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Abstract

We consider the problem of two fluids flow through a porous medium governed by a
nonlinear law. We prove the existence of a weak solution, establish the local Lipschitz
continuity of this solution in the zone above the lower fluid, and prove the continuity of
the upper free boundary. In the rectangular case, we prove the existence of a monotone
solution with respect to the vertical variable, and the continuity of the lower free boundary.
Finally, we prove the uniqueness of a monotone solution with respect to z and y, when the
dam is rectangular and the flow obeying to the linear Darcy law.

AMS Subject Classifications: 35R35, 76505, 76Txx.

1 Introduction

The dam problem with one fluid has been studied by many authors (see [9], [10], [11], [12],
(13], [1], [2], [3], [16], [7], [17], [27], [19], etc.) However to the best of our knowledge, the two-
fluid dam problem has been considered only in [6] in the case where the flow is governed by
the well known linear Darcy law. The authors established the existence of a weak solution,
which is locally Lipschitz continuous, and that the upper free boundary is an analytic curve
x = k(y). In the rectangular case, they proved the existence of a monotone solution with respect
to both variables x and y. Finally they proved that the lower free boundary is a continuously
differentiable curve y = ¢(z).

In this paper, we would like to reconsider the model studied by Alt-Caffarelli-Friedman, assum-
ing the flow governed by a nonlinear Darcy’s law. The dam is represented by the open set {2
(see Figure 1)

Q={(z.y) €R? [z € (0.0), 5_(v) <y <s:(0)},

where s_ and s, are C! functions defined on [0,a] such that s_(z) < si(x) Vz € (0,a),
$_(0) = 54(0), and s_(a) = s4(a). We denote by T the point of I of coordinates (xq, s+ (xo))



Figure 1
such that sy (zg) = m[%x] s4(x), and
x€|0,a
s'(x) >0 forallze (0,z0) and & (x) <0 forall z € (x0,a). (1.1)

The dam is supplied by two reservoirs. The left (resp. right) one contains two fluids at levels
Hy and Hs (resp. hy and hg) with 0 < he < Ho < Hy and he < hy < Hy < s4(xo).
We assume the flow through the porous medium obeying to the following nonlinear Darcy’s law

lv|" v = —kV¢, m >0 (1.2)

where v is the fluid velocity, k is the permeability of the medium which we assume constant
and equal to 1, ¢ = p + yy is the piezometric head, p is the fluids pressure, and =y is given by

v = 51X(Ql) + 52)((92), with 51, 09 >0

where &; (i = 1,2) represents the specific weight of the i*" fluid occupying the domain Q; of Q,
X(E) denotes the characteristic function of the set E. We shall also denote the restriction of a
function f to £; by f;,.



The lower liquid is assumed to be the heavier one, which means that 6 = 9 — d§; > 0. Moreover
the flow is assumed to be incompressible, that is

div(vy) =0 in Q. (1.3)

The bottom AB of the dam is assumed to be impervious. So if v = (v, ) is the outward unit
normal vector to 02, we have

ve-v=0 on AB. (1.4)

Using the continuity of the pressure across AA; and BBs, and the fact that p+ J;y is constant
in the i*" reservoir, we obtain

¢ =c on AA; and on BB;. (1.5)
Assuming there is overflow on B101, we obtain by taking into account (1.2)

¢ =01y and — % >0 on B;\Ol . (1.6)

Since p 4+ d1y = d1h1 to the right of B;OQ7 and ¢ = p 4 d2y to the left of B;OQ, we obtain

¢ = ((52 — (51)y + 61 on By0s. (17)

We also assume that we have overflow on ByOy. Therefore we obtain by taking into account
(1.2)

“9% 50 on B0, (1.8)

ov

Since p + d1y = d1hy to the right of O;Bl, and ¢ = p + 61y to the left of O;Bl, we obtain

6=56h on OB . (1.9)

On the upper free boundary I'g 1, separating €; from the dry region, we have

p=20 and v.-r=0 on T'g1 (1.10)
that is
¢ =01y and ? =0 on Ig;. (1.11)
v

The continuity of the pressure at the lower free boundary I'; 5 separating €2; from €25, and the
immiscibility of the two fluids reads

p1 = Po and vicv=ve-v=20 on I'iq (1.12)

which is equivalent to



0 0
$1—¢2=(61—02)y  and % = % =0 on Ty,. (1.13)

Assuming that ; (i = 1,2) is a simply connected domain, we deduce (see [4]) that there exist

1
functions v¥; : Q; — R such that forg=m+1,r=—+1, m >0
m

Aghi=0 in Q. (1.14)
v = Rott); = (%ﬁi,f%ﬁi) = —|Vé:i""2V¢;,  in Q. (1.15)

Taking into account (1.15), we have for 7 = (-1, ;) the tangent unit vector to 02

oy 200;

_ 8(151 5”(/)1 -
. = — = — T 27 . e = — Nis
Vi.T oy |V, 5 and ViV = oo |V il % (1.16)
Using (1.16) and the fact that |Vi);| = |[Vé;|"~!, we obtain
o 0Y; _ 0¢;
Ve, |92 - . 1.1
| w74| 81/ 67' ( 7)

From (1.12) and (1.16 ), we deduce that ; are constant on I'1 2. We normalize 1); by choosing
the constant to be zero, which determines v; uniquely. Setting b = x(Q1)1¥1 + x(Q2)1), we get

=0 on I'is. (1.18)
By (1.11), we have
0 0
£ = 61% = (511/30 on F0,1~
Using (1.17), we obtain
V|7 2Vpv = d1v,  on Tgg. (1.19)
Now from the first formula in (1.13), we obtain
0 0 0
% - % = ((51 - 62)% = ((51 - (52)Vw on 1_‘1,2
which can be written by (1.17)
‘V’lﬁl‘q_val.V - |V¢2|q_2Vz/12.u = ((51 - 52)1/1; on FLQ. (120)
Using (1.4) and (1.16), we deduce that
Os =0 on AB.
or



—~

This means that 92 = co is constant along AB. Similarly we get 11 = ¢ is constant along I'g ;.

From (1.5) and (1.9), we know that ¢ is constant and therefore % =0 along AA; U BBy
T
U O2B;. It follows from (1.17) that

VY9 2Vr =0  on  AA; UBBy U OyB, . (1.21)
Differentiating the first formula in (1.6), we obtain
0 0 -
Kf = (51877y_ = (511/93 on BlOl .
Using (1.16)-(1.17) and (1.6), we deduce that
%w >0 and |Vep|72Vpv = §1v,  on B,0; . (1.22)
.
Similarly we obtain
5’¢) q72 o -
B >0 and V|17 “Vp.v = (02 — 61)vy on B30;. (1.23)

Finally, we claim that ¢; > 0. Indeed assume that ¢; < 0 and let m = r%in .
1

First due to (1.14), (1.22) and the maximum principle(see [30]), we have ) > m in ;.

Next due to (1.14), (1.21) and the maximum principle(see [30]), 1 cannot achieve its minimum

on A;Al U O;Bl. Moreover since 1 = 0 on A;Og, 1 < 0 on A:Ol and g—d) >0 on B:Ol, P
T

0
achieves necessarily its minimum at B;. But this leads by the maximum principle to 871#(31) <
0, which is in contradiction with (1.21)-(1.22).

Arguing as above, one can verify that ¢y < 0. Thus there exists 1, Q2 > 0 such that

P =—Q9 on AAB and P = Q1 on I'p;.

Hence we obtain the following strong formulation

Agp=0 in  Q,i=12

Y =-Q2 on AAB

IVy|972Vr =0 on A/;ll u B%g u O;Bl
VY12 Vv = 611, and g—i} >0 on B:Ol

VU = (5~ 0ve and 9220 on B0,

|VY|172Vpv = 611, and = Q1 " on Tgy

[Vip1 |72V ep1 v — [Vipo| T2V epg.v = (81 — 02)ve

and =0 on Tyo.



IVi|12Vapr = 0
N\

~ |VY[I2 VY =0

P =cy

Figure 2

Using the strong formulation and arguing as in [6], we obtain the following weak formulation

Find (1,7,7) € Wh(Q) x L®(Q) x L®(AT U BBs) such that :
O [ (oo —ne)ver [ Gon =5 nrnf o

Q ATUBB-> . BB BT
V¢ e WH(Q), (=0 on AB,

(i) yeHE) aein Q  AFeH®W) aein AT U BB,
(ii1) Y =—-Q2 on AB,

where H is the monotone graph



0 if t<0

-6 if 0<t< @
[—5,0] if  t=0

[0, 6] if =@

In the next section, we prove the existence of a solution (¢, ,7) of the problem (P). In section
3, we prove that v is locally Lipschitz continuous above the lower free boundary. In section
4, we prove that the upper free boundary is represented by a curve of a continuous function
O (y). In section 5, we give some properties of the set ) = Q1. In section 6, we specialize in the
rectangular case, and show the existence of a monotone solution with respect to y, and then
prove that the lower free boundary is represented by a curve of a continuous function f(x).
Finally in section 7, we prove the uniqueness of a monotone solution with respect to = and y,
when the dam is rectangular and the Darcy law is linear.

2 Existence of a solution

The first step in the existence proof of a solution consists on approximating the problem (P) by a
family of problems (P). Indeed for € > 0 small enough, we consider the following approximated
problem:

Find ¢ € Wh4(Q) such that :
) / (V0T 2V = Ho($)e) VE + / el
Q Q

(P.) + /AA H@)C =6 vt b / e

TUBB> Bs B, BlT/_\
V¢ e WH(Q), (=0 on AB

(i) e=-Qs on AB

where
0 if t<0
—ét if 0<t<e
H.(t) = —66 if e<t< @ (2.1)
—%(t—Ql)—é if  Qi<t<Qite
—02 if t> Q1 +e

Then we have



Theorem 2.1. There exists a solution 1. of (P).

Proof. Let V = {v € WH4(Q)/ v=0 on A/\B} and K = {v € WH4(Q)/ v=—Q2 on AAB}.
Consider the operator A defined by : u € K —— A(u) € (W14(Q))" with

Afw) : WHI(0) — R, (< Au), ¢ > = / [Vul" V.V + elul?uC,
Q

and the map f, : WH4(Q) — R, defined by

(— < fu,(>= /QHE(U)@ — /A”TUBT% H (v)Cv, + 6/32”51 CUy + 02 /BTT (V.

One can check without difficulty that A is continuous, coercive, monotone and that f, €
(WhHa(Q))".
Then for each v € W14(Q), there exists a unique solution . of the variational problem

Ye €K, <A@, (>=<f,(>  V(eV. (2.2)
This defines a map F. : Wh4(Q) — K, v — .. Moreover we have

F.(W%(Q)) C B(0, R), where B(0, R) is the closed ball of W19(Q) of center 0 and radius R
independent of €.

Indeed 9. + Q2 € V is a suitable test function for (2.2). So

a4 ¢ q_ _ € q—2
/§Z‘V¢E‘ + |1/}6| ,/Q Q2|1/}6| we'i_/QHe(U)wez
—/ﬁ H.(0)We+ Qu)re+5 [ <we+cz2>um+62/ﬁ (et Qo)ve.  (23)

ATUBB> By By BT

Note that for A = (¢/)}/?', we have by Young’s inequality

IA

Q 0 3

e [ (%)
/Qewe\u%(%)qem\. (2.4)

Using the fact that H, is uniformly bounded, we obtain by Holder’s inequality

[ | < [ )" (2.5)

Using the continuity of the trace operator, and Poincaré’s inequality, we obtain




(1/15 + QZ Vg

: ’/ (Ve + Q2)vz

<c( [ wur)

BgBl

| /A o )t Qo]
(2.6)

where C' is some positive constant independent of €. Now for € < 1, we obtain from (2.3)-(2.6),
for another positive constant independent of ¢, still denoted by C

[ se( f w42

from which we deduce that Vi, is uniformly bounded in LI(Q2) and therefore we obtain by
Poincaré’s inequality applied to ¢ + Q2 that |[¢|1,, < R, where R is some positive constant
independent of e.

Now we claim that
F.: B(0,R) — B(0, R) is weakly continuous.

Indeed, let (v;);er be a generalized sequence in C = B(0, R) which converges weakly to v in C.
Set ¢! = F.(v;) and . = F.(v). We would like to prove that (¢¢);cr converges weakly to 1.
Since C is compact with respect to the weak topology, it is enough to show that (¢¢);cr has ).
as a unique limit point for the weak topology in C. So let ¢ be a weak limit point for (1?);c;
in C.

Using the compact embedding : W9(Q) C L%(Q), we get a subsequence (¥!*)en such that
i —ap in WH4(Q) and i — ¢ in LI(Q).

Choose i — 1), as a test function for (2.2) written for ¥i* and .. Subtract the equations, so
that

A@) — A@pe) i —he > = /

Q
_/A,\TUB,B’Z <H€(Ui'“) B HE(U)) (Ve = deJvs

Note that since H. is bounded and Lipschitz continuous, and since 1, 1. belong to B(0, R),

we have
in q v iy _ q 1a

[ () = ) i =] < ([ 1) = ) ([ 90 )
< C@fus, — ol

(Hel(wi) = H(0)) @ =0

S C(E)‘U“ - /U‘LQ(A/TTUB/-BQ).

‘/XTUBTB2 (He(vi,) = He(v)) (Wi = oo

Then we obtain



Jim < AWE) = A, — e >=0.

Arguing as in [28], we get Vi — Vi) in LI() and i — 1, in L9(Q). It follows that . = 1)
and therefore 1 is the unique weak limit point of (¢¢) in C. Thus ! = F.(v;) — ¢ = F.(v)
weakly in C. Hence the continuity of F; holds.

At this step, applying the Tychonoff fixed point theorem (see [29]) in C, we obtain that F, has
a fixed point, which is a solution of (P). O

The next step of the existence proof is to pass to the limit in (P).

Theorem 2.2. There exists a solution (1,7,7) of the problem (P).

Proof. From the proof of Theorem 2.1, we know that for some positive constant C' independent
of €, we have |¢¢]1,4 < C. Moreover H(1,) is uniformly bounded. Thus, due to the compact
embedding W9(Q) — L7(Q) and the complete continuity of the trace operator, there exists a

subsequence still denoted by 1. and functions ¢ € Wh4(Q), v € L*°(Q), ¥ € L>®(AT U B%g)
such that

Y =1 in Whe(Q)
Ye — P in L9(Q), Pe — P in L1(09)
Ye — a.e. in €, e — P a.e. in 9N
H(b)—~  inL7(Q), H(p)—7  inLY(ATUBBy).

Note that we can write H.(t) = H!(t) + H2(t), where H! and H? are defined by

0 fort <0 0 for t < @
HXt)=1< —6t)e for0<t<e H2({t)={—-01(t—Q1)/e forQ<t<Q,+e
-0 fort > € —01 fort > Q1 +e.

Since (H!(3.)) and (H2(¢).)) are uniformly bounded, we have up to a subsequence
H! (o) =~ HZ2($) =~* in L7(Q)

with v = 4! + 42 a.e. in Q. Since H!(¢,) € K; = {v € LY (Q), —§ < v < 0 a.e. in Q} which is
weakly closed in L? (Q2) (for being closed and convex), we have

—5<~yt <o a.e. in Q.
Moreover, we have

Hl(e) =0 ae in [1p <0 and  H! (o) — —0 a.e. in [y > 0].

10



So by the Lebesgue theorem
H'w)—0 in LY (Y <0]) and  HMy.)— -6  in LY([ > 0)).
We deduce that
=0 a.e.in [ < 0] and Y'=-§ aein [>0].

Now, since —6 <~ < 0 a.e. in £, we obtain

0 if v <0
v e H'(¥) = { [-6,0] ify=0
-0 if ¢ > 0.
In the same way, we prove that
0 if ¢ <@
v? e H*(Y) = { [=61,0] if =01

Thus v =~ +~2 € H (¢)) + H?(¢)) = H(?)) a.e. in Q.

Similarly, one can prove that ¥ € H(¢) a.e. in AT U B/—BQ. Thus (P)i¢) holds.
(P)iii) is obtained as a consequence of (P, )i¢) and the fact that ¢ — ¢ in L1(09).
It remains to prove (P)i). So we take ¢ — % as a test function for (P.) and we obtain

_ —2 _ 2
/Q|V¢E|Q+e/9\we|t/ﬂ|vwe|q vwe.vw+/ﬂﬂe<¢e)6x(wé w)+e/ﬂwe|q e
—/h HWO (W — v 6 [ (we—@b)uﬁ@/h (e — B)vp. (2.7)

ATUBB> By By BT

Since . — 1 in L2(9N), the last three integrals in the righthand side of (2.7) converge to 0.
Since 1), is bounded in L?(2), we have

lime/ |97 etp = 0.
e—0 Q
To treat the second integral in the righthand side of (2.7), we write

_ — 1 2 _
/Q H, (60)00 (6 — ) /Q 0 (B (1)) + /Q 0, (E2(10) /Q H(p)o  (28)

where

El(s) = /OSHg(t)dt and  EX(s) = /OSHf(t)dt.

11



One can verify that
El(s) — E'(s) = —6s™ and E%(s) — E*(s) = —01(s — Q1) ™, as e —0,
We claim that

. 1 o
tim /Q Ba(E(10)) = /Q 0. (2.9)

Indeed, we first have

B¢ (o) = E' ()| < |EL(ve) — BI(W)| + |EL(Y) — B (¥))]
< Oltpe — Y+ [EL(¥) — EY ().

So E}(¢p¢) — E'(3) a.e. in . By Lebesgue’s theorem, we obtain E!l(w.) — El() in LI(Q).
Then 9, (E}(1he)) — 0-(E* (1)) in D’'(2). But since |9, (E"(ve))| La(q) is bounded, we get

0x(E¢ (ve)) = 0u(E'(¥))  in LI(Q).

Hence

iy [ o / o ( / e /Q 0,

In the same way, we establish

tim [ 0,(12(0)) = /Q oDt (2.10)

Using (2.8)-(2.10)we get

e—0

tim [ H(06)0, (0 = ) = /Q 100t + /Q 2Bt — /Q 2O = 0.

Finally, we obtain by letting € — 0 in (2.7)

limsup/ [Vi)e|? <11msup/ | Vb |72V eh V)
Q

e—0

from which we deduce that

e—0

v v
limsup(/Q|V¢€|q) s (/Q\VW) ' andthen Vi — V¢ in LY(Q).

We obtain (P)i) by letting e — 0 in (P,)i) since we have |V |7 2Vip, — |Veh|9-2V) in LI (Q)
and €[22y, — 0in L9 (). O

12



3 Regularity of the Solution

The main result of this section is the local Lipschitz continuity of 1 above I'; 5. This will be
used in the next section to prove the continuity of the function representing I'g ;. We first have
the following general regularity results.

Proposition 3.1. Let (¢,7v,7) be a solution of (P). Then we have

div(|V|7*Vep — ve,) =0 in D'(Q). (3.1)

—Q2 < < in € (3.2)

b e CO%QUAB\{A,BY)  for some a € (0,1). (3.3)
beCY (Y <0u0<p<Qi))  for some 3 € (0,1). (3.4)

Proof. i) To prove (3.1), it suffices to take ¢ € D(Q?) as a test function in (P)i).
1) We first take (¢ + Q2)” as a test function in (P)i). We obtain since v = 0, ¥ = 0 in
[h < —Q2] and v, > 0 on BT

[+ == [ w+en - w+a)w<o

Q BB, BT

Since ¥ = —Q2 on AAB, we get (¥ 4+ Q2)” = 01in Q.

Similarly, we take (1» — @1)™ in (P)i) and obtain since ¥ = —d2, ¥ = —d2 in [t) > Q1]

/Q\vw|q—2vw—cz1>++52<w—c21);—52/A =00t

ATUBB>
—5 [ Qb /ﬂ (W~ Qu)tva
B2 B, BT

which can be written after integrating by part

/ V(% — Q)T+ (62— 6) / =0 =0,
Q B

2B
This gives (¢ — Q1)* = 0 in Q since (¥ — Q1) = (—Qs — Q1)+ =0 on AB.
iti) Since v € L°(Q), we deduce (see [21] ) that ¢ € C*(QU Int(A,\B)) for some o € (0,1).

loc
iv) Since v is constant in [y < 0] and in [0 < 1) < Q1], we obtain from (3.1) that div(|Vy|72Vy)) =
0in D'([¢ < 0JU[0 < 1 < @Q1]). Therefore 1 € C1-7 ([ < 0]U0 < 1 < Q4]) for some 3 € (0,1)

loc

(see [26]) O

13



Now we state the main result of this section.
Theorem 3.1. Let (1),7,7) be a solution of (P). Then we have

Y e Cpa([y > 0]). (3.5)
In order to prove Theorem 3.1, we introduce the following notations

Q+=Qﬂ[1/}>0], u=Q1— 1, and ?Z’Yﬁ-(;g.

For ¢ € Wy '%(90,), we remark that (x(Q4) is a test function for (P). So we have

[ (vl290 = 5e).¥¢ = 0
Q4
= [ (9@ =DV =) + (174 Ba)er).VC = 0.
"
Moreover, one has ¥ = dy + v € 62 + H(¢)). Therefore (u,7) satisfies

(i) / (IVul"2Vu +9e,).VC = 0 V¢ € Wh(9y)

+ Q4
(PN i) Aef0.6] if u=0
(i) =01 if 0<u<@q.

To prove Theorem 3.1, we need the following lemma

Lemma 3.1. Let B,.(Xy) be an open ball of center Xo = (xo,y0) and radius r contained in
Q4 N [u > 0], satisfying B.(Xo) C Q and 0B-(Xo) N [u = 0] # 0. Then there exists a constant
C > 0 depending only on q and §1 such that

u(Xo) < Cr. (3.6)

Proof. The proof for ¢ = 2 can be adapted from [7]. We shall consider here only the case g # 2.

Let € > 0 such that B, (Xo) C Q. Let D = B, (Xo) \ By2(Xo), m = on infx )u and v
r/2(Xo
defined by
q—2
o(X)=apt 16 where  p=+/E— 20+ (y— 90)",
a=2
a= — m — and b= :ZL(T te) —-
(5) = (r+ar (5)" —(r+ar

One can verify easily that v satisfies

14



div(|[Vv|72Vv) =0 in D
v=m on 0B, /3(Xo)
v=20 on  0Byi(Xo).

Note that ¢ = (v— u)l"’D € W, (D) since v < u on AD. Then ¢x(D) is a test function for (P)
and we have

/D(|Vu|q*2Vu +7ex) V(v —u)t = 0. (3.7)

We have also

/ |Vo|?2VoV (v —u)™ = 0. (3.8)
D

We get by subtracting (3.7) from (3.8)

/ (|Vv|q_2VU — |Vu|q_2Vu)V(v —u)t — / Alv—u)f =0
D D

which can be written
/ (V0|72 Vv — |Vu|!*Vu) V(v — u)t
DN[u>0]
= / ((ﬁ —81)vg — |Vv|q) < / |Vo|(6; — |Vo]a7h). (3.9)

DnNu=0] DN[u=0]

Assume that
/ (IVo|? 2V — [Vu|??Vu) V(v — u)t = 0.

DN[u>0]

In particular, we obtain

/ (|Vo]7*Vu — |Vu|!*Vu) V(v —u)t =0
BT(XO)

which leads to V(v —u)* =0 in B,.(Xy). Since v < u on 0B, /2(Xo), we get v < u in B,.(X).
This constitutes a contradiction with the fact that v > 0 in D and 9B, (Xo)N[u = 0] # 0. From
(3.9), we then get

/ |Vo|(6; — |Vo]9h) > 0. (3.10)
DnNu=0]
e 1
Now we claim that |[Vv| < 8 on dB;1(Xj). Indeed otherwise, we will have |Vv| > §{* in D
_ =2 . . R o
since |Vv| = |a] 1 1 isnom-increasing with respect to p, and we get a contradiction with
q—1 pa—t

_ 2 ]_ _1
al lq | — < 477", which can be written

(3.10). We deduce that |Vv| 5, .(x,) = |
| +e(Xo) q_l(T—FG)‘Ij

15



lg — 2| m =

o7
_ —2 a=2] =
T 97|+ 9 - (5)
Letting € — 0, we get
_ 1 _ 1 =2
lg — 2] m <677 = m< q 161"’11—(1)417"2017“.
q-1 |55 _ (ryit g — 2] 2
[ - (3)°

Since u > 0 in B, /5(Xp), we have Aju = 0 in B, /5(Xo). Applying Harnack’s inequality (see
[22] p. 110), we obtain for a positive constant Cy depending only on ¢

u(Xp) < max uw<Cy; min u=Cym < CoCyr=Cr.
B, /2(Xo) B,‘/Q(XO)

O

Proof of Theorem 3.1. Let X1, X2 € Q4. Without loss of generality, one can choose X1, Xs
such that
|X1 — X2| < d/2 and Bgd(Xi) C Q+ for some d > 0.

Set R(X;) = min(d, dist(X;, [u = 0])). Then clearly we have Br(x,)(X;) C [u > 0].
If u(X;1) =0 or u(Xz2) =0, we argue as in [20].

1
Assume that u(X;) > 0 and u(X5) > 0. Then if imax(R(Xl),R(Xg)) < | X7 — X3|, we argue
as in [20].

1
Assume that 3 max(R(X1), R(X2)) > | X1 — Xa| > 0, and that for example R(X;) > R(X2).
R(X1)

Then %max(R(Xl), R(X5)) = Tl > | X7 — Xs|. We distinguish two cases :
d
’L) R(Xl) < 5
In this case, we have for X € B;(O)
d(X1 + R(X1)X, [u=0]) <d(X;1,[u=0]) + R(X1) =2R(X1) < d.

So R(Xl + R(Xl)X) < d, and therefore aBR(XlJrR(Xl)X)(Xl + R(Xl)X) n 8[u > 0] £ 0.
Applying Lemma 3.1, we get

u(X1 + R(X1)X) < CR(X; + R(X1)X) <2CR(X,).
It follows that the function defined by

u(Xy + R(X))X)
U(X) - R(Xl) 9

X e Bl(O)
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is uniformly bounded in B (0), i.e. v(X) < 2C' VX € B;1(O). Moreover, it satisfies Ajv = 0 in
B;(0). Then by applying for example Theorem 1 of [26], we get for some « € (0,1) depending
only on ¢

|U|1,a,§1/2(o) <C where C = C(dist(By/2(0),0B1(0)).

In particular, we deduce that |[Vvl is uniformly bounded in By /2(O). Now, since (Xo—X1)/R(X1) €
El/g (O), we obtain
X2 — X1 X2 - Xl
22 ) —o0)| < O 2
‘”( R(X1) ) O] = 9%
which leads to
[u(X2) —u(X1)| < C1X2 — Xa.

. d
1) R(X1) > 7

We consider the same function v defined in the previous case. Here we remark that we have

lulo,0
< 2
|U|O,Bl(O) = RXY)

<

2|
—|U .
7|l

Therefore |VU|O’§1/2(O) < C(d), and arguing as before, we get

[u(X2) —u(X1)| < C(d)| X2 — Xi.
O

Remark 3.1. When q = 2, it is showen in [6] that 1 € C)2X(). The proof of this result near
[p = 0] relies on the monotonicity formula proved in [5].

4 Study of the Upper Free Boundary I'y;

The main result of this section is the proof that I'y ; is represented by the graph of a continuous
function ®(y). First, we prove a monotonicity result for v in € which allows us to define the
function ®(y). Next, making use of the local Lipschitz continuity of ¢ in Q;, we prove that ®
is continuous. _ _

We assume that the arc BT (resp. AT) can be represented in the form

r=o04(y) (resp.z=0_(y)) for yp<y<yr.

Then we have
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Theorem 4.1. Let (¢,7,7) be a solution of (P). The upper free boundary T'o;1 = (Of¢ <
Q1)) Ny is a y-graph, i.e. there exists a function ®, o_(y) < ®(y) < 04 (y), such that for each
(ZL', y) € Q-l-

Py =1 = By <z<oi(y).

Moreover ® is lower semicontinuous on my(21).

The proof of Theorem 4.1 is a consequence of Lemmas 4.1 and 4.2.

Lemma 4.1. Using the notations of the previous section, we have

Agu >0, e <0 in  D'(Q4). (4.1)

Proof. Let ¢ € D(Q4), ¢ > 0, and € > 0. Taking £ = min (E,O as a test function in (P1)i), we
€

obtain since ¥ = 07 in [u > 0]

1
/ |Vu|?2Vu.V¢ = —7/ |Vl —/ Yo <= | 61& =0.
Q4 Nu>e(] € Ja nu<e] Q4 Q4

Letting € — 0, we get / |Vu|9"?Vu.V¢ < 0 which means that Aju > 0. From (PT)i), we get
Ar = —Aqu < 0in D'(Qy). O

Lemma 4.2. Let (zg,y0) € Qy. We have

Y(wo,y0) < Q1 = Y(z,90) < Q1 Yz € (0-(0),T0)- (4.2)

Proof. Let (x9,y0) € Q4 such that ¥ (zo,y0) < Q1. By continuity of v, there exists ¢ > 0 such
that 0 < ¥ < Q1 in Be(zo,y0). So u > 0 in Be(zo,y0) and ¥ = 7 a.e. in B(z,yo)-

Let z, = inf{z € (0-(yo),20) /¥(2, y0) < Q1 Va' € (2, 0] }.

If 2 = 0 (o), then ¥ (z,y0) < @1 for all z € (0— (o), zol-

If o_(yo) < &m < zg, then ¥(xm,,yo) = Q1. By continuity, there exists n > 0 such that
By (zm,y0) C Q4. Now let p > 0 small enough such that B, (z.m, +1/2,y0) C By(Zm,yo) N[ <
Q1]. Then 7 = 6; a.e. in B,(zm +1/2,y0). But since 7, < 0 in D' (B, (Tm,y0)) and 0 <7 < &
in By (2m,y0), we deduce that

=01 ae in C=((—00,2m +1/2) X (Yo — p,y0 + p) U Bp(&m +1/2,40)) N By(2m; yo)-

As a consequence, we obtain Aju = 0 in C' which leads by the maximum principle, since u > 0
in By(@m + 1/2,90), to u > 0 in C. Therefore ¢ < @1 in C which is in contradiction with

V(Tm,Yo) = Q1. O
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Proof of Theorem 4.1. Taking into account (4.2), we define for each y € m,(Q4)

_ ) oo-(y) i A{z/d(zy) <@} =10
o(y) = { sup{z/ (v,y) € Q4 and Y(z,y) < Q1} elsewhere. (4.3)

Let (x0,y0) € Q4 such that ¥(zg,y0) = Q1. By Lemma 4.2, we have ¢(z,y0) = @1 for all
x € [x0,04+(yo)). Consequently we obtain ®(yo) < zo < o4 (yo)-

Conversely, let (z9,y0) € Q4 such that ®(yg) < xg < o4 (yo). Assume that ¥ (xg,y0) < Q1.
By continuity and Lemma 4.2, we have ¢ (z,yo) < Q1 for all x € (0_(yo),x1) for some z; €
(20,04 (yo)). Consequently, we obtain ®(yg) > 1, which contradicts the assumption. O

Lemma 4.3. Let Q1 = Q4 N[y > yp,]. We have
/ (|Vu|‘1_2Vu +7e;).V¢ =0 V¢ e Wh(Qy), ¢ =0 on o\ B?T. (4.4)
Q1

Proof. Let ¢ be as in the lemma. Then x(1)( is a test function for (P) and we have

/ (V720 —ye,) Ve = | cra=da [ ..
Q1 Q1

BT
This leads to
/ (IVu|?"*Vu +Je,).V(¢ = 0.
1951

The main result of this section is the following theorem.
Theorem 4.2. & is continuous at each y € m,(Q1) such that (®(y),y) € Q.

Remark 4.1. In section 6.2, we shall prove, for rectangular dams, that we have ¥ < @ in
QN [y < hi]. This shows that T 1 is located in .

To prove Theorem 4.2, we need several lemmas

Lemma 4.4. Let (zg,y1), (0,y2) € Q1 such that y1 < ya, u(zo,y;) = 0 for i = 1,2, and let
Z = ((z0,+00) X (y1,y2)) NQ C Q (see Figure 3). Then we have

[ (9ur29u+5e.).9¢ < 0
A

VCeWhi(z), ¢>0, ((zo,y)=0 a.e y€ (yi,ys). (4.5)
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u=20
\
Z o
u=20 \
Figure 3
Proof. Let ¢ as in Lemma 4.4, ¢ > 0 and a,(y) = min (1, M).min (1, .

(y2 — y)+)

. Since

for n > 0, ae(x(Z) and min (37 (1- aé)g)x(Z) are test functions for (4.4), we have respectively
n

/Z (IVul">Vu +7e,).V(ae) = 0

/Z (IVu|7=2Vu + ﬁem).V(min (%7 (1— ae)g)) —0.

Taking into account the fact that ¥ = é; in [u > 0], (4.7) becomes

1
/ |Vu|?2Vu.V((1 - a.)¢) < —7/ |Vul?
ZN[n(1—ae)¢<u] N Jznn(1—ad)¢>u

_51/Z (min (%, (1— ad())gﬁ < =0 ~/BZQBAT min (%, (1 - ))v, <0.

Letting 7 — 0 in (4.8) and adding the result to (4.6), we obtain

/ (|Vu|q72Vu + aﬁez).vg <0.
Z

Finally, we let ¢ — 0 and obtain (4.5).
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Figure 4

Taking ( = ¢ — x¢ in (4.5), we obtain

Corollary 4.1. Under the same assumptions and with the notations of Lemma 4.4, we have

/ |Vu|?%u, +7 < 0. (4.9)
z

Lemma 4.5. Assume that w =0 in a ball B.(Xo) C Qq, with r > 0 and Xy = (xg,y0). Then
we have

=0 ae in ZUB.(Xy), where (see Figure 4) Z = ((xo,+00)X (yo—r,y0+7))NQC Q1.

Proof. By Theorem 4.1, we have v = 0 in Z U B,.(Xy). Applying Corollary 4.1 for each domain
Z' C Z U By(Xp) of the form Z' = ((z1,+00) X (y1,¥2)) N2, we obtain / 7 < 0. Since 7 is

nonnegative, this leads to ¥ = 0 in Z’. Therefore ¥ =0 in Z U B,.(Xj).
O

Lemma 4.6. Let X = (z0,y0) € Q1 and r > 0 such that B.(Xo) C Q1. Then we cannot have
the following situations in B.(Xo) (see Figure 5)

(1) u=0 fory=yo and u>0 fory#uyo
(i4) u=0 fory>yo and u>0 fory <y,
(#i1) u>0 fory>yy and u=0 fory<yp.
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Proof. i) In this case, one has y = ¢; a.e. in B,(Xy) and therefore Aju = =5, = 0in D'(B,(X))).
This is in contradiction with the maximum principle.

u>0 u>0

u >0 u>0

Figure 5

i7) In this case, one has 4 = ¢; a.e. in B, (Xo) = B,(Xo) N [y < yo]. Moreover by Lemma 4.5,
we have ¥ = 0 a.e. in B;f (Xo) = B,(Xo) N[y > yo|. It follows that 7, = 0 in D’'(B,(Xy)). Hence
Agu =0 in D'(B,(Xo)), and we obtain again a contradiction.

iit) This case is similar to 7). O

Lemma 4.7. Let (z,y1),(z,y2) € Q1 such that y1 < y2 and u(z,y;) = 0 for i = 1,2. For
1

€ > 0 small enough, let v(z,y) = <51“f1 (x+e—x)". Assume that [z — €, + €] X [y1,92] C Oy,
u(z,y) < v(z,y) Yy € (y1,92), and that Z = ((z,400) X (y1,y2)) N Q C Q. (see Figure 6).
Then we have for Z,, = ZN v >0N[0<u—v <y

1
lim — (IVu|?*Vu — [Vo|7*Vv).V(u—v)T = 0. (4.10)
=0 )z,

+
Proof. For p,n > 0, we consider F),(s) = min (s—, 1), dy(z) = Fy(x — Z), T = & + €. Then
I

¢ =Fu(u—wv)+d,(1— F,(u)) is a nonnegative function vanishing on [z = z]. So by Lemma
4.4, we have

/Z (IVul|?>Vu +Je, ). V(Fu(u —v)) < —/Z (|Vu|>Vu +Je,).V(dy(1 — F(u))). (4.11)
Moreover, we have

/Z (IVo|7*Vu + 61x([v > 0))e, ).V (F,(u — v)) = 0. (4.12)

Subtracting (4.12) from (4.11), we get
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Figure 6

/ (|Vu|q*2Vu — |Vv|q*2Vv).V(Fﬂ(u —v)) < / (01x([v > 0]) —7)eqx. V(Fu(u —v))
z z

—/ (V)12 Vi + Fe, ).V (dy(1 — Ey(u)))
ZN[w=0]

which can be written

/ Fy(u—)(|Vul|""*Vu — [Vo|**Vv).V(u - v)

ZN[v>0]

g/ (IVu|"*>Vu +Je, ). V((1 — dy)(1 — Fy(u))) = I".
ZN[v=0]

Note that we can write

oo ) (VY Ae) V(A
ZN[v=0]

f/ (1 — E, () (IVul?2Vu + Fe,).Vd, = I8 + I,
ZN[v=0]

Since for > T, d;, — 1 when n — 0, we have
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lim Iﬁ‘ =0. (4.15)
n—0

Moreover

Il = 7/ ?em.Vdnf/ (1= F,(w)(|Vu|"?Vu + Fe,).Vd, = I} +I'. (4.16)
ZN[u=v=0] ZN[u>v=0]

1
I = f/ NOpd, = 77/ ~y <0. (4.17)
ZN[u=v=0] N J Znu=v=0]N[z<z<T+7)

Since u € Cloocl( +), one has for some positive constant C

4 <cq1+&»/ (1 - Fy(w))

ZN[u>v=0]N[T<x<T+n]

Ca-1 min(¢(y),T+n)
- +‘51// (1 - Fy(u))

< Cq;”/}(/ (1- Fu(u ))dx)dy, (4.18)

xT

where J = {y € (y1,y2) / T < ¢(y)}. Using the continuity of the function z — (1—F,(u))(z,y),
we have

T+n

i [ = Bz = (1= ) @)

1 [
Moreover f,(y) = f/ (1 — Fy(u))(z, y)dx satisfies |f,(y)| < 1 for all y € (y1,y2). Then by

xr
the Lebesgue theorem, we obtain

i [ fyds = [ (1= P @0y (4.19)
Combining (4.18) and (4.19), we get
T, ol 1] < (€7 +81) [ (1= Fuw) () (4.20)
J

Taking into account (4.13)-(4.17) and (4.20), we obtain

1

/ (|Vu|™2Vu — | V|7 2V0).V(u — v) "
B J Znw>0]n[0<u—v<p]

sw%uwo/u—aWMaw@. (4.21)

J
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But for y € J, we have u(Z,y) > 0. So liI%(l — F.(u))(T,y) = 0. Letting © — 0 in (4.21), we
n—

get (4.10).
Lemma 4.8. Under the assumptions and notations of Lemma 4.7, we have

div(a(z,y)Vw) =0 in  D'(Z*)

where
(u—v)*t in ZT=[v>0
w:
in 7~ =(z—ex| x (y1,Y2)

Z*=Z7Z"UZ7T, and a(z,y) is a 2-by-2 strictly elliptic and bounded matriz.

Proof. Let ¢ € D(Z*). Note that

[ x> oD (9ur2vu - 9efr-90).9¢

= lim EF,(u—v)(|Vu|??Vu — |Vv|72V0).V( = lin%) 1,
n—

n=0 J 7+

where

I - / (IVul"2Vu — [Vol7=2V0).V (F.(u — v)C)
Z+
1
L

By Lemma 4.7, we have
lim I? =
et 0
since

1

12| < sup ¢
. z+ M

/ (|Vu|92Vu — |[Vo|72Vv).V(u — v).
Z+N0<u—v<py]

Moreover, we have

o= / V]2V 0.V () (1 — v)¢) — / V0|92V Y (Fl (4 — 0)C)
Z+ Z+

_ /Z A= 0)Oat [ BF—0)0) =0,

zZ+
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O
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Tt follows from (4.23)-(4.26) that

/ x([u > v]) (|Vu|??Vu — V|7 2Vv).V( =0
zZ+

which can be written (see [17])

/ a(x,y)V(u—v)".V{ =0 (4.27)
Z+
where

1 A7,
a(x,y) = (ai;(r,y))1<ij<2, aij(x,y) = / o (Vuy)dt,
0

A" are the components of the vector function A(h) = |h|?"2h, h € IR? and u; = tu + (1 — t)v.

J

Now arguing as in [17], we can verify that for a.e. (z,7) € Z1 and for all ¢ € IR
1

min(1,g=1).A(z,9).[¢* < a(z,y).£.€ < max(1,q=1)A(z,9)- €%, Az,y) = / Vg |72 (2, y)dt.
0

1
Since |Vu| = ;7" and |Vu| < C in Z*, we can verify that

0<co<Az,y) < in Z%, with co,c; constants.

Next, if we extend a(z,y) by cola (Iz being the 2-by-2 identity matrix) into Z~, we obtain from
(4.27)

/ a(z,y)Vw.V({=0 V¢ e D(Z7)

with a(z,y) strictly elliptic and bounded in Z*. O

Proof of Theorem 4.2. Let € > 0 and yo € my(€21) such that Xo = (®(yo0),yo) € 1. For € small
enough, we can suppose that Ba.(Xo) C €. Since u(Xy) = 0 and u continuous, there exists
€’ € (0,¢) such that
u(z,y) < 67T V(z,y) € Bu(Xo) C Q. (4.28)
By Lemma 4.6, one of the following situations is true
i) 3Xi = (21,51) € Be(Xo) suchthat y3 <yo and u(X;)=0
1) IXo = (2,y2) € B (Xo) such that ys >y and wu(Xz)=0.

Let us assume that i) holds. Set z = max(®(yp),»1) and Z = ((z, +00) X (y1,%0)) N Q (see
Figure 7). Since {z} X (y1,%0) C Be/(Xo), we have by (4.28)

u(z,y) < e0f " Yy € (y1,90). (4.29)
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Figure 7

Now it is easy to verify that v < Q1/2 in Z (choose (u — Q1/2)Tx(Z) as a test function in
(4.4)). This means that Z C [¢) > 0]. Since we have also y; > yp,, we obtain Z C ;.
1

Let v(z,y) = 6] ' (z + € — 2)T. Then we have from (4.29)

u(z,y) < viz,y) Yy € (y1,90)

Moreover u(z, yo) = u(z,y1) = 0. Therefore the assumptions of Lemma 4.7 are fulfilled and we
obtain from Lemma 4.8

div(a(z,y)Vw) =0 in D(Z%), where Z* =(z—¢,2+4+¢€) % (y1,¥0)-
Since w is nonnegative in Z*, w =01in Z~ = (z — €, z] X (Y1, Yo), we obtain from the maximum

principle that w = 0 in Z*. This leads to « < vin Z*, and then u(z+e¢,y) = 0 for all y € (y1, yo)-
By Theorem 4.1, we obtain u =0in Z N[z >z + €] and then u =0in Z N [x > zo + 2€].

Using Lemma 4.6 again and arguing as before, we deduce that v =0 in Z’ = ((a:o + 4e, +00) X
(0,y2)) N Q. Finally u(z,y) = 0 in ((zg + 4¢, +00) X (y1,92)) N Q. We deduce that

O(y) < xo +4e = P(yo) + 4e Yy € (y1,92)

Hence ® is upper semi-continuous at yg. O

5 Some Properties of the set [¢ = Q]

In this section, we give some properties of the set [t = @Q1]. We also show that if the total flux
of the two fluids is small enough, then the dam is not entirely wet.
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For each point E, we shall denote by (zg,yr) the coordinates of E and by g the intersection
of Q with the line [y = yg]. E* will denote the left endpoint of /.

Theorem 5.1. Suppose that BlT is an x—graph and that the interior sphere condztzon 18
satisfied at each point ofB T. If Q1 + Q2 is small enough, then there exists a point E EB*T
such that ¥(E) = Q1. We then have ¢ = Q1 in Qp = QN [y > yg| provided that IgN AB= 0.

The proof of this Theorem requires three Lemmas.

Lemma 5.1. Let E EAAT such that lgN AB= 0 and yg > yp,. If v = Q1 on lg, then ¥ = Q4

Proof. The function ¢ = min(Q1 — ¥, Q1)x(QE) is a test function for (P). Given that V¢ =0
a.e. in [( = Q1] and y(, = —0(,, we obtain

f/ \V(Ql—wu/ﬁ 6+ a0 | con—o.
QEﬁ[’g[J>0] AT BT

Since 6 +7v > 0 a.e. in AT N[¢ > 0], v, <0 on AT and v, > 0 on BT, we deduce that Q1 — ¢
is constant on each connected component of Qg N[ > 0]. But ¥ = Q1 on Ig leads to ¥ = Q
in the connected component of Qg N [¢) > 0] that contains g on its boundary.

By continuity, there exists hg > yg such that Qg N[y < ho] C Qg N[ > 0]. Therefore p = Q1
in Qg N [y < ho]

Let now hpax = sup{h > yg /¢ = Q1 in Qg N[y < h]} and assume that hy.x < yr. Since
(&, hmax) = Q1 for all € m,(QEg N[y < hmax])), we obtain as before that ¢y = Q1 in Qg Ny <
h1] for some hy € (Rmax, y7). But this contradicts the definition of Ayax. O

Lemma 5.2. Assume that E € Int(AT) is such that ¢(E) = Q1 and that the interior sphere
condition is satisfied at E. Then there exists a sequence of points E, € 0 such that

E,—E and ¢(E,)=Q.

Proof. If the assertion is not true, then there exists an € > 0 such that 0 < ¢ < Q1 in
B.(E)NQ=Vg.

Let ¢ € WH4(B.(F)) with ¢ > 0 and ¢ = 0 on Ve N Q. Then for n > 0, £ = min (C, %)X(VE)

is a test function for (P) and we have

/ Vol Ve.VC < /ﬁ (3 + 8)éve <0
VeN[yp>n(] AT
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since v, < 0 on AT and v € [~62, =] on AT NVe N [¢ > 0]. Letting n — 0, we obtain

/ V|92V V¢ <0 V¢ e WH(B(E)), (>0, (=0 on dVgNQ. (5.1)
Ve
Now let v be defined by
/ |VolT2Vu.V( =0 V(e Wh(Vg), (=0 on Ve NQ
Ve
v=1 on dVgNQ.
Taking ¢ = (¢ —v)Tx(VEg) in (5.1) and in (5.2), and subtracting (5.2) from (5.1), we get

(5.2)

/ |(VY|972Ve) — [Vo|T2V0). V(¢ —v)T <0
Ve

from which we deduce that (¢) — v)*™ = 0 in V. In particular, we obtain v(E) > ¢(E) = Q.
But by taking (v — Q)" in (5.2), one gets v < Q1 in Vg. So v(F) = Q1 and v achieves its
maximum at E. By the strong maximum principle we would have |Vv|?~2Vv.v > 0 at E which

contradicts |[Vo|9=2Vv.v = 0 on dVeN AT by definition of v. O

Lemma 5.3. Assume that (p,N AB= 0. If E EBET is such that Y(E) = Q1 and that the
interior sphere condition is satisfied at E, then ¢ = Q1 in QN [y > yg].

Proof. By Lemma 5.2, there exists a sequence of points F, € 2 such that FE, — E and
Y(E,) = @1 for all n > 1. It follows by Theorem 4.1 that ¢(z,yg,) = @1 for all x > zpg, .
Letting n — oo, we get ¥(z,yg) = @1 for all © > xp. This means that ¢y = Q; on lg and the
lemma, follows as a consequence of Lemma 5.1. O

Proof of Theorem 5.1. First note that ¢ + @ is a test function for (P) and we have

/ I Yo — /A W+ Qe
Q QN[0<y< Q1] ATUBB>
+6 [ (4 Qa)vat b / W+ Qo (5.3)
B2 By BT

It follows that

/QV¢|‘1SC((/QIVqu)l/qu(QﬁQl))

which leads to [V4|Lq(q) is bounded. Using again (5.3), we get

‘1/q’

/Q|V1/J|q<c<’[0<1/1<Q1] +(Q2+Q1)> —0 as Q2+Q1 — 0. (5.4)
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Let now © = o_(y) be a parameterization of Bfl*\T and let n € C*(R) such that n = 0 for
y < yp,. Take ¢ = n(y) as a test function for (P), we get by (5.4)

[0 < < @ty < [ G o o2y = [ 9urtenen—o

YB, YB,

as Q2 + Q1 — 0. It follows that the measure of the set BiT N[0 < ¢ < Q1] converges to zero

when Q2 + Q1 — 0. Thus if Q2 + @1 is small enough, there exists a point £ € B{T such that
Y(E) = Q1. We conclude by Lemma 5.1. O

6 The Rectangular Case

In this section we assume that Q = (0,a) x (0, H) (see Figure 8) i.e. the dam is rectangular.
Then we consider the following version of the problem (P)
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Find (1,7,3) € Wh(Q) x L®(Q) x L=(AAy) such that

_ ,2 _

@ [ (V61290 = 9e.).9¢ - /A;O = 6/% ¢+ 6 /B;BO ¢
VCeWh(Q), (=0 on ABU AyBy,

(ii) ve€ H{) a.e.in Q, v e H®) a.e. in A/;lo,

(i) $=—-Qs on AB, ¥ =Qi on AgBy,

where Ay = (0, H) and By = (a, H).

Remark 6.1. It is not difficult to verify that all properties established in the previous sections
for the problem (P), are also true for the problem (P'). Moreover when Qo+ Q1 is small enough,
we know from Theorem 5.1 that ¢ = Q1 for y > H, for some H € (Hy,H). In this case, it is
easy to show that the two problems are equivalent.

6.1 Existence of a Monotone Solution

The main result of this section is the existence of a monotone solution with respect to y.

Theorem 6.1. There exists a solution (1,7,75) of (P') such that

8,0>0, 9,y<0 in D(Q) and 8,F<0 in D(AA).

For € > 0, we consider the following approximated problem :

Find 9. € W4(Q) such that :
@ / (V" Vipe — He(dhe)er) VE + / el 1720
Q

Q

(P!) [ Hewe)c-a/B;Blcwz/A ¢

AAg JBiBo _
\V/C € VVl’q(Q)7 CZ 0 on AB U AoBo,

(ii) e =—Q2 on AB, e =Q1+¢€ on AoBo .

Then we have

Theorem 6.2. There ezists a solution V. of (P!) such that Oyt > 0 in D'(Q).

€

Proof. For the existence we argue as in section 2. The only difference is the fact that we cannot
use Y. — 1 as a test function for (P!) since ¢, — 1 # 0 on AgBy. To overcome this difficulty

€
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one can choose p(y)(1. — 1) as a test function, where p € C§°(0, H). Then one can prove with
small modifications that pVi. — pV strongly in L4(2) which leads to Vi — V) strongly
in L} ().

Moreover one can verify that —Qa < 1. < Q1 + € (choose (¢ + Q2)” and (. — Q1 — €)™ as
test functions).

To prove the monotonicity, let n € (0,¢) small enough and set ¥7(x,y) = Y(x,y + n) for
(z,y) € Qo = (0,a) x (—n, H —n). Then 97 satisfies

/Q (IV7[92V0? — Ho(07)e,)VC + / elu[a-2n¢

on

m H—n hi=n =
(P") [ oo =5 [ e +a [ e

—n ha—n hi1—n
V¢ e Wh(Qy,), C((z,—m) =C((xz,H—n)=0 ae. z€(0,a).

We are going to show that ¢ < ¢7 a.e. in Q, = (0,a) x (0, H — ). To do this, we consider for
i > 0, the function T, : R — R defined par

s if s <p
Tuls) = ,uls it |s| > p.

It is clear that 7, € C%!(R) and therefore
Yu € WH(Q), T,(u) € WH(Q), with V(T,o0u)= T} (u)Vu = x([Jul < p])Vu.

In particular ¢ = T, ((¢e — 1) *) € WH9(€Q,). Moreover since —Q2 < the < Q1 + € in Q, we
have

o ((@,0) = T, ((—Qz — ¥2(2,0))") = T,(0) =0 Va € (0,a),
o Clo, H—n) = T ((6e(w, H—n) = Q1 — )7) = T,(0) =0 ¥z € (0,a).

It follows that ¢ = T}, ((¢»e — ¥7)T)x(£y) is a test function for both (P/) and (P."). Hence we
have

/ (IV9e|"*Vipe — He(e)ex) VE + /Q elve| PeC

n

H—n hi H—n
_ / Ho@e(0,5))C0,9) +6 [ Clary) + 6 / ¢lary) (6.1)
0 h

h2 1

[ (veie2vun - mne)ve+ [ v
Q Qn

n
H—n

Cary) + 6 / Cary). (6.2)

h1i—n

hi1—n

H-—n
_ / He(47(0,))C(0,y) + 6

ha—n
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Subtracting (6.2) from (6.1), we get for Qi = Q, N [(Ye — 7)t < ]

¢ / (4helT 24 — [71920) T, (b — 47)*)

n

== | (Vv — V0210 Vs — )

n

+ / (H.(6) — Ho($7))ex V(6 — 47
Q

+ / (He(20e(0,9)) — H(67(0, 9))) T (% — 1)) (0, 9)

0

hl h2
45 [ (@D an =5 [ Tl v @
1h177 2—1
o0 [ T (=00 ). (6.3)

Using the monotonicity of the functions H, T}, and h — |h|772h, and the fact that § —da = —471,
one derives from (6.3)

_ _ 1
|2 = o2 T = v t) < ¢ [ () = HowD)er V=)
’ ’ (6.4)
The Lipschitz continuity of H, leads to
Oopt
| (w0 — Hown)erVwe =)t < 22 [ 90— vy (65)
,,, "
Using (6.4)-(6.5), and the monotonicity of the function |u|9~2u, we obtain
_ _ )
| e jurien < 3 [ 90— vt (6.6)
Q,\Qy € Jaoy
Letting i — 0 in (6.6), we obtain
/ (o705 — 17=67) < 0,
QyN[the>{]
which leads to 1. < 97 in €2,, and the proof is complete. O
Proof of Theorem 6.1. Arguing as in section 2, one can prove that (wE,He(we),He(wE)‘AfA )
0

converges in an appropriate way to a solution (¢,,%) of (P’). Moreover one has the following
convergences
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e — P in Wa(0) (6.7)
H () =~  inLY(Q) (6.8)

Ho(b) =7 in L7 (AA). (6.9)

We deduce immediately from (6.7) and the monotonicity of ¢, that dy) > 0 in D'().
Since 0y (H (%)) = H.(1e)0yte, we obtain from (6.8)-(6.9) that d,y < 0in D'(Q2) and 9,7 <0

—~

in D'(AAy). O

6.2 Study of the Free Boundary I'y;

In this section, we propose another proof of the continuity of the upper free boundary. We also
prove that @ is a decreasing function. First we prove that I'g 1 is located above the line [y = h4].

Proposition 6.1. We have

Y(x,y) <@ in QN[y < hl.

Proof. Assume that there exists (xo,y0) € QN [y < hq] such that ¥(zg,yo) = Q1. By Theorem
3.1 and the monotonicity of v, we deduce that 1 (z,y) = Q1 in (z9,a) X (yo, H). In particular
we have ¥(z,y) = Q1 in Z = (x0,a) X (yo, h1).

It follows that v, = —Ag = 0 in D'(Z), and consequently v = ~(y) in Z. Now let ¢ €
D(Z U (Jx = a]N90Z)) and take x(Z)( as a test function for (P’), we obtain

égmmlemmx.

Without loss of generality, we can assume that yy > ho, so that we can assume that Z C
(zo,a) x (h2, h1).
Integrating by part the left integral of the previous identity, we obtain v = vy(y) = —d in Z.

By continuity there exists (z1,y1) € (2o,a) X (0,%0) such that 0 < t(z1,y1) < Q1. Also by
continuity there exists € > 0 small enough such that 0 < ¢ < Q1 in (z1—€, 21+€) X (y1 —€, y1+€).

By monotonicity of 1, we obtain

0<v <@ in ZI:ZU($1—€,$1+6)X(yl—e,hl).
We deduce that v € [—d2, —4] in Z’. But since v = —d in Z and 7, < 0, we get

v=-=4 in Z.
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Hence Ayep = 0 in Z'. But since ¢ < @1 in Z’ and ¢ = Q1 in Z, we get by the maximum
principle that ¢ = @1 in Z’ which is in contradiction with the fact that ¥ < Q1 in (z1 —e€,z1 +
€) X (y1 — €, y1 +€). O

The main result of this section is the following theorem.

Theorem 6.3. If [y = Q1]NQ # O, then there exists o, B with hy < a < 3 < H, and a. € [0,a)
such that ® : (a,3) — (a«,a) is continuous and decreasing. Moreover g = ®~! : (a4,a) —
(@, B) is also continuous and decreasing, lim g(x) = a, and if we set g(z) = 3 for x € (0, a.],

we have

[ <@i] =y <g(x)].

We need the following lemma similar to Lemma 4.6.

Lemma 6.1. Let Xy = (zo,y0) € Q1 and r > 0 such that the ball B,.(Xy) is contained in
Q4 N[y > hi]. We cannot have the following situations (see Figure 8)

(z) ’l/} = Ql ZTL SU = BT(X()) N [l‘ = Io]
Y <Qr in By

(i4) P < @1 m B.(
Y =0Q1 mn Br’(

(i43) {w =G i B
Y <Q1 in By

Proof. i) Since 0 < ¢ < Q1 in B,(Xo) \ Sy, one has v = —¢ a.e. in B, (Xp). This leads to
Agp = =7, =0 in D'(B,(Xp)). By the maximum principle, we have either ¢ = Q1 or ¢ < Q4
in B,(X() which both are in contradiction with the assumption ).

Y+ Q1
P < Qi Y <@ Y < Q1Y =0 =01 Y <@

Figure 8

it) Let n € (0,7/2) and consider ¢, (x,y) = ¥ (x,y —n) defined in B, /5(Xo).
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From the assumptions, we have v = v(y) in B,.(Xo) N[z > zo] and v = —§ in B, (Xo) N[z < xo].
Moreover by Theorem 4.1 and since ¥ = Q1 in B, (Xp) N [x > xo], we know that ) = @1 in
Z = (zg,a) X (yo —r,yo + 1) and therefore v = y(y) in Z.

Let ¢ € D(ZU(0Z N[z = a))) and take x(Z)( as a test function for (P'). We obtain

- [ - /y jotrézaa,y»

A simple integration by part shows that v = —ds in Z.
Let now ¢ € D(B,/2(Xo)). We have

/ Vi[>V VC / (V72V) (2, ). V¢ (2, y + 1)
B,./2(Xo) B, /2(zo,y0—1)

/ (@, 9)Ce (4 1) = / @,y — )@, y)
B, /2(zo,y0—1)

B,./2(Xo)

= / Y(z,y)Cs since v depends only on x
B,./2(Xo)

- [ werrevc
B, /2(Xo)
It follows that

Aghy =Agh in  D'(B,2(X0)).
Since ¢, < v in B, /5(Xo) and ¢, = ¥ = Q1 in B, )2(Xo) N[z = ], we deduce by the maximum
principle (see [18] Lemma 2.4) that v, = 1 in B,/3(Xo). This holds for all n € (0,7/2).
Consequently ¥ (z,y) = ¥(z) in B, /2(Xo).
Since Ay = 0 in B, /2(Xo) N [z < x0], we deduce that ¢ = mz +n in B, /5(Xo) N [z < x0],
where m and n are two constants.
Now let Cy be the connected component of [0 < ¢ < Q1] that contains B, /5(Xo) N [z < o).
We know that ¢ is analytic in Cp \ [V# = 0] and that because we are in dimension 2, [V = 0]
is a discrete set (see [4]). Therefore we obtain by analytic continuation that ¢ = mx +n in Cj.
In particular we have ¥(xo,y0) = mzo +n = Q1.
Finally let y; = inf{y € (0,H) / ¥(xo,y) > 0}. Then it is clear that (x¢,y1) € Co N Q. This
leads to ¥ (zg,y1) = mxzg + n = 0 which contradicts mag +n = Q1.

i44) This is impossible by Theorem 4.1. O
Proof of Theorem 6.3. Set

a=suply / Vo € (0,a) P(z,y) <Q1}>Mh
B=inf{y /Vx € (0,a) ¢(z,y)=Q1 } < H.

« is well defined and we have a > h; by Proposition 6.1.

36



0 is well defined since ¢ (z, H) = Q; for all z € (0,a).
e We claim that o < 3:
Indeed assume first that a > 3. Then

i) Jyo € (B,a) such that Vz e (0,a) ¥(z,yo) < Q1

it) 3y, € (B,yo) such that Vz e (0,a) ¥(x,yp) = Q1.
But then i) leads by monotonicity of ¥ to ¥(x,y9) = Q1 for all € (0,a), which contradicts
i). So a < .
Now assume that a = 5. We distinguish two cases:
sxa=0=H
In this case, we have ¥ < @ in Q which contradicts the assumption [¢p = Q1] N Q # (.
xa=0<H

From the definition of /3, one has necessarily ¥ (z, 3) = @1 for all z € (0, a) and by monotonicity
of ¥, we get

Y(x,y) =0Q1 forall (x,y) € (0,a)x [5,H).

One can also verify that

Y(x,y) < Q1 forall (x,y) € (0,a) x (0, ).

If we choose a small ball B centered at a point (o, ), we will have ¢) = Q1 in Bt = BN[y > ]
and ¥ < @ in B~ = BN [y < «]. But this is in contradiction with Lemma 4.6.
Hence we have a < .

e & is non-increasing in (a, f):

Let y1,y2 € (o, ) such that y; < ys. By definition, we have ¥(x,y1) = @1 Vz > ®(y1). By
monotonicity of ¥, we deduce that ¢ (z,y) = Q1 in [P(y1),a) X [y1, H].
In particular, we obtain ¢ (®(y1),y2) = @1 which leads to ®(y2) < ®(y1).

e & is decreasing in (o, 3):

Let y1,92 € (o, 8) such that y; < y2. Assume that ®(y2) = ®(y1) = @0, with 0 < 29 < a.
Since ® is non-increasing, we obtain ®(y) = x¢ for all y € (y1,y2) which leads to ¥ < @7 in
(0,20) X (y1,y2) and ¥ = Q1 in (xp,a) X (y1,y2). This is impossible by Lemma 6.1.

e & is continuous at each point y € (o, f):

Let yo € (o, 3). From the definition of o and 3, we have necessarily ®(yo) € (0,a). Since ® is

decreasing, there exist [~ = lim ®(y) and [T = lim+ D(y).

Y=Yy Y=Y
By the monotonicity of ¢, we have [~ > [T. Assume that [~ > [T. Again by the monotonicity
of ®, we have

0<®(y) <It Vy>uyo and a>d(y)>1" Yy <uyo.
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We deduce that
v=0Q1 in [IT,a)x (yo,H) and P <@ in (0,{7) x(0,y0)-
Let € € (0, min(yo, H — yo)). Then we have
p=0Q1 in  (I7,17) % (yo,50 +€)
Y<@Q in (7,07) % (yo — € yo)-
This is in contradiction with Lemma 4.6.
e Existence of 1
Since ® is a decreasing function, there exist b* = lim+ ®(y) and a* = lirg ®(y). Now @ :
Yy—a y— -

(o, ) — (a*,b*) is continuous and decreasing. Therefore ® is bijective from («, 3) into (a*, d*).
Consequently g = @71 : (a*,b*) — (a, 3) is also continuous and decreasing.

e lim g(z)=a:

r—a
It is enough to prove that b* = a.

Assume that b* < a. Then from the definition and monotonicity of ®, we have ¢ = @7 in
(b*,a) x (a, H) and 9 < Q1 in (b*,a) x (0, «). This is in contradiction with Lemma 4.6. O

Remark 6.2. i) If [y = Q1] NQ =0, then the dam is entirely wet, and we have g(x) = H for
all z € (0,a).

1) If Q1 + Q2 is small enough, we know from Theorem 5.1, that 1» = Q1 in Qg for some point
E between BY and Ag. In this case, we have B < H and then by Lemma 4.6 we have necessarily
a, =0.

6.3 Study of the Lower Free Boundary I';

The main result of this section is that I'; 5 is represented by the graph of a continuous function.

First by using the continuity of ¢, we define two functions f1, fo : (0,a) — R by
fi(z) =sup{y /¥(z,y) <O} and  fo(z) =inf{y /¢(z,y) >0 }.
Then we have

Proposition 6.2. i) f1 (resp. f2) is lower (resp. upper) semicontinuous in (0,a).
i) [P(z,y) <0l =[y < filz)] and [Y(z,y) >0]=[y > fao(z)].

iit) Tp = [ = 0] = [fi(z) <y < fa(a)].

iv) [0 < Y(z,y) < Q1] = [f2(z) <y < g(x)] is connected.
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Proof. The proof of ), i4) and #i¢) can be obtained by using the continuity and the monotonicity
of . To prove i), let (z1,y1), (z2,y2) € [0 < ¥(z,y) < Q1]. By the monotonicity of ¢, we have

0 <t(ziy) <@ for y <y<g(x), i=1,2
By Theorem 6.3, we deduce that for € > 0 small enough, we have
0<Y(z,g(x)—€) < Q1 V€ lxy,2].

Hence the arc {z1} x [y1, 9(z1) —€]U{ (2, g(x) —¢€) / x € [x1,22] }U{x2} X [y2, g(x2) — €] connects
the points (21,y1), (2,y2) in [0 < Y(z,y) < Q1]. O

The main result of this subsection is the following theorem.

Theorem 6.4. There exists a continuous function f: (0,a) — R such that Ty o = [y = f(x)].

The proof of this theorem is based on several lemmas. The first one (Lemma 6.2) is a non-
oscillation lemma. Lemma 6.3 and Lemma 6.4 are used to eliminate possible vertical segments
of the free boundary. Note that similar lemmas are proved in [18] (see also [8]).

Lemma 6.2. Let 0 <y <y < H, 0 < x1 < o3 < 23 < x4 < a. Set
Li={x} x[y1,92] i=1,2,34

Suppose that [x1,74] X [y1,92] C [t < Q1] and that (—1)% >0 on l;, i = 1,2,3,4 (see Figure
10). Then

Yo —y1 = O(x4 — 1) .e. ys—yr —0 when xz4—x1 — 0.

Proof. When ¢ < 2, we have Vi) € Cloo’i([w < 0JU[0 < % < @Q1]) , and one can use the proof
of Lemma 2.3 of [18]. When ¢ > 2, one can work in [¢ < 0]\ S and in [0 < ¥ < Q1] \ 5,
where S = {(z,y) € [ <0JU[0 < ¢ < Q1] / Vi(x,y) = 0}. Then one can adapt the proof in

18]. 0
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< Q1

Y2

U1

T T2 €3 Ty

Figure 10

Lemma 6.3. Let mg = (zo,y0) € Q, p > 0 such that B,(mo) C [¢ < Q1]. Set S, = {xo} x
(Yo — p,yo + p). Then we cannot have the following situation (see Figure 11)

=0 onS, and YF#0 in B,(mg)\ Sy.

Proof. i) Assume that we have ¢ > 0 in B,(mg)\ S,. Then v = —¢ a.e. in B,(mg) and Azp =0
in B,(mg). But since we have ¢ > 0 in B,(my) \ Sy and ¢ = 0 on 5, we get a contradiction
with the strong maximum principle.

i1) Assume that we have ¢ < 0 in B,(mg)\S,. Then we have v = 0 a.e. in B,(mg) and Ay¢p =0
in B,(mg) which leads to a contradiction as in 7).

i4i) Assume that we have ¢ < 0in B, (mg) = B,(mo) N [z < o] and ¢ > 0 in B (mg) =
B,(mo) N [z > x0]. Let 0 < n < p/2 and set ¥y, (z,y) = ¥(x,y —n). Since v = 0 a.e. in
B, (mg) and v = —¢ a.e. in B;r(mo), we obtain by arguing as in the proof of Lemma 6.1,
that Ay, = Ay in B, /5(mg). Since moreover ¢, < ¢ in B, /5(mg) and 1, = ¢ = 0 in
B,/2(mg) N [z = ], we obtain by the strong maximum principle (see [18]) that 1, = 1 in
B, 2(myg). Letting 1 go to 0, we get dy9) = 0 and ¥(z,y) = 6(x) in B, 5(mo). Since Ayyp = 0
in B;/Q(mo), we get 0(z) = apz + [p in B;/Q(mo). Moreover by the monotonicity of ¥, we have
¢ <0in D =B, ,(mo) U (zo — p/2,z0) x (0,y0). Since ¢ is analytic in D\ S, we obtain by
unique continuation that v (z,y) = apx + fo in D. Using the boundary data of ¥ at the bottom
of the dam, we get ag = 0, By = —Q2 and ¥(z,y) = —Q2 in D. This contradicts the fact that
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>0 |¢Y>0 P <0 |¢P<0 P <0 |¢Yp>0 >0 |9 <0
Figure 11
w) If 4 > 0 in B, (mg) and ¢ < 0 in B} (my), we get a contradiction as in ). O

Lemma 6.4. Assume that there exists zg € (0,a), y1,y2 € (0, H) with y1 < y2 such that

Y(xo,y) =0 Vy € [y1,12]
Then 1 =0 in [xg,a] X [y1, Y2].

To prove Lemma 6.4, we need four lemmas
Lemma 6.5. Let V be a domain in §).

i) If0<ty<QinV, then v, >0 in D' (V).
i) If ¢ <0 in V, then v, < 0 in D'(V).

Proof. i) Let ¢ € D(V), ¢ > 0 and n > 0. Taking min (C, ﬂ) as a test function for (P'), we
n
obtain, since vy = —§ a.e. in [0 < 1) < Q]

/Vﬁ[mfﬁw] ‘V¢|q_2V¢.VC < /V’Yag; (min ((, %)): 0.

Letting 7 — 0 and using (3.1), we get 9,y > 0 in D'(V).

i1) Here it is enough to take min((, ;1/)) as a test function for (P), where ¢ € D(V), ¢ > 0 and
7 > 0. Then we argue as in 7). O
Lemma 6.6. Let Xog = (z0,%0) € Q, € € (0, min(zo,y0), z1 € (0,20 — €), and C = B(Xp) U
((z1,20) x (yo — €,y0 +€)) C Q (see Figure 12).

i) If 0 < < Q1 in C and ¢ > 0 in BF (Xo) = Bc(Xo) N [z > x¢], then ¢ >0 in C.

it) If Y <0 in C and ¢ < 0 in BF (Xy), then v <0 in C.

Proof. i) We deduce from Lemma 6.5 i) that v, > 0 in C. Moreover since C C [0 < ¢ < Q1], we
have —§ <~y < 0in C. But ¢ > 0 in B} (X)) leads to v = —§ in B (Xp). Therefore we have
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7= —4 in C and then A,¢) =7, = 0. Since ¢ > 0 in C and ¥ > 0 in BF(Xy), we conclude by
the maximum principle that ¢ > 0 in C.

0<yY<@Q1 Xogep>0 P <0 Xoo v <0

i) )
Figure 12

1) We deduce from Lemma 6.5 4i) that v, < 0 in C. Moreover since C C [¢p < 0], we have
—§ <~y <0in C.But ¢ < 0in B (Xy) leads to v = 0 in BF(Xy). Therefore we have v = 0
in C and then Agi) = 7, = 0. Since ¢ < 0 in C and ¢ < 0 in B} (Xp), we conclude by the
maximum principle that ¥ < 0 in C. O

Lemma 6.7. Let Xo = (z0,%0) € Q, and B, (Xo) C [¢ < Q1] (e > 0).

If ¢ > 0 in B (Xo) N[y < wo] and ¢ = 0 in Bey(Xo) N[y < yo] N [z = xo], then v = 0 in
BE(Xo) N[y < o).

Proof. We argue by contradiction and assume that there exists X; = (z1,y1) € V = B (Xo) N
[y < yo] such that ¢(X;) > 0. By continuity of v, there exists e; > 0 small enough such that
¥ >0in B, (X1) C V.

Let C = B, (X1)U ((mo,xl) X (y1 —€1, 11 +61)). Since C C [0 <19 < Q1] and ¢ > 0 in B, (X1),
we deduce from Lemma 6.6 ¢) that ¢p > 0 in C.

Consider the points P = (zg,y1 + €1/2) and P’ = (x0,y1 — €1/2) (see Figure 13). Then one of
the following situations holds :

a) Jde; € (0,61/2) suchthat ¢ >0 in B_(P),
b) Jeb, € (0,€1/2) such that ¢ <0 in B, (P).

Indeed, otherwise we will have a sequence X,, = (2, y,) — P such that x,, < 2o and ¥(X,,) <0

and a sequence X! = (a},yl) — P’ such that z/, < x¢ and ¥(X]) > 0. But by Lemma 6.2,
this is impossible.
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Figure 13

Assume that a) holds. Since we have ¢ > 0 in B, (P), we obtain by applying Lemma 6.6 %) to
each small ball centered at a point of {z1} x (yp — €2,yp + €2), that ¢ > 0 in B, (P) which
contradicts ) = 0 on Be, (P) N [z = xo].

- Suppose that b) holds. We distinguish two cases

1%t Case: There exists €5 € (0, €5) such that ¢y =0 in By (P")

In this case, we have ¢ > 0 in B, (P') and we get a contradiction as before.

2" Case: Vn € (0,¢€,), 3X,, € B, (P') such that ¢(X,) < 0.

In this case, there exists a sequence X,, = (zp, yn) € B;,z (P’) such that X,, — P"and ¢(X,,) < 0.
By continuity there exists €,, > 0 such that ) < 0in B, (X,,) C B (P"). Since ¢ < 0in B (P,
we deduce from Lemma 6.6 ii) that ¢ < 0 in C,, = (B, (Xn) U (20 — €5, 2n) X (Yn — €n,Yn +
€n)) N BE;(P’). By monotonicity we deduce that 1) < 0 in D,, = ((zo — €5, 2n) X (y1 — €1,yn +
€n)) N By (P"). Since for each X € B, (P")N [y < ypr], there exists n > 1 such that X € D,

we obtain ¢ < 0 in B;,Z (P"YN]y < ypr]. We have reached a contradiction with Lemma 6.3, since
Y >0 in BT (P, é,). O

Lemma 6.8. Let Xo = (zo,y0) € Q, and B(Xo) C [¢ < Q1] (eg > 0).

If ¢ < 0 in B (Xo) N[y > wo] and ¢ = 0 in Be,(Xo) N[y > yo] N [z = xo], then ¢ = 0 in
B (Xo) Ny = wol-

Proof. We argue by contradiction and assume that there exists X1 = (z1,91) € V = B} (Xo) N
[y > yo] such that ¥(X;) < 0. By continuity of 1, there exists €; > 0 small enough such that
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¥ < 0in B, (X;) C V.
Let C = B, (X1) U (z9,71) X (y1 — €1,y1 + €1). Since C C [¢p < 0] and ¢ < 0 in B, (X1), we
deduce from Lemma 6.6 ¢7) that ¢» < 0 in C.

Consider the points P = (xg,y1 + €1/2) and P’ = (zg,y1 — €1/2) (see Figure 14). Then as in
the proof of Lemma 6.7, one of the following situations holds

a) Jde; € (0,61/2) suchthat ¢ >0 in B
b) Jeb, € (0,€1/2) suchthat % <0 in B (P).

Figure 14

Assume that b) holds. Since 1) < 0 in B, (P’), we obtain by applying Lemma 6.6 4i) to each
small ball centered at a point of {x1} X (ypr — €5, yps + €5), that ¢ < 0 in B, (P’) which
contradicts ¢ = 0 on Be, (P') N [z = x].

- Suppose that a) holds. We distinguish two cases
1°" Case: There exists e3 € (0, €2), such that ¢ = 0 in B_, (P).

In this case, we have 1) < 0 in B, (P) and we get a contradiction as above.
2" Case: Vn € (0, €2), 3X,) € B, (P) such that ¢(X,) > 0.

So there exists a sequence (X,,), in B, (P) such that ¢/(X,) > 0 for all n > 1 and X,, — P.

Using the monotonicity and the continuity of ¢, one can prove as in the proof of Lemma 6.7
that ¢» > 0 in B_ (P) N [y > yp] which is in contradiction with Lemma 6.3 since ¢» < 0 in
BZ (P) and ¢ = 0 on B (P) N [z = x). O
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Proof of Lemma 6.4. First of all, we deduce from the continuity and the monotonicity of ¢ that
there exists €g € (0,y2 — y1) such that (zo — €9, zo + €0) X (y1 — €0, Y2 + €0) C [P < Q1]

Let Th = (20, y1) and To = (xg,y2). Arguing as in the proof of Lemma 6.7, one can prove that
one of the following situations holds

i) Je € (0,60) suchthat ¢ >0 in B (Ty),
) Je € (0,60) suchthat ¢ <0 in B (Ty).

We claim that
=0 in (zo,x0+¢€) X (Y1,Yy2)- (6.10)

Indeed let us assume that i) holds. Then by Lemma 6.7, we have ¢ = 0 in B (T2) N [y < ya].
By the monotonicity of ¥, we obtain ¢» < 0 in (zg,zo + €) X (0,y2). Applying Lemma 6.8, we
obtain ¢ = 0 in BX(T}) N [y > y1]. We conclude by the monotonicity of 1 that (6.10) holds.

Now assume that i) holds. Then by Lemma 6.8, we have ¢ = 0 in B (T1) N [y > y1]. By the
monotonicity of ¥, we obtain ¢ > 0 in (xo,z¢ + €) X (y1, H). Applying Lemma 6.7, we obtain
Y =0in BN T2) N[y < ya).

We conclude by the monotonicity of ¢ that (6.10) holds.

It remains to prove that ¢ = 0 in (29, a) X [y1,y2].

Set I = {e € (0,a—x0) such that ¥ =0 in (2o, 20+ €) X [y1,y2] }. I is a bounded nonempty set
because of (6.10). Let p = supI. We have 0 < p < a — x and it is not difficult to verify that
¥ =01in (zg,zo + p) X [Y1, Y2)-

Now assume that p < a — z¢. So 29 + p < a. Arguing as above, there exists n; > 0 such that
we have ¢ = 0 in (zg + p, o + p+ M) X [y1, y2]. Then ¢ = 0 in (z, 20+ p+ 1) X [y1, y2] which
contradicts p = sup I. Thus p = a — z¢ and ¥ = 0 in (29, a) X [y1,y2]. O
Lemma 6.9. Assume that ¢ is constant in Z = (xg,a) X (y1,y2) C Q. Then we have :

i) If yo < ha, then y =0 in Z.

i) If hg < y1 < ya < hy, theny=—§ in Z.

i1i) If y1 > hq, then vy = =62 in Z.

Proof. Since ) is constant in Z, we deduce from (3.1) that v = v(y) in Z.
i) Assume that yo < hy and let ¢ € C*°(Z) such that ( =0 on 0Z N Q. Using x(Z)¢ as a test
Y2
function for (P’), we obtain / —v(y)¢x = 0 which leads to / ¥(y)¢(a,y)dy = 0. Therefore
z

Y1
vy=~(y)=0in Z.

In the same way we prove i) and 7). O

Proof of Theorem 6.4. Assume that there exists zo € (0,a) such that f1(zo) < f2(zo). We claim
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that

i) Vx€lro,a) fi(x) < folz)
i4)  f1 is non-increasing in [xg, a)

i7i)  fa is non-decreasing in [zg, a).

Indeed, we have
i)
Y(zo,y) =0 Vy € [fi(xo), f2(0)].
From Lemma 6.4, we deduce that ¥ = 0 in (zg,a) X [f1(z0), f2(x0)]. In particular, we have for
© 2 w0, f1(2) < fi(wo) and fa(z) 2 fo(wo). Hence f1(z) < fao(@).

i1),4i1) Let x1,x9 € [x0,a) with 21 < 3. By i) and Lemma 6.4, we have v = 0 in [z1,a) X
[f1(z1), fo(x1)]. In particular we have ¥(z2, f1(z1)) = 0 which leads to fi(z2) < fi(z1).

We also have (a2, fa(z1)) = 0 which leads to fa(x1) < fo(z2).

Soly = lim fi(z) and Iy = lim fa(x) exist with I; < ls. Moreover since i1 < fi(x) < fa(z) <

r—a~—

Iy for all x € [xg, a), we deduce that 1 < l. We will distinguish three cases:
a) ho <ly < hy:

Let € > 0 small enough such that Iy — e > max(hg,l; + €). There exists 17 > 0 such that

h<fifz)<lh+e<ly—e< fo(z) <l Vx€(a—na)
Y <@ inZ,=(a—mna)x(ls—e€l).

Since ¥ = 0in Z, N[y < fo(x)] and hy < ly — € < Iy < hy, we have by Lemma 6.9 v = —§ in
Zy Ny < fa(z))].

Now since 0 < ¢ < Q1 in Z,, we deduce from Lemma 6.5 i) that v, > 0 in Z,. Moreover
—0 <y <0in Z,. Hence v = —¢ in Z,. But this leads to Ayp = 0 in Z,,. By the maximum
principle, we obtain ¢ = 0 in Z, or ¢ > 0 in Z,, which is impossible.

b) ls < hs:
Let € > 0 small enough such that [; + € < l; — €. There exists n > 0 such that

llSfl(.’t)§11+6<12—6§f2(x)§l2 V.’EE(G—?],G,).

Let Z, = (a —n,a) x (I1,l1 +¢€). Since p =0in Z,, N[y > fi(x)] and l; + € < Iz < hy, we have
by Lemma 6.9, v =0in Z, N[y > fi(z)].

Now since ¢ < 0 in Z,, we deduce from Lemma 6.5 1) that v, < 0in Z,. Moreover —§ <y <0
in Z,. Hence v = 0 in Z,,. But this leads to Ag9 = 0 in Z,, and we get a contradiction with the
maximum principle.

C) lo > h:
Let € > 0 small enough such that I — € > hy and I3 + € < l; — €. There exists n > 0 such that
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h<h@) <h+e<ly—e< folr) <l Vze(a—na)
Y<Q1 inZ,=(a—na)x(2—¢l).

Arguing as in i), we obtain v = —d2 in Z,, N[y < fa(x)] which leads to a contradiction with
vy <0and y=—0in Z, N[y > fa(z)].
Hence f1(x¢) = f2(xzo) for all zg € (0,a). O

Proposition 6.3. lim f(x) = f(04) and lim f(z) = f(a-) exist and belong to (0, H).

z—0t z—a~

Proof. i) Let 1} = limégf f(x) and Iy = limsup f(x). We have l; < Iy and there exists in (0, a)

two sequences (xl) and (z2) such that

li ] d 1 D=1, i=1,2.
Lm and  lim f(zp)=b, i=1,

Since 1 € C%*(€2), we have ¥(0,1;) = lim Y(ak, f(x8)) =0.So I; € (0, H).

Assume that I; < lp and let € € (0,(l2 — l1)/2). There exists ng > 1 such that ¥Yn > ng
fxy) < li+e€and f(22) > Iy —e . We get ¢(x;,,,y) > 0 for y > Iy +€ > f(z;,) and
Y(xp ,y) <0 fory <ly—e< f(z2 ), where ny >ng and 22 <z}, .

Let n3 > ng > ny such that 22, < ), < z2 < z}, . Then we have ¢(xz},,y) > 0 for
y>l+e> f(x),) and ¥(22,,y) <0fory <l —e< f(a?)).

This is a contradiction with Lemma 6.2. Hence [, = I5.

i1) In the same way we prove that lim f(z) = f(a_) exists and belongs to (0, H). O
Tr—a

Corollary 6.1. Let (v,7,7) be a solution of the Problem (P’). Then we have
i)y =—=dx([0 <Y < Q1]) — da2x([¢p = Q1]) a.e. in Q.
it) 7 = =ox([f(0-) <y < g(0-)]) = dax(ly > 9(0-)]) a.e. in (0, H).

6.4 Comparison and Uniqueness of the solution

In this last section, we assume that ¢ = 2. We know from [6] that there exists a monotone
solution (¢, ,7) in the sense that ¢, > 0,1, > 0,7, < 0,7, < 0inD’(2). It is then not difficult
to establish that the function f(x) describing the lower free boundary is a decreasing function
and therefore a one-to-one function from (0, a) to (f(04), f(a—)). We shall prove here that such
monotone solutions of the problem (P’) decrease with respect to ()2, and as a consequence, we
obtain the uniqueness of this type of solution. Let us denote the problem corresponding to @,
by (P’(Q2)). Then we have the following comparison result
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Theorem 6.5. Assume that g = 2 and let (Y1,v1,71) and (2, 72,72) be two monotone solutions
of the problems (P'(Q3)) and (P'(Q3)) respectively. If Q% > Q3, then we have 1 < 2, y1 > 72

—

a.e. in Q, and Y1 > Y3 a.e. in AAg.

To prove Theorem 6.5, we need three Lemmas.

Lemma 6.10. Let (¢¥,v,7) be a monotone solution of (P'). Then we have

/(|vw|q—2w—vex).v<—/A scxof <+62/A ¢
9] AAy Bs B, B1Bg
VCeWhQ), (=0 on AB, (>0 on AyBy.

~ ~ H_
Proof. Let ¢ € WH4(Q), ( =0 on AB, ¢ > 0 on AgBy . Then for ¢ > 0, min (C, y) is a

test function for (P’) and we have

/Q(Iviblq”vib—wez).v(mm (¢, H?’)) _ /A;ﬁmm (¢ ?) _
= ByB; min (C’H;y) +52/Bf30 min <<’H§y)

which can be written since 1, > 0 a.e. in Q)

/[H—yzec] (IV9 |2V = ve,).V¢ — [420 Fmin (¢, ?) _

1 H — H —
= 7/ V|12, +5/A min (g, y) +52/A min (C, y)
€ J[H-y<e(] By By € B1Bo €

Z(S/B;Blmin(C,He_y)+52/B;Bomin<(,H€_y)

Letting € — 0, we obtain

q—2 _ _ =~
/Q(IWI Vi — e,).VC /A 5> 0 B;&cm/f c.

AAy 1Bo

Lemma 6.11. Under the assumptions of Theorem 6.5, we have

7(¢) = /Q (V{1 = ¥m) = (11 = r)es).VE < 51/IC(f2(y),y)dy v( e D(R?), (=0,
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where VY, = min(yh1,¥2), vy = max(y1,72) and I = {y € (0,H)/ max(f5 ' (y),¢1(y)) <
2(y) }-

Proof. Let ¢ € D(R?), ¢ > 0 and € > 0. Then if we take £ = min (C, 1o 7/Jm> as a test function

in (P'(Q%)), i = 1,2 and subtract the two equations from one another, we obtain

/ (V{1 — tb2) — (1 — 72)es).VE = / G-
Q

AAg
Since 4; € H(v;) and —H is a maximal monotone graph, we have (91 — 42).(¢1 — 12) < 0 a.e.
in AAg . Then

/Q (V@1 — ¥m) — (71 —Yar)ex) . VE <O

which we can write as

/ V(i1 —m).V( — / (11 —vm)ex- V¢
QA1 — > eC] Q

S_/ (’Yl_’YM)(C_M) _11€+IQE+I3€+I4E+I5€+I€\€ (611)
Q
n [y, = Q1], we have ¢ = ¢y = Q1 and then v, =y = yar = —0d2 in [, = Q1]. So

I = —/[wszl](% _’YM)(C 2 w’”) =0. (6.12)

€ x

In 1)1 < 0], one has v; = 0 and then vy = max(vy1,72) =0 in [¢p1 < 0]. So

€

I = — -/[w1<0] (71— ’7M)<C - M): =0. (6.13)

In [thy < 0] N[0 < 1 < Qi], one has v1 = —0, Y, = min(y1,¢2) = 12 < 0, and then
ym = max(y1,72) = 0in [thy, < 0] N[0 <1 < Q1]. So

! d)m) 5

I3e = —/ (m— 'YM)(C ( Y - %)
[ <O]N[0<th1 <Q1] z [h2 <0]N[0<3p1 <Q1] € z

_ / /:nmwl(y) 5 @) (C - : wz) dm) dy

(y)

<o [ (c= ) minGon ). 5 ) v

where I = {y € (0, H) / f; '(y) < min(¢1(y), f5 ' (v)) }-
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Note that for y € I, we have 1, (mm(qbl W), £ (1)), y) > 0 and ¥ (min(oy (v), f5 (%)), y) <0,
and then (¢1 — 19)(min(¢y (y), f5 ' (¥)), y) > O This leads to
limsup /3. < 0. (6.14)
e—0

In [¢, < 0] N[Yy1 = @Q1], one has 1 = —da, ¥, = P2 < 0, 72 = 0, and then v, = 0 in
[¥m < 0] N [th1 = @Q1]. So

Y1 — P\t Y1 — Y\t
o (¢ - Bt s, ¢ i
[¥m <0]N[¥1=Q1] ( € >z [$m <0]N[t1=Q1] ( € )r

=5 [ ( /i:y) (-2 an)ay <o [ (e~ L) 0 0

where Iy = {y € (0, H) / ¢1(y) < f{l(y) }-
It is then clear that

limsup Iy < 0. (6.15)

e—0
In [0 < ¥ < Q1] N[0 < Y1 < Q1], one has y1 = —4. Since Py > P, > 0, 72 € [, —d], and
s0 Ypm = max(vy1,72) = = in [0 < ¥, < Q1] N[0 < 91 < Q1]. Then
_ +
IR ] (S B (6.16)

I5E — _/
[0<m <Q1]N[0<9h1 <Q1] €

In [0 < ¢ < QN[ = Qu], one has 71 = —8z, P = ¥ € (0,Q1), 72 = —6, and then
Y =—0in [0 <, < Q1] N[ = Q). So

() —1/Jm)+

€

(71— 'YM)(C -

[0<wm<Q1]m[w1:Q1] €

#2(y) Q1 — Yo\ +
N 61/ </maX(fz Y(y),¢1(v)) (C - € 2)$dx)dy
51/ Clea(y

where Is = {y € (0,H) / maX(ff (), d1(y)) < d2(y) }-

Then we have

I6e =
x

/[0<¢m<Q1]ﬁ[1/’1—Q1]

x

IA

e—0

limsup lge <61 [ C(92(y), y)dy. (6.17)
I3
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Finally, we get from (6.11)-(6.17) that

T()<h ’ C(d2(y), y)dy.

Lemma 6.12. Under the assumptions of Theorem 6.5, we have

T(CQ) = /Q (VW1 —¥m) — (11 —vm)es). V(=0 V¢ e H'(Q). (6.18)

Proof. Let ¢ € D(R?), ¢ > 0 and € > 0. Let a.(z,y) = (1 — w)+, with A = [¢1 < Q1]

- €
We have 1 —ac =0 in A and 7(¢) = 7 (a.() + T((1 — ac)(). By the previous lemma which is
also true for ¢ € HY(Q) N C°(Q), ¢ > 0, we have

T(00) < 6, / (00 (62(8), v)dy.

I3

Note that A = [z < ¢1(y)], and for y € I3, we have ¢a(y) > max(f;y ' (y),¢1(y)) > é1(y). It
follows that for y € I5, we have (¢2(y),y) ¢ A and then

limsup 7 (a() < 0. (6.19)
e—0

Moreover, we have by Lemma 6.10 applied to (¢2,7,72) and (1 — )¢

T((1- ae)C)

/ (Vo — 71€2).V((1 — ac)¢) — / (Vo — ymes) V(1 = ae)C)
Q Q
— 5 / (1 - a)C)e — / (Vibs — 7262)-V (1 — ae)C)

o /89(1 _O‘E)CVx - /A;X ;?2(1 _O‘G)C
5 B;Blu—ag)c—&g/BA (1)

1Bo

IN

- - / Gt )1 alC <0 (6.20)

AAo

since ¥ > —d2 a.e. in A?lo and ¥ < @1 on BABl.

It follows from (6.19)-(6.20) that 7 (¢) < 0. )

Now let ¢ € D(IR?), ¢ > 0. Let M = supC and & € D(IR?) such that £ > 0 and £ = 1 in Q.
R2

Since £.(M —¢) € D(IR?) and £.(M —¢) > 0, we obtain 7 (£.(M —¢)) < 0 which can be written
T(¢) > 0. So we obtain 7(¢) = 0 V¢ € D(IR?), ¢ > 0 and by density for ¢ > 0 in H(Q).
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If ¢ € HY(Q), we write ( = ¢t — (. Then 7(¢) =T (¢t) —T(¢7) = 0. O

Proof of Theorem 6.5. Let (¢1,7v1,71) and (v2, v,72) be two solutions of the Problems (P'(Q2,1))
and (P'(Q2,2)) with Q21 > Q2,2. Writing (6.18) for ¢ = y;, we get

/Q YW1 — )y = 0.

Integrating by part and using the fact that ¥ — ¢, = 0 for y = 0 and for y = H, we obtain

v =o

Since ¥ — ¥, > 0 in , we obtain 1 = ¥, in Q. This means that ¥; < 99 in Q. As a
consequence, we obtain by Corollary 6.1 that ;3 > 5 in 2 and 71 > 72 in AAy. O
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