ,

and the map fv : W 1,q(Ω) −→ R, defined by

ζ 7−→ < fv, ζ > =
∫

Ω

Hε(v)ζx −
∫

_
AT∪

_
BB2

Hε(v)ζνx + δ

∫
_

B2B1

ζνx + δ2

∫
_

B1T

ζνx.

One can check without difficulty that A is continuous, coercive, monotone and that fv ∈
(W 1,q(Ω))′.
Then for each v ∈ W 1,q(Ω), there exists a unique solution ψε of the variational problem

ψε ∈ K, < A(ψε), ζ > = < fv, ζ > ∀ζ ∈ V. (2.2)

This defines a map Fε : W 1,q(Ω) −→ K, v 7−→ ψε. Moreover we have

Fε(W 1,q(Ω)) ⊂ B(0, R), where B(0, R) is the closed ball of W 1,q(Ω) of center 0 and radius R
independent of ε.

Indeed ψε + Q2 ∈ V is a suitable test function for (2.2). So

∫

Ω

|∇ψε|q + ε|ψε|q = −
∫

Ω

εQ2|ψε|q−2ψε +
∫

Ω

Hε(v)ψεx

−
∫

_
AT∪

_
BB2

Hε(v)(ψε + Q2)νx + δ

∫
_

B2B1

(ψε + Q2)νx + δ2

∫
_

B1T

(ψε + Q2)νx. (2.3)

Note that for λ = (q′)1/q′ , we have by Young’s inequality

∣∣∣
∫

Ω

εQ2|ψε|q−2ψε

∣∣∣ ≤
∫

Ω

λε1/q′ |ψε|q−1.
Q2

λ
ε1/q ≤ 1

q′

∫

Ω

λq′ε|ψε|q +
1
q

∫

Ω

(Q2

λ

)q

ε

=
∫

Ω

ε|ψε|q +
1
q

(Q2

λ

)q

ε|Ω|. (2.4)

Using the fact that Hε is uniformly bounded, we obtain by Hölder’s inequality

∣∣∣
∫

Ω

Hε(v)ψεx

∣∣∣ ≤ C
( ∫

Ω

|∇ψε|q
)1/q

. (2.5)

Using the continuity of the trace operator, and Poincaré’s inequality, we obtain
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∣∣∣
∫

_
AT∪

_
BB2

Hε(v)(ψε + Q2)νx

∣∣∣,
∣∣∣
∫

_
B2B1

(ψε + Q2)νx

∣∣∣,
∣∣∣
∫

_
B1T

(ψε + Q2)νx

∣∣∣ ≤ C
(∫

Ω

|∇ψε|q
)1/q

(2.6)
where C is some positive constant independent of ε. Now for ε < 1, we obtain from (2.3)-(2.6),
for another positive constant independent of ε, still denoted by C

∫

Ω

|∇ψε|q ≤ C
( ∫

Ω

|∇ψε|q
)1/q

+
1
q

(Q2

λ

)q

|Ω|

from which we deduce that ∇ψε is uniformly bounded in Lq(Ω) and therefore we obtain by
Poincaré’s inequality applied to ψε + Q2 that |ψε|1,q ≤ R, where R is some positive constant
independent of ε.

Now we claim that

Fε : B(0, R) −→ B(0, R) is weakly continuous.

Indeed, let (vi)i∈I be a generalized sequence in C = B(0, R) which converges weakly to v in C.
Set ψi

ε = Fε(vi) and ψε = Fε(v). We would like to prove that (ψi
ε)i∈I converges weakly to ψε.

Since C is compact with respect to the weak topology, it is enough to show that (ψi
ε)i∈I has ψε

as a unique limit point for the weak topology in C. So let ψ be a weak limit point for (ψi
ε)i∈I

in C.
Using the compact embedding : W 1,q(Ω) ⊂ Lq(Ω), we get a subsequence (ψik

ε )k∈N such that
ψik

ε ⇀ ψ in W 1,q(Ω) and ψik
ε −→ ψ in Lq(Ω).

Choose ψik
ε − ψε as a test function for (2.2) written for ψik

ε and ψε. Subtract the equations, so
that

< A(ψik
ε )−A(ψε), ψik

ε − ψε > =
∫

Ω

(
Hε(vik

)−Hε(v)
)
(ψik

ε − ψε)x

−
∫

_
AT∪

_
BB2

(
Hε(vik

)−Hε(v)
)
(ψik

ε − ψε)νx.

Note that since Hε is bounded and Lipschitz continuous, and since ψik
ε , ψε belong to B(0, R),

we have
∣∣∣
∫

Ω

(
Hε(vik

)−Hε(v)
)
(ψik

ε − ψε)x

∣∣∣ ≤
( ∫

Ω

|Hε(vik
)−Hε(v)|q′

)1/q′( ∫

Ω

|∇(ψik
ε − ψε)|q

)1/q

≤ C(ε)|vik
− v|1/q′

0,q ,

∣∣∣
∫

_
AT∪

_
BB2

(
Hε(vik

)−Hε(v)
)
(ψik

ε − ψε)νx

∣∣∣ ≤ C(ε)|vik
− v|

Lq(
_

AT∪
_

BB2)
.

Then we obtain
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lim
k→∞

< A(ψik
ε )−A(ψε), ψik

ε − ψε >= 0.

Arguing as in [28], we get ∇ψik
ε → ∇ψε in Lq(Ω) and ψik

ε → ψε in Lq(Ω). It follows that ψε = ψ
and therefore ψε is the unique weak limit point of (ψi

ε) in C. Thus ψi
ε = Fε(vi) ⇀ ψε = Fε(v)

weakly in C. Hence the continuity of Fε holds.
At this step, applying the Tychonoff fixed point theorem (see [29]) in C, we obtain that Fε has
a fixed point, which is a solution of (Pε).

The next step of the existence proof is to pass to the limit in (Pε).

Theorem 2.2. There exists a solution (ψ, γ, γ̃) of the problem (P ).

Proof. From the proof of Theorem 2.1, we know that for some positive constant C independent
of ε, we have |ψε|1,q ≤ C. Moreover Hε(ψε) is uniformly bounded. Thus, due to the compact
embedding W 1,q(Ω) ↪→ Lq(Ω) and the complete continuity of the trace operator, there exists a

subsequence still denoted by ψε and functions ψ ∈ W 1,q(Ω), γ ∈ L∞(Ω), γ̃ ∈ L∞(
_

AT ∪
_

BB2)
such that

ψε ⇀ ψ in W 1,q(Ω)
ψε → ψ in Lq(Ω), ψε → ψ in Lq(∂Ω)
ψε → ψ a.e. in Ω, ψε → ψ a.e. in ∂Ω

Hε(ψε) ⇀ γ in Lq′(Ω), Hε(ψε) ⇀ γ̃ in Lq′(
_

AT ∪
_

BB2).

Note that we can write Hε(t) = H1
ε (t) + H2

ε (t), where H1
ε and H2

ε are defined by

H1
ε (t) =





0 for t < 0
−δt/ε for 0 ≤ t ≤ ε

−δ for t > ε

H2
ε (t) =





0 for t < Q1

−δ1(t−Q1)/ε for Q1 ≤ t ≤ Q1 + ε

−δ1 for t > Q1 + ε.

Since (H1
ε (ψε)) and (H2

ε (ψε)) are uniformly bounded, we have up to a subsequence

H1
ε (ψε) ⇀ γ1, H2

ε (ψε) ⇀ γ2 in Lq′(Ω)

with γ = γ1 + γ2 a.e. in Ω. Since H1
ε (ψε) ∈ K1 = {v ∈ Lq′(Ω), −δ ≤ v ≤ 0 a.e. in Ω} which is

weakly closed in Lq′(Ω) (for being closed and convex), we have

−δ ≤ γ1 ≤ 0 a.e. in Ω.

Moreover, we have

H1
ε (ψε) → 0 a.e. in [ψ < 0] and H1

ε (ψε) → −δ a.e. in [ψ > 0].
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So by the Lebesgue theorem

H1
ε (ψε) → 0 in Lq′([ψ < 0]) and H1

ε (ψε) → −δ in Lq′([ψ > 0]).

We deduce that

γ1 = 0 a.e. in [ψ < 0] and γ1 = −δ a.e. in [ψ > 0].

Now, since −δ ≤ γ1 ≤ 0 a.e. in Ω, we obtain

γ1 ∈ H1(ψ) =





0 if ψ < 0
[−δ, 0] if ψ = 0
−δ if ψ > 0.

In the same way, we prove that

γ2 ∈ H2(ψ) =





0 if ψ < Q1

[−δ1, 0] if ψ = Q1

−δ1 if ψ > Q1.

Thus γ = γ1 + γ2 ∈ H1(ψ) + H2(ψ) = H(ψ) a.e. in Ω.

Similarly, one can prove that γ̃ ∈ H(ψ) a.e. in
_

AT ∪
_

BB2. Thus (P )ii) holds.
(P )iii) is obtained as a consequence of (Pε)ii) and the fact that ψε → ψ in Lq(∂Ω).
It remains to prove (P )i). So we take ψε − ψ as a test function for (Pε) and we obtain

∫

Ω

|∇ψε|q + ε

∫

Ω

|ψε|q =
∫

Ω

|∇ψε|q−2∇ψε.∇ψ +
∫

Ω

Hε(ψε)∂x(ψε − ψ) + ε

∫

Ω

|ψε|q−2ψε.ψ

−
∫

_
AT∪

_
BB2

Hε(ψε)(ψε − ψ)νx + δ

∫
_

B2B1

(ψε − ψ)νx + δ2

∫
_

B1T

(ψε − ψ)νx. (2.7)

Since ψε → ψ in Lq(∂Ω), the last three integrals in the righthand side of (2.7) converge to 0.
Since ψε is bounded in Lq(Ω), we have

lim
ε→0

ε

∫

Ω

|ψε|q−2ψεψ = 0.

To treat the second integral in the righthand side of (2.7), we write
∫

Ω

Hε(ψε)∂x(ψε − ψ) =
∫

Ω

∂x(E1
ε (ψε)) +

∫

Ω

∂x(E2
ε (ψε))−

∫

Ω

Hε(ψε)∂xψ (2.8)

where

E1
ε (s) =

∫ s

0

H1
ε (t)dt and E2

ε (s) =
∫ s

0

H2
ε (t)dt.
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One can verify that

E1
ε (s) −→ E1(s) = −δs+ and E2

ε (s) −→ E2(s) = −δ1(s−Q1)+, as ε −→ 0,

We claim that

lim
ε→0

∫

Ω

∂x(E1
ε (ψε)) =

∫

Ω

γ1∂xψ. (2.9)

Indeed, we first have

|E1
ε (ψε)− E1(ψ)| ≤ |E1

ε (ψε)− E1
ε (ψ)|+ |E1

ε (ψ)−E1(ψ)|
≤ δ|ψε − ψ|+ |E1

ε (ψ)− E1(ψ)|.

So E1
ε (ψε) → E1(ψ) a.e. in Ω. By Lebesgue’s theorem, we obtain E1

ε (ψε) → E1(ψ) in Lq(Ω).
Then ∂x(E1

ε (ψε)) → ∂x(E1(ψ)) in D′(Ω). But since |∂x(E1(ψε))|Lq(Ω) is bounded, we get

∂x(E1
ε (ψε)) ⇀ ∂x(E1(ψ)) in Lq(Ω).

Hence

lim
ε→0

∫

Ω

∂x(E1
ε (ψε)) =

∫

Ω

∂x(E1(ψ)) =
∫

Ω

(E1)′(ψ)∂xψ =
∫

[ψ>0]

−δ∂xψ =
∫

Ω

γ1∂xψ.

In the same way, we establish

lim
ε→0

∫

Ω

∂x(E2
ε (ψε)) =

∫

Ω

γ2∂xψ. (2.10)

Using (2.8)-(2.10)we get

lim
ε→0

∫

Ω

Hε(ψε)∂x(ψε − ψ) =
∫

Ω

γ1∂xψ +
∫

Ω

γ2∂xψ −
∫

Ω

γ∂xψ = 0.

Finally, we obtain by letting ε → 0 in (2.7)

lim sup
ε→0

∫

Ω

|∇ψε|q ≤ lim sup
ε→0

∫

Ω

|∇ψε|q−2∇ψε∇ψ

from which we deduce that

lim sup
ε→0

( ∫

Ω

|∇ψε|q
)1/q

≤
( ∫

Ω

|∇ψ|q
)1/q

and then ∇ψε → ∇ψ in Lq(Ω).

We obtain (P )i) by letting ε → 0 in (Pε)i) since we have |∇ψε|q−2∇ψε → |∇ψ|q−2∇ψ in Lq′(Ω)
and ε|ψε|q−2ψε → 0 in Lq′(Ω). ¤
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3 Regularity of the Solution

The main result of this section is the local Lipschitz continuity of ψ above Γ1,2. This will be
used in the next section to prove the continuity of the function representing Γ0,1. We first have
the following general regularity results.

Proposition 3.1. Let (ψ, γ, γ̃) be a solution of (P ). Then we have

div
(|∇ψ|q−2∇ψ − γex

)
= 0 in D′(Ω). (3.1)

−Q2 ≤ ψ ≤ Q1 in Ω. (3.2)

ψ ∈ C0,α(Ω∪
_

AB \{A, B}) for some α ∈ (0, 1). (3.3)

ψ ∈ C1,β([ψ < 0] ∪ [0 < ψ < Q1]) for some β ∈ (0, 1). (3.4)

Proof. i) To prove (3.1), it suffices to take ζ ∈ D(Ω) as a test function in (P )i).
ii) We first take (ψ + Q2)− as a test function in (P )i). We obtain since γ = 0, γ̃ = 0 in

[ψ < −Q2] and νx ≥ 0 on
_

BT

∫

Ω

|∇(ψ + Q2)−|q = −δ

∫
_

B2B1

(ψ + Q2)−νx − δ2

∫
_

B1T

(ψ + Q2)−νx ≤ 0.

Since ψ = −Q2 on
_

AB, we get (ψ + Q2)− = 0 in Ω.
Similarly, we take (ψ −Q1)+ in (P )i) and obtain since γ = −δ2, γ̃ = −δ2 in [ψ > Q1]

∫

Ω

|∇ψ|q−2∇(ψ −Q1)+ + δ2(ψ −Q1)+x − δ2

∫
_

AT∪
_

BB2

(ψ −Q1)+νx

= δ

∫
_

B2B1

(ψ −Q1)+νx + δ2

∫
_

B1T

(ψ −Q1)+νx

which can be written after integrating by part
∫

Ω

|∇(ψ −Q1)+|q + (δ2 − δ)
∫

_
B2B1

(ψ −Q1)+νx = 0.

This gives (ψ −Q1)+ = 0 in Ω since (ψ −Q1)+ = (−Q2 −Q1)+ = 0 on
_

AB.

iii) Since γ ∈ L∞(Ω), we deduce (see [21] ) that ψ ∈ C0,α
loc (Ω ∪ Int(

_

AB)) for some α ∈ (0, 1).
iv) Since γ is constant in [ψ < 0] and in [0 < ψ < Q1], we obtain from (3.1) that div

(|∇ψ|q−2∇ψ
)

=
0 in D′([ψ < 0]∪ [0 < ψ < Q1]). Therefore ψ ∈ C1,β

loc ([ψ < 0]∪ [0 < ψ < Q1]) for some β ∈ (0, 1)
(see [26])
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Now we state the main result of this section.

Theorem 3.1. Let (ψ, γ, γ̃) be a solution of (P ). Then we have

ψ ∈ C0,1
loc ([ψ > 0]). (3.5)

In order to prove Theorem 3.1, we introduce the following notations

Ω+ = Ω ∩ [ψ > 0], u = Q1 − ψ, and γ̂ = γ + δ2.

For ζ ∈ W 1,q
0 (Ω+), we remark that ζχ(Ω+) is a test function for (P ). So we have

∫

Ω+

(|∇ψ|q−2∇ψ − γex

)
.∇ζ = 0

⇐⇒
∫

Ω+

(|∇(Q1 − ψ)|q−2∇(Q1 − ψ) + (γ + δ2)ex

)
.∇ζ = 0.

Moreover, one has γ̂ = δ2 + γ ∈ δ2 + H(ψ). Therefore (u, γ̂) satisfies

(P+)





(i)
∫

Ω+

(|∇u|q−2∇u + γ̂ex

)
.∇ζ = 0 ∀ζ ∈ W 1,q

0 (Ω+)

(ii) γ̂ ∈ [0, δ1] if u = 0
(iii) γ̂ = δ1 if 0 < u < Q1.

To prove Theorem 3.1, we need the following lemma

Lemma 3.1. Let Br(X0) be an open ball of center X0 = (x0, y0) and radius r contained in
Ω+ ∩ [u > 0], satisfying Br(X0) ⊂ Ω and ∂Br(X0) ∩ [u = 0] 6= ∅. Then there exists a constant
C > 0 depending only on q and δ1 such that

u(X0) ≤ Cr. (3.6)

Proof. The proof for q = 2 can be adapted from [7]. We shall consider here only the case q 6= 2.
Let ε > 0 such that Br+ε(X0) ⊂ Ω. Let D = Br+ε(X0) \ Br/2(X0), m = inf

∂Br/2(X0)
u and v

defined by




v(X) = aρ
q−2
q−1 + b where ρ =

√
(x− x0)2 + (y − y0)2,

a =
m

(
r
2

) q−2
q−1 − (r + ε)

q−2
q−1

and b =
−m(r + ε)

q−2
q−1

(
r
2

) q−2
q−1 − (r + ε)

q−2
q−1

.

One can verify easily that v satisfies
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div(|∇v|q−2∇v) = 0 in D

v = m on ∂Br/2(X0)
v = 0 on ∂Br+ε(X0).

Note that ζ = (v− u)+|D ∈ W 1,q
0 (D) since v ≤ u on ∂D. Then ζχ(D) is a test function for (P+)

and we have
∫

D

(|∇u|q−2∇u + γ̂ex)∇(v − u)+ = 0. (3.7)

We have also
∫

D

|∇v|q−2∇v∇(v − u)+ = 0. (3.8)

We get by subtracting (3.7) from (3.8)
∫

D

(|∇v|q−2∇v − |∇u|q−2∇u
)∇(v − u)+ −

∫

D

γ̂(v − u)+x = 0

which can be written
∫

D∩[u>0]

(|∇v|q−2∇v − |∇u|q−2∇u
)∇(v − u)+

=
∫

D∩[u=0]

(
(γ̂ − δ1)vx − |∇v|q) ≤

∫

D∩[u=0]

|∇v|(δ1 − |∇v|q−1). (3.9)

Assume that ∫

D∩[u>0]

(|∇v|q−2∇v − |∇u|q−2∇u
)∇(v − u)+ = 0.

In particular, we obtain
∫

Br(X0)

(|∇v|q−2∇v − |∇u|q−2∇u
)∇(v − u)+ = 0

which leads to ∇(v − u)+ = 0 in Br(X0). Since v ≤ u on ∂Br/2(X0), we get v ≤ u in Br(X0).
This constitutes a contradiction with the fact that v > 0 in D and ∂Br(X0)∩ [u = 0] 6= ∅. From
(3.9), we then get

∫

D∩[u=0]

|∇v|(δ1 − |∇v|q−1) > 0. (3.10)

Now we claim that |∇v| < δ
1

q−1
1 on ∂Br+ε(X0). Indeed otherwise, we will have |∇v| ≥ δ

1
q−1
1 in D

since |∇v| = |a| |q − 2|
q − 1

1

ρ
1

q−1
is non-increasing with respect to ρ, and we get a contradiction with

(3.10). We deduce that |∇v||∂Br+ε(X0) = |a| |q − 2|
q − 1

1

(r + ε)
1

q−1
≤ δ

1
q−1
1 , which can be written
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|q − 2|
q − 1

.
m

(r + ε)
1

q−1

∣∣∣(r + ε)
q−2
q−1 − (

r
2

) q−2
q−1

∣∣∣
≤ δ

1
q−1
1 .

Letting ε → 0, we get

|q − 2|
q − 1

m

r
1

q−1

∣∣∣r q−2
q−1 − (

r
2

) q−2
q−1

∣∣∣
≤ δ

1
q−1
1 ⇐⇒ m ≤ q − 1

|q − 2|δ
1

q−1
1

∣∣∣1−
(1

2

) q−2
q−1

∣∣∣r = C1r.

Since u > 0 in Br/2(X0), we have ∆qu = 0 in Br/2(X0). Applying Harnack’s inequality (see
[22] p. 110), we obtain for a positive constant C2 depending only on q

u(X0) ≤ max
Br/2(X0)

u ≤ C2 min
Br/2(X0)

u = C2m ≤ C2C1r = Cr.

Proof of Theorem 3.1. Let X1, X2 ∈ Ω+. Without loss of generality, one can choose X1, X2

such that
|X1 −X2| < d/2 and B2d(Xi) ⊂ Ω+ for some d > 0.

Set R(Xi) = min(d, dist(Xi, [u = 0])). Then clearly we have BR(Xi)(Xi) ⊂ [u > 0].
If u(X1) = 0 or u(X2) = 0, we argue as in [20].

Assume that u(X1) > 0 and u(X2) > 0. Then if
1
2

max(R(X1), R(X2)) < |X1 −X2|, we argue

as in [20].

Assume that
1
2

max(R(X1), R(X2)) ≥ |X1 − X2| > 0, and that for example R(X1) ≥ R(X2).

Then
1
2

max(R(X1), R(X2)) =
R(X1)

2
≥ |X1 −X2|. We distinguish two cases :

i) R(X1) <
d

2
.

In this case, we have for X ∈ B1(O)

d(X1 + R(X1)X, [u = 0]) ≤ d(X1, [u = 0]) + R(X1) = 2R(X1) < d.

So R(X1 + R(X1)X) < d, and therefore ∂BR(X1+R(X1)X)(X1 + R(X1)X) ∩ ∂[u > 0] 6= ∅.
Applying Lemma 3.1, we get

u(X1 + R(X1)X) ≤ CR(X1 + R(X1)X) ≤ 2CR(X1).

It follows that the function defined by

v(X) =
u(X1 + R(X1)X)

R(X1)
, X ∈ B1(O)
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is uniformly bounded in B1(O), i.e. v(X) ≤ 2C ∀X ∈ B1(O). Moreover, it satisfies ∆qv = 0 in
B1(O). Then by applying for example Theorem 1 of [26], we get for some α ∈ (0, 1) depending
only on q

|v|1,α,B1/2(O) ≤ C where C = C(dist(B1/2(O), ∂B1(O)).

In particular, we deduce that |∇v| is uniformly bounded in B1/2(O). Now, since (X2−X1)/R(X1) ∈
B1/2(O), we obtain ∣∣∣v

(X2 −X1

R(X1)

)
− v(0)

∣∣∣ ≤ C
∣∣∣X2 −X1

R(X1)

∣∣∣

which leads to
|u(X2)− u(X1)| ≤ C|X2 −X1|.

ii) R(X1) ≥ d

2
.

We consider the same function v defined in the previous case. Here we remark that we have

|v|0,B1(O) ≤
|u|0,Ω

R(X1)
≤ 2

d
|u|0,Ω.

Therefore |∇v|0,B1/2(O) ≤ C(d), and arguing as before, we get

|u(X2)− u(X1)| ≤ C(d)|X2 −X1|.

Remark 3.1. When q = 2, it is showen in [6] that ψ ∈ C0,1
loc (Ω). The proof of this result near

[ψ = 0] relies on the monotonicity formula proved in [5].

4 Study of the Upper Free Boundary Γ0,1

The main result of this section is the proof that Γ0,1 is represented by the graph of a continuous
function Φ(y). First, we prove a monotonicity result for γ in Ω+ which allows us to define the
function Φ(y). Next, making use of the local Lipschitz continuity of ψ in Ω+, we prove that Φ
is continuous.
We assume that the arc

_

BT (resp.
_

AT ) can be represented in the form

x = σ+(y) (resp. x = σ−(y)) for yB < y < yT .

Then we have
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Theorem 4.1. Let (ψ, γ, γ̃) be a solution of (P ). The upper free boundary Γ0,1 = (∂[ψ <
Q1])∩Ω+ is a y-graph, i.e. there exists a function Φ, σ−(y) ≤ Φ(y) ≤ σ+(y), such that for each
(x, y) ∈ Ω+

ψ(x, y) = Q1 ⇐⇒ Φ(y) ≤ x < σ+(y).

Moreover Φ is lower semicontinuous on πy(Ω+).

The proof of Theorem 4.1 is a consequence of Lemmas 4.1 and 4.2.

Lemma 4.1. Using the notations of the previous section, we have

∆qu ≥ 0, γ̂x ≤ 0 in D′(Ω+). (4.1)

Proof. Let ζ ∈ D(Ω+), ζ ≥ 0, and ε > 0. Taking ξ = min
(u

ε
, ζ

)
as a test function in (P+)i), we

obtain since γ̂ = δ1 in [u > 0]

∫

Ω+∩[u≥εζ]

|∇u|q−2∇u.∇ζ = −1
ε

∫

Ω+∩[u<εζ]

|∇u|q −
∫

Ω+

γ̂ξx ≤ −
∫

Ω+

δ1ξx = 0.

Letting ε → 0, we get
∫

Ω+

|∇u|q−2∇u.∇ζ ≤ 0 which means that ∆qu ≥ 0. From (P+)i), we get

γ̂x = −∆qu ≤ 0 in D′(Ω+).

Lemma 4.2. Let (x0, y0) ∈ Ω+. We have

ψ(x0, y0) < Q1 =⇒ ψ(x, y0) < Q1 ∀x ∈ (σ−(y0), x0). (4.2)

Proof. Let (x0, y0) ∈ Ω+ such that ψ(x0, y0) < Q1. By continuity of ψ, there exists ε > 0 such
that 0 < ψ < Q1 in Bε(x0, y0). So u > 0 in Bε(x0, y0) and γ̂ = δ1 a.e. in Bε(x0, y0).
Let xm = inf{x ∈ (σ−(y0), x0) /ψ(x′, y0) < Q1 ∀x′ ∈ (x, x0] }.
If xm = σ−(y0), then ψ(x, y0) < Q1 for all x ∈ (σ−(y0), x0].
If σ−(y0) < xm < x0, then ψ(xm, y0) = Q1. By continuity, there exists η > 0 such that
Bη(xm, y0) ⊂ Ω+. Now let ρ > 0 small enough such that Bρ(xm + η/2, y0) ⊂ Bη(xm, y0)∩ [ψ <
Q1]. Then γ̂ = δ1 a.e. in Bρ(xm + η/2, y0). But since γ̂x ≤ 0 in D′(Bη(xm, y0)) and 0 ≤ γ̂ ≤ δ1

in Bη(xm, y0), we deduce that

γ̂ = δ1 a.e. in C =
(
(−∞, xm + η/2)× (y0 − ρ, y0 + ρ) ∪Bρ(xm + η/2, y0)

) ∩Bη(xm, y0).

As a consequence, we obtain ∆qu = 0 in C which leads by the maximum principle, since u > 0
in Bρ(xm + η/2, y0), to u > 0 in C. Therefore ψ < Q1 in C which is in contradiction with
ψ(xm, y0) = Q1.
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Proof of Theorem 4.1. Taking into account (4.2), we define for each y ∈ πy(Ω+)

Φ(y) =

{
σ−(y) if {x / ψ(x, y) < Q1} = ∅
sup{x/ (x, y) ∈ Ω+ and ψ(x, y) < Q1} elsewhere.

(4.3)

Let (x0, y0) ∈ Ω+ such that ψ(x0, y0) = Q1. By Lemma 4.2, we have ψ(x, y0) = Q1 for all
x ∈ [x0, σ+(y0)). Consequently we obtain Φ(y0) ≤ x0 < σ+(y0).

Conversely, let (x0, y0) ∈ Ω+ such that Φ(y0) ≤ x0 < σ+(y0). Assume that ψ(x0, y0) < Q1.
By continuity and Lemma 4.2, we have ψ(x, y0) < Q1 for all x ∈ (σ−(y0), x1) for some x1 ∈
(x0, σ+(y0)). Consequently, we obtain Φ(y0) ≥ x1, which contradicts the assumption.

Lemma 4.3. Let Ω1 = Ω+ ∩ [y > yB1 ]. We have

∫

Ω1

(|∇u|q−2∇u + γ̂ex

)
.∇ζ = 0 ∀ζ ∈ W 1,q(Ω1), ζ = 0 on ∂Ω1\

_

B1T. (4.4)

Proof. Let ζ be as in the lemma. Then χ(Ω1)ζ is a test function for (P ) and we have
∫

Ω1

(|∇ψ|q−2∇ψ − γex

)
.∇ζ = δ2

∫
_

B1T

ζνx = δ2

∫

Ω1

ζx.

This leads to ∫

Ω1

(|∇u|q−2∇u + γ̂ex

)
.∇ζ = 0.

The main result of this section is the following theorem.

Theorem 4.2. Φ is continuous at each y ∈ πy(Ω1) such that (Φ(y), y) ∈ Ω1.

Remark 4.1. In section 6.2, we shall prove, for rectangular dams, that we have ψ < Q1 in
Ω ∩ [y < h1]. This shows that Γ0,1 is located in Ω1.

To prove Theorem 4.2, we need several lemmas

Lemma 4.4. Let (x0, y1), (x0, y2) ∈ Ω1 such that y1 < y2, u(x0, yi) = 0 for i = 1, 2, and let
Z =

(
(x0, +∞)× (y1, y2)

) ∩ Ω ⊂ Ω1 (see Figure 3). Then we have

∫

Z

(|∇u|q−2∇u + γ̂ex

)
.∇ζ ≤ 0

∀ζ ∈ W 1,q(Z), ζ ≥ 0, ζ(x0, y) = 0 a.e. y ∈ (y1, y2). (4.5)
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u = 0

u = 0

Z ∂Ω1

Figure 3

Proof. Let ζ as in Lemma 4.4, ε > 0 and αε(y) = min
(
1,

(y − y1)+

ε

)
. min

(
1,

(y2 − y)+

ε

)
. Since

for η > 0, αεζχ(Z) and min
(u

η
, (1− αε)ζ

)
χ(Z) are test functions for (4.4), we have respectively

∫

Z

(|∇u|q−2∇u + γ̂ex

)
.∇(αεζ) = 0 (4.6)

∫

Z

(|∇u|q−2∇u + γ̂ex

)
.∇

(
min

(u

η
, (1− αε)ζ

))
= 0. (4.7)

Taking into account the fact that γ̂ = δ1 in [u > 0], (4.7) becomes

∫

Z∩[η(1−αε)ζ≤u]

|∇u|q−2∇u.∇((1− αε)ζ) ≤ −1
η

∫

Z∩[η(1−αε)ζ>u]

|∇u|q

−δ1

∫

Z

(
min

(u

η
, (1− αε)ζ

))
x
≤ −δ1

∫

∂Z∩
_

B1T

min
(u

η
, (1− αε)ζ

)
νx ≤ 0. (4.8)

Letting η → 0 in (4.8) and adding the result to (4.6), we obtain
∫

Z

(|∇u|q−2∇u + αεγ̂ex

)
.∇ζ ≤ 0.

Finally, we let ε → 0 and obtain (4.5).
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γ̂ ≡ 0

X0 •

u ≡ 0

u ≡ 0,γ̂ ≡ 0
in Z

∂Ω1

Figure 4

Taking ζ = x− x0 in (4.5), we obtain

Corollary 4.1. Under the same assumptions and with the notations of Lemma 4.4, we have
∫

Z

|∇u|q−2ux + γ̂ ≤ 0. (4.9)

Lemma 4.5. Assume that u ≡ 0 in a ball Br(X0) ⊂ Ω1, with r > 0 and X0 = (x0, y0). Then
we have

γ̂ ≡ 0 a.e. in Z∪Br(X0), where (see Figure 4) Z =
(
(x0,+∞)×(y0−r, y0+r)

)∩Ω ⊂ Ω1.

Proof. By Theorem 4.1, we have u = 0 in Z ∪Br(X0). Applying Corollary 4.1 for each domain

Z ′ ⊂ Z ∪ Br(X0) of the form Z ′ =
(
(x1, +∞) × (y1, y2)

) ∩ Ω, we obtain
∫

Z′
γ̂ ≤ 0. Since γ̂ is

nonnegative, this leads to γ̂ = 0 in Z ′. Therefore γ̂ ≡ 0 in Z ∪Br(X0).

Lemma 4.6. Let X0 = (x0, y0) ∈ Ω1 and r > 0 such that Br(X0) ⊂ Ω1. Then we cannot have
the following situations in Br(X0) (see Figure 5)

(i) u = 0 for y = y0 and u > 0 for y 6= y0

(ii) u = 0 for y ≥ y0 and u > 0 for y < y0,

(iii) u > 0 for y > y0 and u = 0 for y ≤ y0.
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Proof. i) In this case, one has γ̂ = δ1 a.e. in Br(X0) and therefore ∆qu = −γ̂x = 0 inD′(Br(X0)).
This is in contradiction with the maximum principle.

y = y0

u > 0

u = 0

u > 0

u > 0

u ≡ 0

u ≡ 0

u > 0

Figure 5

ii) In this case, one has γ̂ = δ1 a.e. in B−
r (X0) = Br(X0) ∩ [y < y0]. Moreover by Lemma 4.5,

we have γ̂ = 0 a.e. in B+
r (X0) = Br(X0)∩ [y > y0]. It follows that γ̂x = 0 in D′(Br(X0)). Hence

∆qu = 0 in D′(Br(X0)), and we obtain again a contradiction.

iii) This case is similar to ii).

Lemma 4.7. Let (x, y1), (x, y2) ∈ Ω1 such that y1 < y2 and u(x, yi) = 0 for i = 1, 2. For

ε > 0 small enough, let v(x, y) = δ
1

q−1
1 (x + ε− x)+. Assume that [x− ε, x + ε]× [y1, y2] ⊂ Ω+,

u(x, y) ≤ v(x, y) ∀y ∈ (y1, y2), and that Z =
(
(x, +∞) × (y1, y2)

) ∩ Ω ⊂ Ω1 (see Figure 6).
Then we have for Zµ = Z ∩ [v > 0] ∩ [0 < u− v < µ]

lim
µ→0

1
µ

∫

Zµ

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇(u− v)+ = 0. (4.10)

Proof. For µ, η > 0, we consider Fµ(s) = min
(s+

µ
, 1

)
, dη(x) = Fη(x − x̄), x̄ = x + ε. Then

ζ = Fµ(u − v) + dη(1 − Fµ(u)) is a nonnegative function vanishing on [x = x]. So by Lemma
4.4, we have

∫

Z

(|∇u|q−2∇u + γ̂ex

)
.∇(Fµ(u− v)) ≤ −

∫

Z

(|∇u|q−2∇u + γ̂ex

)
.∇(dη(1− Fµ(u))). (4.11)

Moreover, we have
∫

Z

(|∇v|q−2∇v + δ1χ([v > 0])ex

)
.∇(Fµ(u− v)) = 0. (4.12)

Subtracting (4.12) from (4.11), we get
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∫

Z

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇(Fµ(u− v)) ≤

∫

Z

(δ1χ([v > 0])− γ̂)ex.∇(Fµ(u− v))

−
∫

Z∩[v=0]

(|∇u|q−2∇u + γ̂ex

)
.∇(dη(1− Fµ(u)))

which can be written

∫

Z∩[v>0]

F ′µ(u− v)
(|∇u|q−2∇u− |∇v|q−2∇v

)
.∇(u− v)

≤
∫

Z∩[v=0]

(|∇u|q−2∇u + γ̂ex

)
.∇((1− dη)(1− Fµ(u))) = Iµ

1 . (4.13)

Note that we can write

Iµ
1 = −

∫

Z∩[v=0]

(1− dη)
(|∇u|q−2∇u + γ̂ex

)
.∇(Fµ(u))

−
∫

Z∩[v=0]

(1− Fµ(u))
(|∇u|q−2∇u + γ̂ex

)
.∇dη = Iµ

2 + Iµ
3 . (4.14)

Since for x > x, dη → 1 when η → 0, we have
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lim
η→0

Iµ
2 = 0. (4.15)

Moreover

Iµ
3 = −

∫

Z∩[u=v=0]

γ̂ex.∇dη−
∫

Z∩[u>v=0]

(1− Fµ(u))
(|∇u|q−2∇u + γ̂ex

)
.∇dη = Iµ

4 +Iµ
5 . (4.16)

Iµ
4 = −

∫

Z∩[u=v=0]

γ̂∂xdη = −1
η

∫

Z∩[u=v=0]∩[x<x<x+η]

γ̂ ≤ 0. (4.17)

Since u ∈ C0,1
loc (Ω+), one has for some positive constant C

|Iµ
5 | ≤ 1

η
(Cq−1 + δ1)

∫

Z∩[u>v=0]∩[x<x<x+η]

(1− Fµ(u))

=
Cq−1 + δ1

η

∫

J

∫ min(φ(y),x+η)

x

(1− Fµ(u))

≤ Cq−1 + δ1

η

∫

J

( ∫ x+η

x

(1− Fµ(u))dx
)
dy, (4.18)

where J = {y ∈ (y1, y2) / x < φ(y)}. Using the continuity of the function x 7→ (1−Fµ(u))(x, y),
we have

lim
η→0

1
η

∫ x+η

x

(1− Fµ(u))(x, y)dx = (1− Fµ(u))(x, y).

Moreover fη(y) =
1
η

∫ x+η

x

(1− Fµ(u))(x, y)dx satisfies |fη(y)| ≤ 1 for all y ∈ (y1, y2). Then by

the Lebesgue theorem, we obtain

lim
η→0

∫

J

fη(y)dy =
∫

J

(1− Fµ(u))(x, y)dy. (4.19)

Combining (4.18) and (4.19), we get

limη→0|Iµ
5 | ≤ (Cq−1 + δ1)

∫

J

(1− Fµ(u))(x, y)dy. (4.20)

Taking into account (4.13)-(4.17) and (4.20), we obtain

1
µ

∫

Z∩[v>0]∩[0<u−v<µ]

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇(u− v)+

≤ (Cq−1 + δ1)
∫

J

(1− Fµ(u))(x, y)dy. (4.21)
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But for y ∈ J , we have u(x, y) > 0. So lim
µ→0

(1− Fµ(u))(x, y) = 0. Letting µ → 0 in (4.21), we

get (4.10).

Lemma 4.8. Under the assumptions and notations of Lemma 4.7, we have

div(a(x, y)∇w) = 0 in D′(Z∗) (4.22)

where

w =

{
(u− v)+ in Z+ = [v > 0]
0 in Z− = (x− ε, x]× (y1, y2)

Z∗ = Z− ∪ Z+, and a(x, y) is a 2-by-2 strictly elliptic and bounded matrix.

Proof. Let ζ ∈ D(Z∗). Note that

∫

Z+
χ([u > v])

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇ζ

= lim
µ→0

∫

Z+
Fµ(u− v)

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇ζ = lim

µ→0
Iµ, (4.23)

where

Iµ =
∫

Z+

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇(Fµ(u− v)ζ)

− 1
µ

∫

Z+∩[0<u−v<µ]

ζ
(|∇u|q−2∇u− |∇v|q−2∇v

)
.∇(u− v) = I1

µ − I2
µ. (4.24)

By Lemma 4.7, we have

lim
µ→0

I2
µ = 0 (4.25)

since

|I2
µ| ≤ sup

Z+
|ζ| 1

µ

∫

Z+∩[0<u−v<µ]

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇(u− v).

Moreover, we have

I1
µ =

∫

Z+
|∇u|q−2∇u.∇(Fµ(u− v)ζ)−

∫

Z+
|∇v|q−2∇v.∇(Fµ(u− v)ζ)

= −
∫

Z+
γ̂(Fµ(u− v)ζ)x +

∫

Z+
δ1(Fµ(u− v)ζ)x = 0. (4.26)
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It follows from (4.23)-(4.26) that
∫

Z+
χ([u > v])

(|∇u|q−2∇u− |∇v|q−2∇v
)
.∇ζ = 0

which can be written (see [17])
∫

Z+
a(x, y)∇(u− v)+.∇ζ = 0 (4.27)

where

a(x, y) = (aij(x, y))1≤i,j≤2, aij(x, y) =
∫ 1

0

∂Ai

∂hj
(∇ut)dt,

Ai are the components of the vector function A(h) = |h|q−2h, h ∈ IR2 and ut = tu + (1− t)v.

Now arguing as in [17], we can verify that for a.e. (x, y) ∈ Z+ and for all ξ ∈ IR2

min(1, q−1).λ(x, y).|ξ|2 ≤ a(x, y).ξ.ξ ≤ max(1, q−1).λ(x, y).|ξ|2, λ(x, y) =
∫ 1

0

|∇ut|q−2(x, y)dt.

Since |∇v| = δ
1

q−1
1 and |∇u| ≤ C in Z+, we can verify that

0 < c0 ≤ λ(x, y) ≤ c1 in Z+, with c0, c1 constants.

Next, if we extend a(x, y) by c0I2 (I2 being the 2-by-2 identity matrix) into Z−, we obtain from
(4.27)

∫

Z∗
a(x, y)∇w.∇ζ = 0 ∀ζ ∈ D(Z∗)

with a(x, y) strictly elliptic and bounded in Z∗.

Proof of Theorem 4.2. Let ε > 0 and y0 ∈ πy(Ω1) such that X0 = (Φ(y0), y0) ∈ Ω1. For ε small
enough, we can suppose that B2ε(X0) ⊂ Ω1. Since u(X0) = 0 and u continuous, there exists
ε′ ∈ (0, ε) such that

u(x, y) ≤ εδ
1

q−1 ∀(x, y) ∈ Bε′(X0) ⊂ Ω1. (4.28)

By Lemma 4.6, one of the following situations is true

i) ∃X1 = (x1, y1) ∈ Bε′(X0) such that y1 < y0 and u(X1) = 0
ii) ∃X2 = (x2, y2) ∈ Bε′(X0) such that y2 > y0 and u(X2) = 0.

Let us assume that i) holds. Set x = max(Φ(y0), x1) and Z =
(
(x,+∞) × (y1, y0)

) ∩ Ω (see
Figure 7). Since {x} × (y1, y0) ⊂ Bε′(X0), we have by (4.28)

u(x, y) ≤ εδ
1

q−1
1 ∀y ∈ (y1, y0). (4.29)

26



X0 • u = 0

Z
X1• u = 0

...

...

...

...

...

...

...

...

...

...

x x + ε

∂Ω1

Figure 7

Now it is easy to verify that u ≤ Q1/2 in Z (choose (u − Q1/2)+χ(Z) as a test function in
(4.4)). This means that Z ⊂ [ψ > 0]. Since we have also y1 > yB1 , we obtain Z ⊂ Ω1.

Let v(x, y) = δ
1

q−1
1 (x + ε− x)+. Then we have from (4.29)

u(x, y) ≤ v(x, y) ∀y ∈ (y1, y0).

Moreover u(x, y0) = u(x, y1) = 0. Therefore the assumptions of Lemma 4.7 are fulfilled and we
obtain from Lemma 4.8

div(a(x, y)∇w) = 0 in D′(Z∗), where Z∗ = (x− ε, x + ε)× (y1, y0).

Since w is nonnegative in Z∗, w = 0 in Z− = (x− ε, x]× (y1, y0), we obtain from the maximum
principle that w ≡ 0 in Z∗. This leads to u ≤ v in Z+, and then u(x+ε, y) = 0 for all y ∈ (y1, y0).
By Theorem 4.1, we obtain u ≡ 0 in Z ∩ [x ≥ x + ε] and then u ≡ 0 in Z ∩ [x ≥ x0 + 2ε].

Using Lemma 4.6 again and arguing as before, we deduce that u ≡ 0 in Z ′ =
(
(x0 + 4ε, +∞)×

(y0, y2)
) ∩ Ω. Finally u(x, y) ≡ 0 in

(
(x0 + 4ε, +∞)× (y1, y2)

) ∩ Ω. We deduce that

Φ(y) ≤ x0 + 4ε = Φ(y0) + 4ε ∀y ∈ (y1, y2)

Hence Φ is upper semi-continuous at y0.

5 Some Properties of the set [ψ = Q1]

In this section, we give some properties of the set [ψ = Q1]. We also show that if the total flux
of the two fluids is small enough, then the dam is not entirely wet.

27



For each point E, we shall denote by (xE , yE) the coordinates of E and by lE the intersection
of Ω with the line [y = yE ]. E∗ will denote the left endpoint of lE .

Theorem 5.1. Suppose that
_

B∗
1T is an x−graph and that the interior sphere condition is

satisfied at each point of
_

B∗
1T . If Q1 + Q2 is small enough, then there exists a point E ∈

_

B∗T

such that ψ(E) = Q1. We then have ψ ≡ Q1 in ΩE = Ω ∩ [y ≥ yE ] provided that lE∩
_

AB= ∅.

The proof of this Theorem requires three Lemmas.

Lemma 5.1. Let E ∈
_

AT such that lE∩
_

AB= ∅ and yE ≥ yB2 . If ψ = Q1 on lE, then ψ ≡ Q1

in ΩE.

Proof. The function ζ = min(Q1 − ψ, Q1)χ(ΩE) is a test function for (P ). Given that ∇ζ = 0
a.e. in [ζ = Q1] and γζx = −δζx, we obtain

−
∫

ΩE∩[ψ>0]

|∇(Q1 − ψ)|q +
∫

_
AT

(δ + γ̃)ζνx − δ1

∫
_

B1T

ζνx = 0.

Since δ + γ̃ ≥ 0 a.e. in
_

AT ∩[ζ > 0], νx ≤ 0 on
_

AT and νx ≥ 0 on
_

B1T , we deduce that Q1 − ψ
is constant on each connected component of ΩE ∩ [ψ > 0]. But ψ = Q1 on lE leads to ψ = Q1

in the connected component of ΩE ∩ [ψ > 0] that contains lE on its boundary.
By continuity, there exists h0 > yE such that ΩE ∩ [y < h0] ⊂ ΩE ∩ [ψ > 0]. Therefore ψ = Q1

in ΩE ∩ [y < h0].
Let now hmax = sup{h > yE /ψ ≡ Q1 in ΩE ∩ [y < h] } and assume that hmax < yT . Since
ψ(x, hmax) = Q1 for all x ∈ πx(ΩE ∩ [y < hmax]), we obtain as before that ψ ≡ Q1 in ΩE ∩ [y <
h1] for some h1 ∈ (hmax, yT ). But this contradicts the definition of hmax.

Lemma 5.2. Assume that E ∈ Int(
_

AT ) is such that ψ(E) = Q1 and that the interior sphere
condition is satisfied at E. Then there exists a sequence of points En ∈ Ω such that

En −→ E and ψ(En) = Q1.

Proof. If the assertion is not true, then there exists an ε > 0 such that 0 ≤ ψ < Q1 in
Bε(E) ∩ Ω = VE .

Let ζ ∈ W 1,q(Bε(E)) with ζ ≥ 0 and ζ = 0 on ∂VE ∩ Ω. Then for η > 0, ξ = min
(
ζ,

ψ

η

)
χ(VE)

is a test function for (P ) and we have
∫

VE∩[ψ≥ηζ]

|∇ψ|q−2∇ψ.∇ζ ≤ −
∫

_
AT

(γ̃ + δ)ξνx ≤ 0
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since νx ≤ 0 on
_

AT and γ̃ ∈ [−δ2,−δ] on
_

AT ∩VE ∩ [ψ > 0]. Letting η → 0, we obtain
∫

VE

|∇ψ|q−2∇ψ.∇ζ ≤ 0 ∀ζ ∈ W 1,q(Bε(E)), ζ ≥ 0, ζ = 0 on ∂VE ∩ Ω. (5.1)

Now let v be defined by




∫

VE

|∇v|q−2∇v.∇ζ = 0 ∀ζ ∈ W 1,q(VE), ζ = 0 on ∂VE ∩ Ω

v = ψ on ∂VE ∩ Ω.
(5.2)

Taking ζ = (ψ − v)+χ(VE) in (5.1) and in (5.2), and subtracting (5.2) from (5.1), we get
∫

VE

|(∇ψ|q−2∇ψ − |∇v|q−2∇v).∇(ψ − v)+ ≤ 0

from which we deduce that (ψ − v)+ = 0 in VE . In particular, we obtain v(E) ≥ ψ(E) = Q1.
But by taking (v − Q1)+ in (5.2), one gets v ≤ Q1 in VE . So v(E) = Q1 and v achieves its
maximum at E. By the strong maximum principle we would have |∇v|q−2∇v.ν > 0 at E which

contradicts |∇v|q−2∇v.ν = 0 on ∂VE∩
_

AT by definition of v.

Lemma 5.3. Assume that lB2∩
_

AB= ∅. If E ∈
_

B∗
2T is such that ψ(E) = Q1 and that the

interior sphere condition is satisfied at E, then ψ ≡ Q1 in Ω ∩ [y > yE ].

Proof. By Lemma 5.2, there exists a sequence of points En ∈ Ω such that En → E and
ψ(En) = Q1 for all n ≥ 1. It follows by Theorem 4.1 that ψ(x, yEn) = Q1 for all x > xEn .
Letting n → ∞, we get ψ(x, yE) = Q1 for all x ≥ xE . This means that ψ = Q1 on lE and the
lemma follows as a consequence of Lemma 5.1.

Proof of Theorem 5.1. First note that ψ + Q2 is a test function for (P ) and we have

∫

Ω

|∇ψ|q = −δ

∫

Ω∩[0<ψ<Q1]

ψx −
∫

_
AT∪

_
BB2

γ̃(ψ + Q2)νx

+δ

∫
_

B2B1

(ψ + Q2)νx + δ2

∫
_

B1T

(ψ + Q2)νx. (5.3)

It follows that ∫

Ω

|∇ψ|q ≤ C

(( ∫

Ω

|∇ψ|q
)1/q

+ (Q2 + Q1)

)

which leads to |∇ψ|Lq(Ω) is bounded. Using again (5.3), we get

∫

Ω

|∇ψ|q ≤ C

(∣∣∣[0 < ψ < Q1]
∣∣∣
1/q′

+ (Q2 + Q1)

)
−→ 0 as Q2 + Q1 −→ 0. (5.4)
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Let now x = σ−(y) be a parameterization of
_

B∗
1T and let η ∈ C∞(R) such that η = 0 for

y < yB1 . Take ζ = η(y) as a test function for (P ), we get by (5.4)

δ1

∫ yT

yB1

χ([0 < ψ < Q1])η(y)dy ≤
∫ yT

yB1

(γ̃ + δ2)η(y)
√

1 + σ′2−(y)dy =
∫

ΩB1

|∇ψ|q−2∇ψ.∇η −→ 0

as Q2 + Q1 → 0. It follows that the measure of the set
_

B∗
1T ∩[0 < ψ < Q1] converges to zero

when Q2 + Q1 → 0. Thus if Q2 + Q1 is small enough, there exists a point E ∈
_

B∗
1T such that

ψ(E) = Q1. We conclude by Lemma 5.1.

6 The Rectangular Case

In this section we assume that Ω = (0, a)× (0,H) (see Figure 8) i.e. the dam is rectangular.
Then we consider the following version of the problem (P )
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(P ′)





Find (ψ, γ, γ̃) ∈ W 1,q(Ω)× L∞(Ω)× L∞(
_

AA0) such that :

(i)
∫

Ω

(|∇ψ|q−2∇ψ − γex

)
.∇ζ −

∫
_

AA0

γ̃ζ = δ

∫
_

B2B1

ζ + δ2

∫
_

B1B0

ζ

∀ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB ∪
_

A0B0,

(ii) γ ∈ H(ψ) a.e. in Ω, γ̃ ∈ H(ψ) a.e. in
_

AA0,

(iii) ψ = −Q2 on
_

AB, ψ = Q1 on
_

A0B0,

where A0 = (0,H) and B0 = (a, H).

Remark 6.1. It is not difficult to verify that all properties established in the previous sections
for the problem (P ), are also true for the problem (P ′). Moreover when Q2+Q1 is small enough,
we know from Theorem 5.1 that ψ = Q1 for y ≥ H, for some H ∈ (H1,H). In this case, it is
easy to show that the two problems are equivalent.

6.1 Existence of a Monotone Solution

The main result of this section is the existence of a monotone solution with respect to y.

Theorem 6.1. There exists a solution (ψ, γ, γ̃) of (P ′) such that

∂yψ ≥ 0, ∂yγ ≤ 0 in D′(Ω) and ∂yγ̃ ≤ 0 in D′(
_

AA0).

For ε > 0, we consider the following approximated problem :

(P ′ε)





Find ψε ∈ W 1,q(Ω) such that :

(i)
∫

Ω

(|∇ψε|q−2∇ψε −Hε(ψε)ex

)∇ζ +
∫

Ω

ε|ψε|q−2ψεζ

−
∫

_
AA0

Hε(ψε)ζ = δ

∫
_

B2B1

ζ + δ2

∫
_

B1B0

ζ

∀ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB ∪
_

A0B0,

(ii) ψε = −Q2 on
_

AB, ψε = Q1 + ε on
_

A0B0 .

Then we have

Theorem 6.2. There exists a solution ψε of (P ′ε) such that ∂yψε ≥ 0 in D′(Ω).

Proof. For the existence we argue as in section 2. The only difference is the fact that we cannot

use ψε − ψ as a test function for (P ′ε) since ψε − ψ 6= 0 on
_

A0B0. To overcome this difficulty
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one can choose ρ(y)(ψε − ψ) as a test function, where ρ ∈ C∞0 (0,H). Then one can prove with
small modifications that ρ∇ψε → ρ∇ψ strongly in Lq(Ω) which leads to ∇ψε → ∇ψ strongly
in Lq

loc(Ω).
Moreover one can verify that −Q2 ≤ ψε ≤ Q1 + ε (choose (ψε + Q2)− and (ψε − Q1 − ε)+ as
test functions).

To prove the monotonicity, let η ∈ (0, ε) small enough and set ψη
ε (x, y) = ψε(x, y + η) for

(x, y) ∈ Ω0η = (0, a)× (−η, H − η). Then ψη
ε satisfies

(P ′ε
η)





∫

Ω0η

(|∇ψη
ε |q−2∇ψη

ε −Hε(ψη
ε )ex

)∇ζ +
∫

Ω0η

ε|ψη
ε |q−2ψη

ε ζ

−
∫ H−η

−η

Hε(ψη
ε (0, y))ζ(0, y) = δ

∫ h1−η

h2−η

ζ(a, y) + δ2

∫ H−η

h1−η

ζ(a, y)

∀ζ ∈ W 1,q(Ω0η), ζ(x,−η) = ζ(x,H − η) = 0 a.e. x ∈ (0, a).

We are going to show that ψε ≤ ψη
ε a.e. in Ωη = (0, a)× (0,H − η). To do this, we consider for

µ > 0, the function Tµ : R → R defined par

Tµ(s) =





s if |s| ≤ µ

µ
s

|s| if |s| > µ.

It is clear that Tµ ∈ C0,1(R) and therefore

∀u ∈ W 1,q(Ω), Tµ(u) ∈ W 1,q(Ω), with ∇(Tµou) = T ′µ(u)∇u = χ([|u| ≤ µ])∇u.

In particular ζ = Tµ

(
(ψε − ψη

ε )+
) ∈ W 1,q(Ωη). Moreover since −Q2 ≤ ψε ≤ Q1 + ε in Ω, we

have

• ζ(x, 0) = Tµ

(
(−Q2 − ψη

ε (x, 0))+
)

= Tµ(0) = 0 ∀x ∈ (0, a),

• ζ(x,H − η) = Tµ

(
(ψε(x,H − η)−Q1 − ε)+

)
= Tµ(0) = 0 ∀x ∈ (0, a).

It follows that ζ = Tµ

(
(ψε − ψη

ε )+
)
χ(Ωη) is a test function for both (P ′ε) and (P ′ε

η). Hence we
have

∫

Ωη

(|∇ψε|q−2∇ψε −Hε(ψε)ex

)∇ζ +
∫

Ωη

ε|ψε|q−2ψεζ

=
∫ H−η

0

Hε(ψε(0, y))ζ(0, y) + δ

∫ h1

h2

ζ(a, y) + δ2

∫ H−η

h1

ζ(a, y) (6.1)

∫

Ωη

(|∇ψη
ε |q−2∇ψη

ε −Hε(ψη
ε )ex

)∇ζ +
∫

Ωη

ε|ψη
ε |q−2ψη

ε ζ

=
∫ H−η

0

Hε(ψη
ε (0, y))ζ(0, y) + δ

∫ h1−η

h2−η

ζ(a, y) + δ2

∫ H−η

h1−η

ζ(a, y). (6.2)
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Subtracting (6.2) from (6.1), we get for Ωµ
η = Ωη ∩ [(ψε − ψη

ε )+ ≤ µ]

ε

∫

Ωη

(|ψε|q−2ψε − |ψη
ε |q−2ψη

ε

)
.Tµ

(
(ψε − ψη

ε )+
)

= −
∫

Ωµ
η

(|∇ψε|q−2∇ψε − |∇ψη
ε |q−2∇ψη

ε

)
.∇(ψε − ψη

ε )+

+
∫

Ωµ
η

(
Hε(ψε)−Hε(ψη

ε )
)
ex.∇(ψε − ψη

ε )+

+
∫ H−η

0

(
Hε(ψε(0, y))−Hε(ψη

ε (0, y))
)
.Tµ

(
(ψε − ψη

ε )+
)
(0, y)

+δ

∫ h1

h1−η

Tµ

(
(ψε − ψη

ε )+
)
(a, y)− δ

∫ h2

h2−η

Tµ

(
(ψε − ψη

ε )+
)
(a, y)

−δ2

∫ h1

h1−η

Tµ

(
(ψε − ψη

ε )+
)
(a, y). (6.3)

Using the monotonicity of the functions Hε, Tµ, and h → |h|q−2h, and the fact that δ−δ2 = −δ1,
one derives from (6.3)

∫

Ωη

(|ψε|q−2ψε − |ψη
ε |q−2ψη

ε

)
.Tµ

(
(ψε − ψη

ε )+
) ≤ 1

ε

∫

Ωµ
η

(
Hε(ψε)−Hε(ψη

ε )
)
ex.∇(ψε − ψη

ε )+.

(6.4)
The Lipschitz continuity of Hε, leads to

∫

Ωµ
η

(
Hε(ψε)−Hε(ψη

ε )
)
ex.∇(ψε − ψη

ε )+ ≤ δ2µ

ε

∫

Ωµ
η

|∇(ψε − ψη
ε )+|. (6.5)

Using (6.4)-(6.5), and the monotonicity of the function |u|q−2u, we obtain
∫

Ωη\Ωµ
η

(|ψε|q−2ψε − |ψη
ε |q−2ψη

ε

) ≤ δ2

ε2

∫

Ωµ
η

|∇(ψε − ψη
ε )+|. (6.6)

Letting µ → 0 in (6.6), we obtain
∫

Ωη∩[ψε>ψη
ε ]

(|ψε|q−2ψε − |ψη
ε |q−2ψη

ε

) ≤ 0,

which leads to ψε ≤ ψη
ε in Ωη and the proof is complete.

Proof of Theorem 6.1. Arguing as in section 2, one can prove that (ψε,Hε(ψε),Hε(ψε)|
_

AA0
)

converges in an appropriate way to a solution (ψ, γ, γ̃) of (P ′). Moreover one has the following
convergences
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ψε → ψ in W 1,q(Ω) (6.7)
Hε(ψε) ⇀ γ in Lq′(Ω) (6.8)

Hε(ψε) ⇀ γ̃ in Lq′(
_

AA0). (6.9)

We deduce immediately from (6.7) and the monotonicity of ψε that ∂yψ ≥ 0 in D′(Ω).
Since ∂y(Hε(ψε)) = H ′

ε(ψε)∂yψε, we obtain from (6.8)-(6.9) that ∂yγ ≤ 0 in D′(Ω) and ∂yγ̃ ≤ 0

in D′(
_

AA0).

6.2 Study of the Free Boundary Γ0,1

In this section, we propose another proof of the continuity of the upper free boundary. We also
prove that Φ is a decreasing function. First we prove that Γ0,1 is located above the line [y = h1].

Proposition 6.1. We have

ψ(x, y) < Q1 in Ω ∩ [y < h1].

Proof. Assume that there exists (x0, y0) ∈ Ω ∩ [y < h1] such that ψ(x0, y0) = Q1. By Theorem
3.1 and the monotonicity of ψ, we deduce that ψ(x, y) = Q1 in (x0, a)× (y0, H). In particular
we have ψ(x, y) = Q1 in Z = (x0, a)× (y0, h1).
It follows that γx = −∆qψ = 0 in D′(Z), and consequently γ = γ(y) in Z. Now let ζ ∈
D(Z ∪ ([x = a] ∩ ∂Z)) and take χ(Z)ζ as a test function for (P ′), we obtain

∫

Z

−γ(y)ζx =
∫ h1

max(y0,h2)

δζ.

Without loss of generality, we can assume that y0 > h2, so that we can assume that Z ⊂
(x0, a)× (h2, h1).
Integrating by part the left integral of the previous identity, we obtain γ = γ(y) = −δ in Z.
By continuity there exists (x1, y1) ∈ (x0, a) × (0, y0) such that 0 < ψ(x1, y1) < Q1. Also by
continuity there exists ε > 0 small enough such that 0 < ψ < Q1 in (x1−ε, x1+ε)×(y1−ε, y1+ε).
By monotonicity of ψ, we obtain

0 < ψ ≤ Q1 in Z ′ = Z ∪ (x1 − ε, x1 + ε)× (y1 − ε, h1).

We deduce that γ ∈ [−δ2,−δ] in Z ′. But since γ = −δ in Z and γy ≤ 0, we get

γ = −δ in Z ′.
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Hence ∆qψ = 0 in Z ′. But since ψ ≤ Q1 in Z ′ and ψ = Q1 in Z, we get by the maximum
principle that ψ = Q1 in Z ′ which is in contradiction with the fact that ψ < Q1 in (x1− ε, x1 +
ε)× (y1 − ε, y1 + ε).

The main result of this section is the following theorem.

Theorem 6.3. If [ψ = Q1]∩Ω 6= ∅, then there exists α, β with h1 ≤ α < β ≤ H, and a∗ ∈ [0, a)
such that Φ : (α, β) → (a∗, a) is continuous and decreasing. Moreover g = Φ−1 : (a∗, a) →
(α, β) is also continuous and decreasing, lim

x→a−
g(x) = α, and if we set g(x) = β for x ∈ (0, a∗],

we have
[ψ < Q1] = [y < g(x)].

We need the following lemma similar to Lemma 4.6.

Lemma 6.1. Let X0 = (x0, y0) ∈ Ω1 and r > 0 such that the ball Br(X0) is contained in
Ω+ ∩ [y > h1]. We cannot have the following situations (see Figure 8)

(i)

{
ψ = Q1 in Sv = Br(X0) ∩ [x = x0]
ψ < Q1 in Br(X0) \ Sv,

(ii)

{
ψ < Q1 in Br(X0) ∩ [x < x0]
ψ = Q1 in Br(X0) ∩ [x ≥ x0],

(iii)

{
ψ = Q1 in Br(X0) ∩ [x ≤ x0]
ψ < Q1 in Br(X0) ∩ [x > x0].

Proof. i) Since 0 < ψ < Q1 in Br(X0) \ Sv, one has γ = −δ a.e. in Br(X0). This leads to
∆qψ = −γx = 0 in D′(Br(X0)

)
. By the maximum principle, we have either ψ ≡ Q1 or ψ < Q1

in Br(X0) which both are in contradiction with the assumption i).

ψ < Q1ψ < Q1

ψ = Q1

ψ = Q1ψ < Q1 ψ < Q1ψ = Q1

Figure 8

ii) Let η ∈ (0, r/2) and consider ψη(x, y) = ψ(x, y − η) defined in Br/2(X0).

35



From the assumptions, we have γ = γ(y) in Br(X0)∩ [x > x0] and γ = −δ in Br(X0)∩ [x < x0].
Moreover by Theorem 4.1 and since ψ = Q1 in Br(X0) ∩ [x > x0], we know that ψ = Q1 in
Z = (x0, a)× (y0 − r, y0 + r) and therefore γ = γ(y) in Z.
Let ζ ∈ D(Z ∪ (∂Z ∩ [x = a])) and take χ(Z)ζ as a test function for (P ′). We obtain

−
∫

Z

γ(y)ζx =
∫ y0+r

y0−r

δ2ζ(a, y).

A simple integration by part shows that γ = −δ2 in Z.
Let now ζ ∈ D(

Br/2(X0)
)
. We have

∫

Br/2(X0)

|∇ψη|q−2∇ψη∇ζ =
∫

Br/2(x0,y0−η)

(|∇ψ|q−2∇ψ)(x, y).∇ζ(x, y + η)

=
∫

Br/2(x0,y0−η)

γ(x, y)ζx(x, y + η) =
∫

Br/2(X0)

γ(x, y − η)ζx(x, y)

=
∫

Br/2(X0)

γ(x, y)ζx since γ depends only on x

=
∫

Br/2(X0)

|∇ψ|q−2∇ψ∇ζ.

It follows that

∆qψη = ∆qψ in D′(Br/2(X0)
)
.

Since ψη ≤ ψ in Br/2(X0) and ψη = ψ = Q1 in Br/2(X0)∩ [x = x0], we deduce by the maximum
principle (see [18] Lemma 2.4) that ψη = ψ in Br/2(X0). This holds for all η ∈ (0, r/2).
Consequently ψ(x, y) = ψ(x) in Br/2(X0).
Since ∆qψ = 0 in Br/2(X0) ∩ [x < x0], we deduce that ψ = mx + n in Br/2(X0) ∩ [x < x0],
where m and n are two constants.
Now let C0 be the connected component of [0 < ψ < Q1] that contains Br/2(X0) ∩ [x < x0].
We know that ψ is analytic in C0 \ [∇ψ = 0] and that because we are in dimension 2, [∇ψ = 0]
is a discrete set (see [4]). Therefore we obtain by analytic continuation that ψ = mx + n in C0.
In particular we have ψ(x0, y0) = mx0 + n = Q1.
Finally let y1 = inf{y ∈ (0,H) / ψ(x0, y) > 0}. Then it is clear that (x0, y1) ∈ ∂C0 ∩ Ω. This
leads to ψ(x0, y1) = mx0 + n = 0 which contradicts mx0 + n = Q1.

iii) This is impossible by Theorem 4.1.

Proof of Theorem 6.3. Set

α = sup{y / ∀x ∈ (0, a) ψ(x, y) < Q1 } ≥ h1

β = inf{y / ∀x ∈ (0, a) ψ(x, y) = Q1 } ≤ H.

α is well defined and we have α ≥ h1 by Proposition 6.1.
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β is well defined since ψ(x,H) = Q1 for all x ∈ (0, a).

• We claim that α < β:

Indeed assume first that α > β. Then

i) ∃y0 ∈ (β, α) such that ∀x ∈ (0, a) ψ(x, y0) < Q1

ii) ∃y′0 ∈ (β, y0) such that ∀x ∈ (0, a) ψ(x, y′0) = Q1.

But then ii) leads by monotonicity of ψ to ψ(x, y0) = Q1 for all x ∈ (0, a), which contradicts
i). So α ≤ β.
Now assume that α = β. We distinguish two cases:
∗ α = β = H

In this case, we have ψ < Q1 in Ω which contradicts the assumption [ψ = Q1] ∩ Ω 6= ∅.
∗ α = β < H

From the definition of β, one has necessarily ψ(x, β) = Q1 for all x ∈ (0, a) and by monotonicity
of ψ, we get

ψ(x, y) = Q1 for all (x, y) ∈ (0, a)× [β,H).

One can also verify that

ψ(x, y) < Q1 for all (x, y) ∈ (0, a)× (0, α).

If we choose a small ball B centered at a point (x0, α), we will have ψ = Q1 in B+ = B∩ [y > α]
and ψ < Q1 in B− = B ∩ [y < α]. But this is in contradiction with Lemma 4.6.
Hence we have α < β.

• Φ is non-increasing in (α, β):

Let y1, y2 ∈ (α, β) such that y1 < y2. By definition, we have ψ(x, y1) = Q1 ∀x ≥ Φ(y1). By
monotonicity of ψ, we deduce that ψ(x, y) = Q1 in [Φ(y1), a)× [y1,H].
In particular, we obtain ψ(Φ(y1), y2) = Q1 which leads to Φ(y2) ≤ Φ(y1).

• Φ is decreasing in (α, β):

Let y1, y2 ∈ (α, β) such that y1 < y2. Assume that Φ(y2) = Φ(y1) = x0, with 0 < x0 < a.
Since Φ is non-increasing, we obtain Φ(y) = x0 for all y ∈ (y1, y2) which leads to ψ < Q1 in
(0, x0)× (y1, y2) and ψ = Q1 in (x0, a)× (y1, y2). This is impossible by Lemma 6.1.

• Φ is continuous at each point y ∈ (α, β):

Let y0 ∈ (α, β). From the definition of α and β, we have necessarily Φ(y0) ∈ (0, a). Since Φ is
decreasing, there exist l− = lim

y→y−0
Φ(y) and l+ = lim

y→y+
0

Φ(y).

By the monotonicity of φ, we have l− ≥ l+. Assume that l− > l+. Again by the monotonicity
of Φ, we have

0 < Φ(y) ≤ l+ ∀y > y0 and a > Φ(y) ≥ l− ∀y < y0.
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We deduce that

ψ = Q1 in [l+, a)× (y0,H) and ψ < Q1 in (0, l−)× (0, y0).

Let ε ∈ (0,min(y0,H − y0)). Then we have

ψ = Q1 in (l+, l−)× (y0, y0 + ε)
ψ < Q1 in (l+, l−)× (y0 − ε, y0).

This is in contradiction with Lemma 4.6.

• Existence of Φ−1

Since Φ is a decreasing function, there exist b∗ = lim
y→α+

Φ(y) and a∗ = lim
y→β−

Φ(y). Now Φ :

(α, β) → (a∗, b∗) is continuous and decreasing. Therefore Φ is bijective from (α, β) into (a∗, b∗).
Consequently g = Φ−1 : (a∗, b∗) → (α, β) is also continuous and decreasing.

• lim
x→a−

g(x) = α:

It is enough to prove that b∗ = a.
Assume that b∗ < a. Then from the definition and monotonicity of Φ, we have ψ = Q1 in
(b∗, a)× (α, H) and ψ < Q1 in (b∗, a)× (0, α). This is in contradiction with Lemma 4.6.

Remark 6.2. i) If [ψ = Q1] ∩ Ω = ∅, then the dam is entirely wet, and we have g(x) = H for
all x ∈ (0, a).

ii) If Q1 + Q2 is small enough, we know from Theorem 5.1, that ψ = Q1 in ΩE for some point
E between B∗

1 and A0. In this case, we have β < H and then by Lemma 4.6 we have necessarily
a∗ = 0.

6.3 Study of the Lower Free Boundary Γ1,2

The main result of this section is that Γ1,2 is represented by the graph of a continuous function.
First by using the continuity of ψ, we define two functions f1, f2 : (0, a) → R by

f1(x) = sup{ y /ψ(x, y) < 0 } and f2(x) = inf{ y /ψ(x, y) > 0 }.
Then we have

Proposition 6.2. i) f1 (resp. f2) is lower (resp. upper) semicontinuous in (0, a).
ii) [ψ(x, y) < 0] = [y < f1(x)] and [ψ(x, y) > 0] = [y > f2(x)].
iii) Γ1,2 = [ψ = 0] = [f1(x) ≤ y ≤ f2(x)].
iv) [0 < ψ(x, y) < Q1] = [f2(x) < y < g(x)] is connected.

38



Proof. The proof of i), ii) and iii) can be obtained by using the continuity and the monotonicity
of ψ. To prove iv), let (x1, y1), (x2, y2) ∈ [0 < ψ(x, y) < Q1]. By the monotonicity of ψ, we have

0 < ψ(xi, y) < Q1 for yi ≤ y < g(xi), i = 1, 2.

By Theorem 6.3, we deduce that for ε > 0 small enough, we have

0 < ψ(x, g(x)− ε) < Q1 ∀x ∈ [x1, x2].

Hence the arc {x1}× [y1, g(x1)−ε]∪{ (x, g(x)−ε) / x ∈ [x1, x2] }∪{x2}× [y2, g(x2)−ε] connects
the points (x1, y1), (x2, y2) in [0 < ψ(x, y) < Q1].

The main result of this subsection is the following theorem.

Theorem 6.4. There exists a continuous function f : (0, a) → R such that Γ1,2 = [y = f(x)].

The proof of this theorem is based on several lemmas. The first one (Lemma 6.2) is a non-
oscillation lemma. Lemma 6.3 and Lemma 6.4 are used to eliminate possible vertical segments
of the free boundary. Note that similar lemmas are proved in [18] (see also [8]).

Lemma 6.2. Let 0 < y1 < y2 < H, 0 < x1 < x2 < x3 < x4 < a. Set

li = {xi} × [y1, y2] i = 1, 2, 3, 4.

Suppose that [x1, x4] × [y1, y2] ⊂ [ψ < Q1] and that (−1)iψ > 0 on li, i = 1, 2, 3, 4 (see Figure
10). Then

y2 − y1 = O(x4 − x1) i.e. y2 − y1 → 0 when x4 − x1 → 0.

Proof. When q < 2, we have ∇ψ ∈ C0,1
loc ([ψ < 0] ∪ [0 < ψ < Q1]) , and one can use the proof

of Lemma 2.3 of [18]. When q > 2, one can work in [ψ < 0] \ S and in [0 < ψ < Q1] \ S,
where S = {(x, y) ∈ [ψ < 0] ∪ [0 < ψ < Q1] / ∇ψ(x, y) = 0}. Then one can adapt the proof in
[18].
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ψ < Q1

ψ < 0 ψ > 0 ψ < 0 ψ > 0

x1 x2 x3 x4

Figure 10

y1

y2

Lemma 6.3. Let m0 = (x0, y0) ∈ Ω, ρ > 0 such that Bρ(m0) ⊂ [ψ < Q1]. Set Sv = {x0} ×
(y0 − ρ, y0 + ρ). Then we cannot have the following situation (see Figure 11)

ψ = 0 on Sv and ψ 6= 0 in Bρ(m0) \ Sv.

Proof. i) Assume that we have ψ > 0 in Bρ(m0)\Sv. Then γ = −δ a.e. in Bρ(m0) and ∆qψ = 0
in Bρ(m0). But since we have ψ > 0 in Bρ(m0) \ Sv and ψ = 0 on Sv, we get a contradiction
with the strong maximum principle.

ii) Assume that we have ψ < 0 in Bρ(m0)\Sv. Then we have γ = 0 a.e. in Bρ(m0) and ∆qψ = 0
in Bρ(m0) which leads to a contradiction as in i).

iii) Assume that we have ψ < 0 in B−
ρ (m0) = Bρ(m0) ∩ [x < x0] and ψ > 0 in B+

ρ (m0) =
Bρ(m0) ∩ [x > x0]. Let 0 < η < ρ/2 and set ψη(x, y) = ψ(x, y − η). Since γ = 0 a.e. in
B−

ρ (m0) and γ = −δ a.e. in B+
ρ (m0), we obtain by arguing as in the proof of Lemma 6.1,

that ∆qψη = ∆qψ in Bρ/2(m0). Since moreover ψη ≤ ψ in Bρ/2(m0) and ψη = ψ = 0 in
Bρ/2(m0) ∩ [x = x0], we obtain by the strong maximum principle (see [18]) that ψη = ψ in
Bρ/2(m0). Letting η go to 0, we get ∂yψ = 0 and ψ(x, y) = θ(x) in Bρ/2(m0). Since ∆qψ = 0
in B−

ρ/2(m0), we get θ(x) = α0x+β0 in B−
ρ/2(m0). Moreover by the monotonicity of ψ, we have

ψ < 0 in D = B−
ρ/2(m0) ∪ (x0 − ρ/2, x0) × (0, y0). Since ψ is analytic in D \ S, we obtain by

unique continuation that ψ(x, y) = α0x+β0 in D. Using the boundary data of ψ at the bottom
of the dam, we get α0 = 0, β0 = −Q2 and ψ(x, y) = −Q2 in D. This contradicts the fact that
ψ(m0) = 0.
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ψ > 0ψ > 0

ψ = 0

ψ < 0ψ < 0

ψ = 0

ψ > 0ψ < 0

ψ = 0

ψ < 0ψ > 0

ψ = 0

Figure 11

iv) If ψ > 0 in B−
ρ (m0) and ψ < 0 in B+

ρ (m0), we get a contradiction as in iii).

Lemma 6.4. Assume that there exists x0 ∈ (0, a), y1, y2 ∈ (0,H) with y1 < y2 such that

ψ(x0, y) = 0 ∀y ∈ [y1, y2].

Then ψ ≡ 0 in [x0, a]× [y1, y2].

To prove Lemma 6.4, we need four lemmas

Lemma 6.5. Let V be a domain in Ω.

i) If 0 ≤ ψ < Q1 in V , then γx ≥ 0 in D′(V ).

ii) If ψ ≤ 0 in V , then γx ≤ 0 in D′(V ).

Proof. i) Let ζ ∈ D(V ), ζ ≥ 0 and η > 0. Taking min
(
ζ,

ψ

η

)
as a test function for (P ′), we

obtain, since γ = −δ a.e. in [0 < ψ < Q1]
∫

V ∩[ηζ≤ψ]

|∇ψ|q−2∇ψ.∇ζ ≤
∫

V

γ∂x

(
min

(
ζ,

ψ

η

))
= 0.

Letting η → 0 and using (3.1), we get ∂xγ ≥ 0 in D′(V ).

ii) Here it is enough to take min(ζ,
−ψ

η
) as a test function for (P ), where ζ ∈ D(V ), ζ ≥ 0 and

η > 0. Then we argue as in i).

Lemma 6.6. Let X0 = (x0, y0) ∈ Ω, ε ∈ (0, min(x0, y0), x1 ∈ (0, x0 − ε), and C = Bε(X0) ∪(
(x1, x0)× (y0 − ε, y0 + ε)

) ⊂ Ω (see Figure 12).

i) If 0 ≤ ψ < Q1 in C and ψ > 0 in B+
ε (X0) = Bε(X0) ∩ [x > x0], then ψ > 0 in C.

ii) If ψ ≤ 0 in C and ψ < 0 in B+
ε (X0), then ψ < 0 in C.

Proof. i) We deduce from Lemma 6.5 i) that γx ≥ 0 in C. Moreover since C ⊂ [0 ≤ ψ < Q1], we
have −δ ≤ γ ≤ 0 in C. But ψ > 0 in B+

ε (X0) leads to γ = −δ in B+
ε (X0). Therefore we have
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γ = −δ in C and then ∆qψ = γx = 0. Since ψ ≥ 0 in C and ψ > 0 in B+
ε (X0), we conclude by

the maximum principle that ψ > 0 in C.

C

0 ≤ ψ < Q1 ψ > 0X0•

....

....

....

....

....

....

....

....

....

....

i)

C

ψ ≤ 0 ψ < 0X0•

....

....

....

....

....

....

....

....

....

....

ii)

Figure 12

ii) We deduce from Lemma 6.5 ii) that γx ≤ 0 in C. Moreover since C ⊂ [ψ ≤ 0], we have
−δ ≤ γ ≤ 0 in C. But ψ < 0 in B−

ε (X0) leads to γ = 0 in B+
ε (X0). Therefore we have γ = 0

in C and then ∆qψ = γx = 0. Since ψ ≤ 0 in C and ψ < 0 in B+
ε (X0), we conclude by the

maximum principle that ψ < 0 in C.

Lemma 6.7. Let X0 = (x0, y0) ∈ Ω, and Bε0(X0) ⊂ [ψ < Q1] (ε0 > 0).

If ψ ≥ 0 in B+
ε0(X0) ∩ [y ≤ y0] and ψ = 0 in Bε0(X0) ∩ [y ≤ y0] ∩ [x = x0], then ψ ≡ 0 in

B+
ε0(X0) ∩ [y ≤ y0].

Proof. We argue by contradiction and assume that there exists X1 = (x1, y1) ∈ V = B+
ε0(X0)∩

[y < y0] such that ψ(X1) > 0. By continuity of ψ, there exists ε1 > 0 small enough such that
ψ > 0 in Bε1(X1) ⊂ V .
Let C = Bε1(X1)∪

(
(x0, x1)× (y1−ε1, y1 +ε1)

)
. Since C ⊂ [0 ≤ ψ < Q1] and ψ > 0 in Bε1(X1),

we deduce from Lemma 6.6 i) that ψ > 0 in C.

Consider the points P = (x0, y1 + ε1/2) and P ′ = (x0, y1 − ε1/2) (see Figure 13). Then one of
the following situations holds :

a) ∃ε2 ∈ (0, ε1/2) such that ψ ≥ 0 in B−
ε2(P ),

b) ∃ε′2 ∈ (0, ε1/2) such that ψ ≤ 0 in B−
ε′2

(P ′).

Indeed, otherwise we will have a sequence Xn = (xn, yn) → P such that xn < x0 and ψ(Xn) < 0
and a sequence X ′

n = (x′n, y′n) → P ′ such that x′n < x0 and ψ(X ′
n) > 0. But by Lemma 6.2,

this is impossible.
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Assume that a) holds. Since we have ψ ≥ 0 in Bε2(P ), we obtain by applying Lemma 6.6 i) to
each small ball centered at a point of {x1} × (yP − ε2, yP + ε2), that ψ > 0 in Bε2(P ) which
contradicts ψ = 0 on Bε2(P ) ∩ [x = x0].

- Suppose that b) holds. We distinguish two cases

1st Case: There exists ε′3 ∈ (0, ε′2) such that ψ ≡ 0 in B−
ε′3

(P ′)
In this case, we have ψ ≥ 0 in Bε′3(P

′) and we get a contradiction as before.

2nd Case: ∀η ∈ (0, ε′2), ∃Xη ∈ B−
η (P ′) such that ψ(Xη) < 0.

In this case, there exists a sequence Xn = (xn, yn) ∈ B−
ε′2

(P ′) such that Xn → P ′ and ψ(Xn) < 0.
By continuity there exists εn > 0 such that ψ < 0 in Bεn(Xn) ⊂ B−

ε′2
(P ′). Since ψ ≤ 0 in B−

ε′2
(P ′),

we deduce from Lemma 6.6 ii) that ψ < 0 in Cn =
(
Bεn(Xn) ∪ (x0 − ε′2, xn) × (yn − εn, yn +

εn)
) ∩B−

ε′2
(P ′). By monotonicity we deduce that ψ < 0 in Dn =

(
(x0 − ε′2, xn)× (y1 − ε1, yn +

εn)
) ∩ B−

ε′2
(P ′). Since for each X ∈ B−

ε′2
(P ′) ∩ [y < yP ′ ], there exists n ≥ 1 such that X ∈ Dn,

we obtain ψ < 0 in B−
ε′2

(P ′)∩ [y < yP ′ ]. We have reached a contradiction with Lemma 6.3, since
ψ > 0 in B+(P ′, ε′2).

Lemma 6.8. Let X0 = (x0, y0) ∈ Ω, and Bε(X0) ⊂ [ψ < Q1] (ε0 > 0).

If ψ ≤ 0 in B+
ε0(X0) ∩ [y ≥ y0] and ψ = 0 in Bε0(X0) ∩ [y ≥ y0] ∩ [x = x0], then ψ ≡ 0 in

B+
ε0(X0) ∩ [y ≥ y0].

Proof. We argue by contradiction and assume that there exists X1 = (x1, y1) ∈ V = B+
ε (X0) ∩

[y > y0] such that ψ(X1) < 0. By continuity of ψ, there exists ε1 > 0 small enough such that
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ψ < 0 in Bε1(X1) ⊂ V .
Let C = Bε1(X1) ∪ (x0, x1) × (y1 − ε1, y1 + ε1). Since C ⊂ [ψ ≤ 0] and ψ < 0 in Bε1(X1), we
deduce from Lemma 6.6 ii) that ψ < 0 in C.

Consider the points P = (x0, y1 + ε1/2) and P ′ = (x0, y1 − ε1/2) (see Figure 14). Then as in
the proof of Lemma 6.7, one of the following situations holds

a) ∃ε2 ∈ (0, ε1/2) such that ψ ≥ 0 in B−
ε2(P ),

b) ∃ε′2 ∈ (0, ε1/2) such that ψ ≤ 0 in B−
ε′2

(P ′).
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Figure 14

Assume that b) holds. Since ψ ≤ 0 in Bε′2(P
′), we obtain by applying Lemma 6.6 ii) to each

small ball centered at a point of {x1} × (yP ′ − ε′2, yP ′ + ε′2), that ψ < 0 in Bε′2(P
′) which

contradicts ψ = 0 on Bε′2(P
′) ∩ [x = x0].

- Suppose that a) holds. We distinguish two cases

1st Case: There exists ε3 ∈ (0, ε2), such that ψ ≡ 0 in B−
ε3(P ).

In this case, we have ψ ≤ 0 in Bε3(P ) and we get a contradiction as above.

2nd Case: ∀η ∈ (0, ε2), ∃Xη ∈ B−
η (P ) such that ψ(Xη) > 0.

So there exists a sequence (Xn)n in B−
ε2(P ) such that ψ(Xn) > 0 for all n ≥ 1 and Xn → P .

Using the monotonicity and the continuity of ψ, one can prove as in the proof of Lemma 6.7
that ψ > 0 in B−

ε2(P ) ∩ [y > yP ] which is in contradiction with Lemma 6.3 since ψ < 0 in
B+

ε2(P ) and ψ = 0 on B+
ε2(P ) ∩ [x = x0].
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Proof of Lemma 6.4. First of all, we deduce from the continuity and the monotonicity of ψ that
there exists ε0 ∈ (0, y2 − y1) such that (x0 − ε0, x0 + ε0)× (y1 − ε0, y2 + ε0) ⊂ [ψ < Q1].
Let T1 = (x0, y1) and T2 = (x0, y2). Arguing as in the proof of Lemma 6.7, one can prove that
one of the following situations holds

i) ∃ε ∈ (0, ε0) such that ψ ≥ 0 in B+
ε (T2),

ii) ∃ε ∈ (0, ε0) such that ψ ≤ 0 in B+
ε (T1).

We claim that
ψ ≡ 0 in (x0, x0 + ε)× (y1, y2). (6.10)

Indeed let us assume that i) holds. Then by Lemma 6.7, we have ψ ≡ 0 in B+
ε (T2) ∩ [y ≤ y2].

By the monotonicity of ψ, we obtain ψ ≤ 0 in (x0, x0 + ε) × (0, y2). Applying Lemma 6.8, we
obtain ψ ≡ 0 in B+

ε (T1) ∩ [y ≥ y1]. We conclude by the monotonicity of ψ that (6.10) holds.

Now assume that ii) holds. Then by Lemma 6.8, we have ψ ≡ 0 in B+
ε (T1) ∩ [y ≥ y1]. By the

monotonicity of ψ, we obtain ψ ≥ 0 in (x0, x0 + ε) × (y1,H). Applying Lemma 6.7, we obtain
ψ ≡ 0 in B+

ε (T2) ∩ [y ≤ y2].
We conclude by the monotonicity of ψ that (6.10) holds.

It remains to prove that ψ ≡ 0 in (x0, a)× [y1, y2].
Set I = {ε ∈ (0, a−x0) such that ψ ≡ 0 in (x0, x0 + ε)× [y1, y2] }. I is a bounded nonempty set
because of (6.10). Let ρ = sup I. We have 0 < ρ ≤ a − x0 and it is not difficult to verify that
ψ ≡ 0 in (x0, x0 + ρ)× [y1, y2].

Now assume that ρ < a − x0. So x0 + ρ < a. Arguing as above, there exists η1 > 0 such that
we have ψ ≡ 0 in (x0 + ρ, x0 + ρ + η1)× [y1, y2]. Then ψ ≡ 0 in (x0, x0 + ρ + η1)× [y1, y2] which
contradicts ρ = sup I. Thus ρ = a− x0 and ψ ≡ 0 in (x0, a)× [y1, y2].

Lemma 6.9. Assume that ψ is constant in Z = (x0, a)× (y1, y2) ⊂ Ω. Then we have :

i) If y2 ≤ h2, then γ ≡ 0 in Z.

ii) If h2 < y1 < y2 ≤ h1, then γ ≡ −δ in Z.

iii) If y1 > h1, then γ ≡ −δ2 in Z.

Proof. Since ψ is constant in Z, we deduce from (3.1) that γ = γ(y) in Z.

i) Assume that y2 ≤ h2 and let ζ ∈ C∞(Z) such that ζ = 0 on ∂Z ∩ Ω. Using χ(Z)ζ as a test

function for (P ′), we obtain
∫

Z

−γ(y)ζx = 0 which leads to
∫ y2

y1

γ(y)ζ(a, y)dy = 0. Therefore

γ = γ(y) ≡ 0 in Z.

In the same way we prove ii) and iii).

Proof of Theorem 6.4. Assume that there exists x0 ∈ (0, a) such that f1(x0) < f2(x0). We claim
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that

i) ∀x ∈ [x0, a) f1(x) < f2(x)
ii) f1 is non-increasing in [x0, a)
iii) f2 is non-decreasing in [x0, a).

Indeed, we have
i)

ψ(x0, y) = 0 ∀y ∈ [f1(x0), f2(x0)].

From Lemma 6.4, we deduce that ψ ≡ 0 in (x0, a)× [f1(x0), f2(x0)]. In particular, we have for
x ≥ x0, f1(x) ≤ f1(x0) and f2(x) ≥ f2(x0). Hence f1(x) < f2(x).

ii), iii) Let x1, x2 ∈ [x0, a) with x1 < x2. By i) and Lemma 6.4, we have ψ ≡ 0 in [x1, a) ×
[f1(x1), f2(x1)]. In particular we have ψ(x2, f1(x1)) = 0 which leads to f1(x2) ≤ f1(x1).

We also have ψ(x2, f2(x1)) = 0 which leads to f2(x1) ≤ f2(x2).

So l1 = lim
x→a−

f1(x) and l2 = lim
x→a−

f2(x) exist with l1 ≤ l2. Moreover since l1 ≤ f1(x) < f2(x) ≤
l2 for all x ∈ [x0, a), we deduce that l1 < l2. We will distinguish three cases:

a) h2 < l2 ≤ h1 :

Let ε > 0 small enough such that l2 − ε > max(h2, l1 + ε). There exists η > 0 such that
{

l1 ≤ f1(x) ≤ l1 + ε < l2 − ε ≤ f2(x) ≤ l2 ∀x ∈ (a− η, a)
ψ < Q1 in Zη = (a− η, a)× (l2 − ε, l2).

Since ψ ≡ 0 in Zη ∩ [y < f2(x)] and h2 < l2 − ε < l2 ≤ h1, we have by Lemma 6.9 γ = −δ in
Zη ∩ [y < f2(x)].
Now since 0 ≤ ψ < Q1 in Zη, we deduce from Lemma 6.5 i) that γx ≥ 0 in Zη. Moreover
−δ ≤ γ ≤ 0 in Zη. Hence γ = −δ in Zη. But this leads to ∆qψ = 0 in Zη. By the maximum
principle, we obtain ψ ≡ 0 in Zη or ψ > 0 in Zη which is impossible.

b) l2 ≤ h2 :
Let ε > 0 small enough such that l1 + ε < l2 − ε. There exists η > 0 such that

l1 ≤ f1(x) ≤ l1 + ε < l2 − ε ≤ f2(x) ≤ l2 ∀x ∈ (a− η, a).

Let Zη = (a− η, a)× (l1, l1 + ε). Since ψ ≡ 0 in Zη ∩ [y > f1(x)] and l1 + ε < l2 ≤ h2, we have
by Lemma 6.9, γ = 0 in Zη ∩ [y > f1(x)].
Now since ψ ≤ 0 in Zη, we deduce from Lemma 6.5 ii) that γx ≤ 0 in Zη. Moreover −δ ≤ γ ≤ 0
in Zη. Hence γ = 0 in Zη. But this leads to ∆qψ = 0 in Zη and we get a contradiction with the
maximum principle.

c) l2 > h1 :
Let ε > 0 small enough such that l2 − ε > h1 and l1 + ε < l2 − ε. There exists η > 0 such that
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{
l1 ≤ f1(x) ≤ l1 + ε < l2 − ε ≤ f2(x) ≤ l2 ∀x ∈ (a− η, a)

ψ < Q1 in Zη = (a− η, a)× (l2 − ε, l2).

Arguing as in i), we obtain γ = −δ2 in Zη ∩ [y < f2(x)] which leads to a contradiction with
γy ≤ 0 and γ = −δ in Zη ∩ [y > f2(x)].

Hence f1(x0) = f2(x0) for all x0 ∈ (0, a).

Proposition 6.3. lim
x→0+

f(x) = f(0+) and lim
x→a−

f(x) = f(a−) exist and belong to (0,H).

Proof. i) Let l1 = lim inf
x→0+

f(x) and l2 = lim sup
x→0+

f(x). We have l1 ≤ l2 and there exists in (0, a)

two sequences (x1
n) and (x2

n) such that

lim
n→+∞

xi
n = 0 and lim

n→+∞
f(xi

n) = li, i = 1, 2.

Since ψ ∈ C0,α(Ω̄), we have ψ(0, li) = lim
n→+∞

ψ(xi
n, f(xi

n)) = 0. So li ∈ (0,H).

Assume that l1 < l2 and let ε ∈ (0, (l2 − l1)/2). There exists n0 ≥ 1 such that ∀n ≥ n0

f(x1
n) < l1 + ε and f(x2

n) > l2 − ε . We get ψ(x1
n0

, y) > 0 for y > l1 + ε > f(x1
n0

) and
ψ(x2

n1
, y) < 0 for y < l2 − ε < f(x2

n1
), where n1 > n0 and x2

n1
< x1

n0
.

Let n3 > n2 > n1 such that x2
n3

< x1
n2

< x2
n1

< x1
n0

. Then we have ψ(x1
n2

, y) > 0 for
y > l1 + ε > f(x1

n2
) and ψ(x2

n3
, y) < 0 for y < l2 − ε < f(x2

n3
).

This is a contradiction with Lemma 6.2. Hence l1 = l2.

ii) In the same way we prove that lim
x→a−

f(x) = f(a−) exists and belongs to (0,H).

Corollary 6.1. Let (ψ, γ, γ̃) be a solution of the Problem (P ′). Then we have

i) γ = −δχ([0 < ψ < Q1])− δ2χ([ψ = Q1]) a.e. in Ω.

ii) γ̃ = −δχ([f(0−) < y < g(0−)])− δ2χ([y > g(0−)]) a.e. in (0,H).

6.4 Comparison and Uniqueness of the solution

In this last section, we assume that q = 2. We know from [6] that there exists a monotone
solution (ψ, γ, γ̃) in the sense that ψx ≥ 0, ψy ≥ 0, γx ≤ 0, γy ≤ 0 in D′(Ω). It is then not difficult
to establish that the function f(x) describing the lower free boundary is a decreasing function
and therefore a one-to-one function from (0, a) to (f(0+), f(a−)). We shall prove here that such
monotone solutions of the problem (P ′) decrease with respect to Q2, and as a consequence, we
obtain the uniqueness of this type of solution. Let us denote the problem corresponding to Q2,
by (P ′(Q2)). Then we have the following comparison result
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Theorem 6.5. Assume that q = 2 and let (ψ1, γ1, γ̃1) and (ψ2, γ2, γ̃2) be two monotone solutions
of the problems (P ′(Q1

2)) and (P ′(Q2
2)) respectively. If Q1

2 ≥ Q2
2, then we have ψ1 ≤ ψ2, γ1 ≥ γ2

a.e. in Ω, and γ̃1 ≥ γ̃2 a.e. in
_

AA0.

To prove Theorem 6.5, we need three Lemmas.

Lemma 6.10. Let (ψ, γ, γ̃) be a monotone solution of (P ′). Then we have

∫

Ω

(|∇ψ|q−2∇ψ − γex

)
.∇ζ −

∫
_

AA0

γ̃ζ ≥ δ

∫
_

B2B1

ζ + δ2

∫
_

B1B0

ζ

∀ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB, ζ ≥ 0 on
_

A0B0 .

Proof. Let ζ ∈ W 1,q(Ω), ζ = 0 on
_

AB, ζ ≥ 0 on
_

A0B0 . Then for ε > 0, min
(
ζ,

H − y

ε

)
is a

test function for (P ′) and we have
∫

Ω

(|∇ψ|q−2∇ψ − γex

)
.∇

(
min

(
ζ,

H − y

ε

))
−

∫
_

AA0

γ̃ min
(
ζ,

H − y

ε

)
=

= δ

∫
_

B2B1

min
(
ζ,

H − y

ε

)
+ δ2

∫
_

B1B0

min
(
ζ,

H − y

ε

)

which can be written since ψy ≥ 0 a.e. in Ω
∫

[H−y≥εζ]

(|∇ψ|q−2∇ψ − γex

)
.∇ζ −

∫
_

AA0

γ̃ min
(
ζ,

H − y

ε

)
=

=
1
ε

∫

[H−y<εζ]

|∇ψ|q−2ψy + δ

∫
_

B2B1

min
(
ζ,

H − y

ε

)
+ δ2

∫
_

B1B0

min
(
ζ,

H − y

ε

)

≥ δ

∫
_

B2B1

min
(
ζ,

H − y

ε

)
+ δ2

∫
_

B1B0

min
(
ζ,

H − y

ε

)

Letting ε → 0, we obtain
∫

Ω

(|∇ψ|q−2∇ψ − γex

)
.∇ζ −

∫
_

AA0

γ̃ζ ≥ δ

∫
_

B2B1

ζ + δ2

∫
_

B1B0

ζ.

Lemma 6.11. Under the assumptions of Theorem 6.5, we have

T (ζ) =
∫

Ω

(∇(ψ1 − ψm)− (γ1 − γM )ex

)
.∇ζ ≤ δ1

∫

I

ζ(f2(y), y)dy ∀ζ ∈ D(R2), ζ ≥ 0,
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where ψm = min(ψ1, ψ2), γM = max(γ1, γ2) and I = {y ∈ (0,H) / max(f−1
2 (y), φ1(y)) <

φ2(y) }.

Proof. Let ζ ∈ D(R2), ζ ≥ 0 and ε > 0. Then if we take ξ = min
(
ζ,

ψ1 − ψm

ε

)
as a test function

in (P ′(Qi
2)), i = 1, 2 and subtract the two equations from one another, we obtain

∫

Ω

(∇(ψ1 − ψ2)− (γ1 − γ2)ex

)
.∇ξ =

∫
_

AA0

(γ̃1 − γ̃2)ξ.

Since γ̃i ∈ H(ψi) and −H is a maximal monotone graph, we have (γ̃1 − γ̃2).(ψ1 − ψ2) ≤ 0 a.e.

in
_

AA0 . Then
∫

Ω

(∇(ψ1 − ψm)− (γ1 − γM )ex

)
.∇ξ ≤ 0

which we can write as
∫

Ω∩[ψ1−ψm≥εζ]

∇(ψ1 − ψm).∇ζ −
∫

Ω

(γ1 − γM )ex.∇ζ

≤ −
∫

Ω

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= I1ε + I2ε + I3ε + I4ε + I5ε + I6ε. (6.11)

In [ψm = Q1], we have ψ1 = ψ2 = Q1 and then γ1 = γ2 = γM = −δ2 in [ψm = Q1]. So

I1ε = −
∫

[ψm=Q1]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= 0. (6.12)

In [ψ1 < 0], one has γ1 = 0 and then γM = max(γ1, γ2) = 0 in [ψ1 < 0]. So

I2ε = −
∫

[ψ1<0]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= 0. (6.13)

In [ψm < 0] ∩ [0 < ψ1 < Q1], one has γ1 = −δ, ψm = min(ψ1, ψ2) = ψ2 < 0, and then
γM = max(γ1, γ2) = 0 in [ψm < 0] ∩ [0 < ψ1 < Q1]. So

I3ε = −
∫

[ψm<0]∩[0<ψ1<Q1]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= δ

∫

[ψ2<0]∩[0<ψ1<Q1]

(
ζ − ψ1 − ψ2

ε

)+

x

= δ

∫

I1

( ∫ min(φ1(y),f−1
2 (y))

f−1
1 (y)

(
ζ − ψ1 − ψ2

ε

)+

x
dx

)
dy

≤ δ

∫

I1

(
ζ − ψ1 − ψ2

ε

)+

(min(φ1(y), f−1
2 (y)), y)dy

where I1 = {y ∈ (0, H) / f−1
1 (y) < min(φ1(y), f−1

2 (y)) }.
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Note that for y ∈ I1, we have ψ1(min(φ1(y), f−1
2 (y)), y) > 0 and ψ2(min(φ1(y), f−1

2 (y)), y) ≤ 0,
and then (ψ1 − ψ2)(min(φ1(y), f−1

2 (y)), y) > 0. This leads to

lim sup
ε→0

I3ε ≤ 0. (6.14)

In [ψm < 0] ∩ [ψ1 = Q1], one has γ1 = −δ2, ψm = ψ2 < 0, γ2 = 0, and then γM = 0 in
[ψm < 0] ∩ [ψ1 = Q1]. So

I4ε = −
∫

[ψm<0]∩[ψ1=Q1]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= δ2

∫

[ψm<0]∩[ψ1=Q1]

(
ζ − ψ1 − ψm

ε

)+

x

= δ2

∫

I2

( ∫ f−1
2 (y)

φ1(y)

(
ζ − Q1 − ψ2

ε

)+

x
dx

)
dy ≤ δ2

∫

I2

(
ζ − Q1

ε

)+

(f−1
2 (y), y)dy

where I2 = {y ∈ (0, H) / φ1(y) < f−1
2 (y) }.

It is then clear that

lim sup
ε→0

I4ε ≤ 0. (6.15)

In [0 < ψm < Q1] ∩ [0 < ψ1 < Q1], one has γ1 = −δ. Since ψ2 ≥ ψm > 0, γ2 ∈ [−δ2,−δ], and
so γM = max(γ1, γ2) = −δ in [0 < ψm < Q1] ∩ [0 < ψ1 < Q1]. Then

I5ε = −
∫

[0<ψm<Q1]∩[0<ψ1<Q1]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x
= 0. (6.16)

In [0 < ψm < Q1] ∩ [ψ1 = Q1], one has γ1 = −δ2, ψm = ψ2 ∈ (0, Q1), γ2 = −δ, and then
γM = −δ in [0 < ψm < Q1] ∩ [ψ1 = Q1]. So

I6ε = −
∫

[0<ψm<Q1]∩[ψ1=Q1]

(γ1 − γM )
(
ζ − ψ1 − ψm

ε

)+

x

= δ1

∫

[0<ψm<Q1]∩[ψ1=Q1]

(
ζ − ψ1 − ψm

ε

)+

x

= δ1

∫

I3

( ∫ φ2(y)

max(f−1
2 (y),φ1(y))

(
ζ − Q1 − ψ2

ε

)+

x
dx

)
dy

≤ δ1

∫

I3

ζ(φ2(y), y)dy

where I3 = {y ∈ (0, H) / max(f−1
2 (y), φ1(y)) < φ2(y) }.

Then we have

lim sup
ε→0

I6ε ≤ δ1

∫

I3

ζ(φ2(y), y)dy. (6.17)
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Finally, we get from (6.11)-(6.17) that

T (ζ) ≤ δ1

∫

I3

ζ(φ2(y), y)dy.

Lemma 6.12. Under the assumptions of Theorem 6.5, we have

T (ζ) =
∫

Ω

(∇(ψ1 − ψm)− (γ1 − γM )ex

)
.∇ζ = 0 ∀ζ ∈ H1(Ω). (6.18)

Proof. Let ζ ∈ D(R2), ζ ≥ 0 and ε > 0. Let αε(x, y) =
(
1− d((x, y),Λ)

ε

)+

, with Λ = [ψ1 < Q1].

We have 1− αε = 0 in Λ̄ and T (ζ) = T (αεζ) + T ((1− αε)ζ). By the previous lemma which is
also true for ζ ∈ H1(Ω) ∩ C0(Ω̄), ζ ≥ 0, we have

T (αεζ) ≤ δ1

∫

I3

(αεζ)(φ2(y), y)dy.

Note that Λ = [x < φ1(y)], and for y ∈ I3, we have φ2(y) > max(f−1
2 (y), φ1(y)) ≥ φ1(y). It

follows that for y ∈ I3, we have (φ2(y), y) /∈ Λ̄ and then

lim sup
ε→0

T (αεζ) ≤ 0. (6.19)

Moreover, we have by Lemma 6.10 applied to (ψ2, γ, γ̃2) and (1− αε)ζ

T ((1− αε)ζ) =
∫

Ω

(∇ψ1 − γ1ex

)
.∇((1− αε)ζ)−

∫

Ω

(∇ψm − γMex

)
.∇((1− αε)ζ)

= δ2

∫

Ω

((1− αε)ζ)x −
∫

Ω

(∇ψ2 − γ2ex

)
.∇((1− αε)ζ)

≤ δ2

∫

∂Ω

(1− αε)ζνx −
∫

_
AA0

γ̃2(1− αε)ζ

−δ

∫
_

B2B1

(1− αε)ζ − δ2

∫
_

B1B0

(1− αε)ζ

= −
∫

_
AA0

(γ̃2 + δ2)(1− αε)ζ ≤ 0 (6.20)

since γ̃2 ≥ −δ2 a.e. in
_

AA0 and ψ1 < Q1 on
_

BB1.
It follows from (6.19)-(6.20) that T (ζ) ≤ 0.
Now let ζ ∈ D(IR2), ζ ≥ 0. Let M = sup

IR2
ζ and ξ ∈ D(IR2) such that ξ ≥ 0 and ξ = 1 in Ω̄.

Since ξ.(M − ζ) ∈ D(IR2) and ξ.(M − ζ) ≥ 0, we obtain T (ξ.(M − ζ)) ≤ 0 which can be written
T (ζ) ≥ 0. So we obtain T (ζ) = 0 ∀ζ ∈ D(IR2), ζ ≥ 0 and by density for ζ ≥ 0 in H1(Ω).
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If ζ ∈ H1(Ω), we write ζ = ζ+ − ζ−. Then T (ζ) = T (ζ+)− T (ζ−) = 0.

Proof of Theorem 6.5. Let (ψ1, γ1, γ̃1) and (ψ2, γ,γ̃2) be two solutions of the Problems (P ′(Q2,1))
and (P ′(Q2,2)) with Q2,1 ≥ Q2,2. Writing (6.18) for ζ = y2

2 , we get
∫

Ω

y(ψ1 − ψm)y = 0.

Integrating by part and using the fact that ψ1 − ψm = 0 for y = 0 and for y = H, we obtain
∫

Ω

(ψ1 − ψm) = 0.

Since ψ1 − ψm ≥ 0 in Ω, we obtain ψ1 = ψm in Ω. This means that ψ1 ≤ ψ2 in Ω. As a

consequence, we obtain by Corollary 6.1 that γ1 ≥ γ2 in Ω and γ̃1 ≥ γ̃2 in
_

AA0.
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