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Abstract

The flow of a fluid through a heterogeneous porous medium is studied,
assuming it is governed by a nonlinear Darcy’s law and Dirichlet boundary
conditions. Under a general condition on the permeability we prove that
the free boundary is locally a continuous curve in some local coordinates.
We also prove the uniqueness of the Reservoirs-Connected Solution.

Introduction

The dam problem has attracted the attention of many researchers over the
last thirty years. However there still exists a certain number of unsolved ques-
tions related to this challenging problem. Among them the regularity of the free
boundary and the uniqueness of the solution for flows in general heterogeneous
porous media.
To begin with we would like to say few words about the evolution of the problem
which for the sake of briefness will be restricted to the steady state case with
Dirichlet boundary conditions on the bottoms of the reservoirs.
First Baiocchi solved in [6] (see also [7] and [31] )the case of rectangular dams
by using variational inequalities.
For dams with general geometry a new approach was introduced by H. W. Alt
in [2] for the heterogeneous case and by H. Brezis, D. Kinderlehrer, and G.
Stampacchia in [11] for the homogeneous one. Somehow the two formulations
are equivalent to

(P1)





Find (p, χ) ∈ H1(Ω)× L∞(Ω) such that :
(i) p ≥ 0, 0 ≤ χ ≤ 1, p(1− χ) = 0 a.e. in Ω,

(ii) p = ϕ on S2 ∪ S3,

(iii)
∫

Ω

a(X)
(∇p + χe

)
.∇ξdX ≤ 0, e = (0, 1),

∀ξ ∈ H1(Ω), ξ = 0 on S3, ξ ≥ 0 on S2,

where p is the fluid pressure, χ a function characterizing the wet part of the dam,
a(X) = (aij(X)) is the matrix permeability of the medium and X = (x, y).
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They proved existence of a solution (p, χ).
Concerning the regularity of the free boundary, H.W. Alt proved in [3] that in
the homogeneous case it is an analytic curve y = Φ(x).
Uniqueness of the so-called S3-connected solution was proved by J. Carrillo and
M. Chipot in [14] and also by H.W. Alt and G. Gilardi in [5].
In [15], J. Carrillo and A. Lyaghfouri considered this problem, assuming the
flow governed by the following nonlinear Darcy law (see [22])

|v|m−1v = −∇(p + y) m > 0.

They formulated the problem in terms of the hydrostatic head u = p + y and
were led to an extension of (P1) corresponding to the general problem (P ) given
in the section below, with A(X, ξ) =| ξ |q−2 ξ and q = 1 + 1

m . Despite of the
nonlinearity, the authors showed that this problem is well posed and proved the
existence of a solution, the continuity of the free boundary y = Φ(x) and the
uniqueness of the S3-connected solution in the case n = 2. For n ≥ max(2, q),
they proved the existence and uniqueness of a minimal solution.

The case of a general heterogeneous dam of general geometry was formulated
first in [2] by H. W. Alt who proved the existence of a solution and local Lipschitz
continuity of the pressure. Moreover he gave a counterexample showing that χ
may not be a characteristic function of the wet set [p > 0]. He also proved that

div(a12, a22) ≥ 0 in D′(Ω) ⇒ ∇χ · a(X)(e) ≤ 0 in D′(Ω).

In [21] and [32], the authors showed that if a(X) = k(x, y)I2 with ∂k
∂y ≤

0 in D′(Ω), then the free boundary is a continuous curve y = Φ(x) and the
S3−Connected Solution is unique. These results were generalized by the second
author in [27] to the case where

a(X) =
(

a11(X) 0
a21(X) a22(X)

)
and

∂a22

∂y
≥ 0 in D′(Ω).

From the description of the heterogeneous case, rises naturally the following
question: Can we always describe the free boundary globally or at least locally
as a graph of a continuous function that is or not necessarily of the form y = Φ(x)
or x = Ψ(y) ?
It is our purpose in this paper to address this issue in the more general case
where the flow is governed by the nonlinear law

v = −A(X,∇(p + y)).

Then by using a similar formulation as in [15] i.e. u = p + y and g = 1−χ, and
by assuming that

div(A(X, e)) ≥ 0 in D′(Ω) and A(X, e) ∈ C1(Ω̄),
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we give a positive answer to the previous question.
The main new idea is the following: we remarked that under the previous as-
sumption, the function g is non-decreasing along the orbits of the ordinary
differential equation

X ′(t) = A(X(t), e)

which generalizes the fact that χ is non-increasing with respect to the second
variable y when a12 = 0 and a22 is non-decreasing with respect to y (see [27]). It
follows that if the pressure is positive at some point X0 = X(t0) of the porous
medium, where X(.) is the orbit containing X0, then

p(X(t)) > 0 ∀t ≤ t0.

This important property is then exploited to prove that the free boundary is
represented locally by continuous graphs. This is done essentially by introducing
two C1-diffeomorphisms related to the above ordinary differential equation. As
a consequence we obtain that g is the characteristic function of the dry part
[p = 0]. This helps to show the uniqueness of the S3-Connected Solution which
we prefer here to call the Reservoirs-Connected Solution.

We would like to point out that in all previous studies, authors considered
only dams that are enclosed between two curves y = s−(x) and y = s+(x)
which represent respectively the bottom and the top of the dam. This implicitly
assumes that the dam is vertically convex. In this study we do not assume this
constraint and allow a wide variety of geometrical forms for our dam. We recall
that for the existence of a solution it is only required that Ω is locally Lipschitz.
However for the study of the free boundary we will assume that Ω is locally of
class C1.
Finally we have chosen to introduce the different hypotheses gradually into the
text following the need only.
The paper is organized as follows: in Section 1, we give the weak formulation of
the problem and some properties. In Section 2, we prove a monotonicity property
for the function g. In Section 3, we define a family of functions (Φh)h representing
locally the free boundary and prove they are lower semi-continuous. In Section
4 we prove some useful Lemmas. In Section 5, we prove the continuity of the
functions Φh. Finally in Section 6, we prove the uniqueness of the Reservoirs-
Connected Solution.

1 Formulation of the Problem

A porous medium that we denote by Ω is supplied by several reservoirs of a fluid
which infiltrates through Ω. We assume that Ω is a bounded locally Lipschitz
domain of IR2 with boundary ∂Ω = S1∪S2∪S3, where S1 is the impervious part,
S2 is the part in contact with air and S3 =

⋃i=N
i=1 S3,i with S3,i (i = 1, ..., N)

the part in contact with the bottom of the ith reservoir. We assume that the
flow in Ω has reached a steady state and we look for the fluid pressure p and
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Figure 1:

the saturated region S of the porous medium. The boundary ∂S of S is divided
into four parts (see Figure 1)

• Γ1 ⊂ S1 : the impervious part,

• Γ2 ⊂ Ω : the free boundary,

• Γ3 ⊂ S3 : the part covered by fluid,

• Γ4 ⊂ S2 : the part where the fluid flows outside Ω.

The flow is governed by the following nonlinear Darcy law

v = −A(X,∇(p + y)) = −A(X,∇u) (1.1)

where v is the fluid velocity, u = p+y is the hydrostatic head andA : Ω×IR2 −→
IR2 is a mapping that satisfies the following assumptions for some constants
q > 1 and 0 < λ ≤ M < ∞ :





i) X 7−→ A(X, ξ) is measurable ∀ξ ∈ IR2,

ii) ξ 7−→ A(X, ξ) is continuous for a.e X ∈ Ω,

iii) for all ξ ∈ IR2 and for a.e. X ∈ Ω,

A(X, ξ).ξ ≥ λ|ξ|q and |A(X, ξ)| ≤ M |ξ|q−1,

iv) for all ξ, ζ ∈ IR2 and for a.e. X ∈ Ω,

(A(X, ξ)−A(X, ζ)).(ξ − ζ) ≥ 0.

(1.2)
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Moreover we have the following boundary conditions
{

p = 0 on S2, p = ϕ on S3, v.ν = 0 on Γ1,

p = 0 and v.ν = 0 on Γ2 and v.ν ≥ 0 on Γ4,
(1.3)

where ϕ is a nonnegative Lipschitz continuous function which represents the
fluid pressure at the bottoms of the reservoirs. For convenience we assume that
S3 is open relatively to ∂Ω.
Assuming the flow to be incompressible and taking into account (1.1)-(1.3), we
are led (see [15]) to the following problem

(P )





Find (u, g) ∈ W 1,q(Ω)× L∞(Ω) such that :
(i) u ≥ y, 0 ≤ g ≤ 1, g(u− y) = 0 a.e. in Ω,

(ii) u = ϕ + y on S2 ∪ S3,

(iii)
∫

Ω

(A(X,∇u)− gA(X, e)
)
.∇ξdX ≤ 0

∀ξ ∈ W 1,q(Ω), ξ = 0 on S3, ξ ≥ 0 on S2.

For the existence of a solution of (P) under the assumptions (1.2), we refer
the reader to [29] where an existence result is given for generalized boundary
conditions. The reader can also adapt the proof in [15] obtained for the case
A(X, ξ) = |ξ|q−2ξ.

Arguing as in [16] or [27], we obtain
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Proposition 1.1. For each solution (u, g) of (P ), we have

div
(A(X,∇u)− gA(X, e)

)
= 0 in D′(Ω). (1.4)

Moreover if div
(A(X, e)

) ≥ 0 in D′(Ω), we obtain

div
(A(X,∇u)

)
= div

(
gA(X, e)

) ≥ 0 in D′(Ω). (1.5)

2 A Monotonicity Property of g

From now on, we shall assume that

A(., e) = (a1(.), a2(.)) ∈ C1(Ω̄) (2.1)

div
(A(X, e)

) ≥ 0 in C0(Ω) (2.2)

Γ = ∂Ω is of class C1 (2.3)

A(X, e) · ν 6= 0 ∀X ∈ ∂Ω. (2.4)

Then we consider the following differential system

(E(ω, h))
{

X ′(t, ω, h) = A(X(t, ω, h), e)
X(0, ω, h) = (ω, h)

where h ∈ πy(Ω) and ω ∈ πx(Ω∩ [y = h]) and where πx and πy are respectively
the orthogonal projections on the x and y axes.
By the classical theory of ordinary differential equations there exists a unique
maximal solution X(., ω, h) of E(ω, h) which is defined on [α−(ω, h), α+(ω, h)]
with X(α−(ω, h), ω, h) ∈ ∂Ω∩ ([y < h]), X(α+(ω, h), ω, h) ∈ ∂Ω∩ ([y > h]) (see
Figure 2).
For simplicity we will denote in the sequel X(t, ω, h), α−(ω, h) and α+(ω, h)
respectively by X(t, ω), α−(ω) and α+(ω). We note that (2.4) means that the
orbits of E(ω, h) don’t meet ∂Ω tangentially. Moreover under the assumptions
(2.1), (2.3) and (2.4), one has

Proposition 2.1. α−, α+ ∈ C1(πx(Ω ∩ [y = h])).

Proof. Let h ∈ πy(Ω) and ω0 ∈ πx(Ω ∩ [y = h]). By (2.3) there exists a C1

function σ and η > 0 small enough such that one of the following situations
holds

i) σ(X1(α−(ω), ω)) = X2(α−(ω), ω) ∀ω ∈ (ω0 − η, ω0 + η),
ii) σ(X2(α−(ω), ω)) = X1(α−(ω), ω) ∀ω ∈ (ω0 − η, ω0 + η).

Assume for example that i) holds. This means that α−(ω) satisfies

F (α−(ω), ω) = 0 ∀ω ∈ (ω0 − η, ω0 + η), with F = σoX1 −X2.
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Taking into account (2.1) there exists an open set Ω∗ containing Ω̄ such that
A(., e) ∈ C1(Ω∗). Then for each ω ∈ πx(Ω∗∩[y = h]), there exists a unique maxi-
mal solution X∗(., ω) of the differential system (E(ω, h)) defined on [α∗−(ω), α∗+(ω)].
Obviously we have X∗

|(α−(ω),α+(ω))
= X when ω ∈ πx(Ω ∩ [y = h]).

Let F ∗ = σoX∗
1 − X∗

2 defined on D∗ = {(t, ω) / ω ∈ (ω0 − η, ω0 + η), t ∈
(α∗−(ω), α∗+(ω))}. We have F ∗ ∈ C1(D∗) since X∗

i ∈ C1(D∗) and σ is C1. In
addition F ∗ is a C1 extension of F to D∗ and we have by (2.1)

∂F ∗

∂t
(t, ω) = σ′(X∗

1 (t, ω)).
∂X∗

1

∂t
(t, ω)− ∂X∗

2

∂t
(t, ω)

= σ′(X∗
1 (t, ω)).a1(X∗

1 (t, ω))− a2(X∗
1 (t, ω)).
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In particular by (2.4) we obtain

∂F ∗

∂t
(α−(ω0), ω0) = σ′(X1(α−(ω0), ω0)).a1(X1(α−(ω0), ω0))−a2(X1(α−(ω0), ω0)) 6= 0.

Therefore by the implicit function theorem, we deduce that there exists δ ∈ (0, η)
and a unique function f : (ω0 − δ, ω0 + δ) → IR such that

F ∗(t, ω) = 0 ⇔ t = f(ω)
f(ω0) = α−(ω0) and f ∈ C1(ω0 − δ, ω0 + δ).

Since F ∗(α−(ω), ω) = F (α−(ω), ω) = 0, it follows that α−(ω) = f(ω) and
α− ∈ C1(ω0 − δ, ω0 + δ).
If ii) holds, the proof is similar. Thus α− ∈ C1(πx(Ω ∩ [y = h])).
In the same way we prove that α+ ∈ C1(πx(Ω ∩ [y = h])).

Definition 2.1. For each h ∈ πy(Ω) we define the set

Dh = {(t, ω) /ω ∈ πx(Ω ∩ [y = h]), t ∈ (α−(ω), α+(ω))}

and consider the mappings Th : Dh −→ Th(Dh) and Sh : Dh −→ Sh(Dh)
defined by :

Th(Dh)(t, ω) = X(t, ω) = (T 1
h , T 2

h )(t, ω) and Sh(t, ω) = (ω, Lh(t, ω)) = (ω, τ),

where Lh(t, ω) =
∫ t

α−(ω)

|A(X(s, ω), e)|ds =
∫ t

α−(ω)

|X ′(s, ω)|ds represents the

arc Length of the curve X(., ω) from the point X(α−(ω), ω) to the point X(t, ω).

Then we have

Proposition 2.2.

Ω =
⊔

h∈πy(Ω)

Th(Dh), Th and Sh are C1 diffeomorphisms.

Proof. First for each (x, y) ∈ Ω we have (x, y) = X(0, ω) = Th(0, ω) with ω = x
and h = y.
Next thanks to (2.1) we have Th ∈ C1(Dh). By Proposition 2.1, Sh is also in
C1(Dh). To see that they are diffeomorphisms, it suffices to verify that det(J Th)
and det(J Sh) do not vanish. We denote by JF the Jacobian matrix of the
transformation F and by det(JF ) the determinant of JF .
One can easily check that

detJ Sh = −|A(X(t, ω), e)| < 0

Yh(t, ω) = det(J Th) = a1(X(t, ω))
∂X2

∂ω
− a2(X(t, ω))

∂X1

∂ω
,
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∂Yh

∂t
(t, ω) = Yh(t, ω).{div(A(., e))}(X(t, ω)).

Therefore

Yh(t, ω) = Yh(0, ω). exp(
∫ t

0

{div(A(., e))}(X(s, ω))ds). (2.5)

Since Yh(0, ω) = −a2(X(0, ω)) < 0, we get Yh(t, ω) < 0 ∀t ∈ (α−(ω), α+(ω)),
∀ω ∈ πx(Ω ∩ [y = h]).

The following key theorem generalizes the fact that gy ≥ 0 in D′(Ω) when a1 = 0
and a2 is non-decreasing with respect to y (see [15], [16], and [27]). It will play
a major role for the definition and continuity proof of the free boundary.

Theorem 2.1. Let (u, g) be a solution of (P ). We have for each h ∈ πy(Ω)

∂

∂τ

(
g̃.(−YhoS−1

h )
) ≥ 0 in D′(Sh(Dh))

where Yh is given by (2.5) and g̃ = goThoS−1
h .

Proof. Let φ ∈ D(Sh(Dh)), φ ≥ 0. Then φoShoT−1
h ∈ C1

0 (Th(Dh)) and by (1.5)
and (2.2), we have

∫

Th(Dh)

gA(X, e)∇(φoShoT−1
h )dX ≤ 0.

Using the change of variables Th(t, ω) = (x, y) and the fact that

A(X(t, ω), e)
(∇(φoShoT−1

h )
)
oTh.(−Yh(t, ω)) = −Yh(t, ω)

∂

∂t
(φoSh)

we get ∫

Dh

goTh(t, ω).(−Yh(t, ω)).
∂

∂t
(φoSh)dtdω ≤ 0

which becomes after using the change of variables S−1
h∫

Sh(Dh)

goThoS−1
h (ω, τ).(−YhoS−1

h (ω, τ)).
( ∂

∂t
(φoSh)

)
oS−1

h .|detJ S−1
h |dωdτ ≤ 0.

Taking into account that

( ∂

∂t
(φoSh)

)
oS−1

h =
∂φ

∂τ
.|A(., e)|oThoS−1

h (ω, τ) =
∂φ

∂τ
.|detJ Sh|,

we obtain ∫

Sh(Dh)

g̃(ω, τ).(−YhoS−1
h (ω, τ)).

∂φ

∂τ
dωdτ ≤ 0.

Remark 2.1. In order to avoid complicated notations we will use in the sequel
f̃ to denote the function foThoS−1

h for any function f defined on Th(Dh). We
will also denote by Th and Yh the functions ThoS−1

h and −YhoS−1
h respectively.
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3 Lower Semi-continuity of the Free Boundary

In what follows we assume that there exist nonnegative constants κ, σ and
positive constants λ0, λ1 with σ ≤ 1 and λ1 ≥ λ0 such that for all X,Y ∈ Ω,
ζ, ξ ∈ IR2

∑

i,j

∂Ai

∂ζj
(X, ζ)ξiξj ≥ λ0(κ + |ζ|q−2)|ξ|2, (3.1)

∣∣∣∂A
i

∂ζj
(X, ζ)

∣∣∣ ≤ λ1(κ + |ζ|q−2), (3.2)

|A(X, ζ)−A(Y, ζ)| ≤ λ1(1 + |ζ|q−1)(|X − Y |σ). (3.3)

Remark 3.1. i) If A(X, ζ) = a(X)ζ with a(X) a bounded 2-by-2 matrix, then-
(3.1) and (3.2) are satisfied and (3.3) is not needed. In this case u ∈ C0,γ

loc (Ω ∪
S2 ∪ S3) for some γ ∈ (0, 1).
ii) Assumptions (3.1)-(3.3) are satisfied in the case where A(X, ζ) = |ζ|q−2ζ.
Moreover under these assumptions, we deduce from (1.1) (see [20], [30] ) that
u ∈ C0,γ

loc (Ω ∪ S2 ∪ S3) for some γ ∈ (0, 1). Also by (1.1) and (P )i) we have
div(A(X,u)) = 0 in D′([u > y]). It follows then by (3.1)-(3.3)(see [19], [25] for
example) that u ∈ C1,δ

loc ([u > y]) for some δ ∈ (0, 1).

The following strong maximum principle (see [18], [4]) will be needed in the
sequel

Lemma 3.1. (Strong maximum principle) Let u1 and u2 be two functions
defined on a domain D of IR2 such that u1, u2 ∈ C1(D), u1 ≥ u2 in D,
the set {X ∈ D/∇u1(X) = ∇u2(X) = 0 } is empty and div

(A(X,∇u1) −
A(X,∇u2)

) ≤ 0. Then we have either

u1 = u2 in D or u1 > u2 in D.

The theorem below will allow us to define the free boundary ∂([u > y]) ∩ Ω
locally as a curve.

Theorem 3.1. Let (u, g) be a solution of (P ) and X0 = Th(ω0, τ0) = (x0, y0) ∈
Ω.
i) If p(X0) = p̃(ω0, τ0) > 0, then there exists ε > 0 such that

p̃(ω, τ) > 0 ∀(ω, τ) ∈ Cε = {(ω, τ) ∈ Sh(Dh) / |ω − ω0| < ε, τ < τ0 + ε}

ii) If p(X0) = p̃(ω0, τ0) = 0, then p̃(ω0, τ) = 0 ∀τ ≥ τ0.

Proof of Theorem 3.1.i) By continuity, there exists ε > 0 such that

p̃(ω, τ) > 0 ∀(ω, τ) ∈ (ω0 − ε, ω0 + ε)× (τ0 − ε, τ0 + ε) = Qε.

Then g̃(ω, τ) = 0 for a.e. (ω, τ) ∈ Qε. By Theorem 2.1 and since Yh > 0, g̃ ≥ 0,
we get g̃ = 0 a.e. in Cε, i.e. g = 0 a.e. in Th(Cε) (see Figure 3).
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By (1.4) we have div(A(X,∇u)) = div(gA(X, e)) = 0 in D′(Th(Cε)). Since
div(A(X,∇y)) ≥ 0 in D′(Ω), ∇y = e 6= 0, u ≥ y in Th(Cε) and u > y in Th(Qε),
then by Lemma 3.1, we get u > y in Th(Cε).

ii) This is a consequence of i).

Remark 3.2. i) The result of Theorem 3.1 means that if a point X0 is in the
wet region, then the part of the curve X(., ω) passing through X0 at t0 remains
in the wet region for all t ≤ t0.
ii) In [16] and [27] we assumed that A(X, e) = k(X)e which leads to X ′

1(t) = 0
for all t and the curve X(., ω) is a vertical segment. Therefore the free boundary
is represented by a curve of the form y = Φ(x).
iii) We have u = p + y = ϕ + y > y on S3,i (ϕ > 0 on S3), i = 1, ..., N and
u ∈ C0(Ω ∪ S3), then p > 0 below S3 in the following sense

p(X(t, ω)) > 0 ∀t ∈ [α−(ω), α+(ω)] such that X(α+(ω), ω) ∈ S3.
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Definition 3.1. For each h ∈ πy(Ω) we define the function Φh on πx(Ω ∩ [y =
h]) by

Φh(ω) =





sup{τ/ (ω, τ) ∈ Sh(Dh), p̃(ω, τ) > 0}
if this set is not empty

0 otherwise.
(3.4)

Thanks to Theorem 3.1 Φh is well defined and we have

Proposition 3.1. Φh is lower semi-continuous on πx(Ω ∩ [y = h]). Moreover

[p̃(ω, τ) > 0] = [τ < Φh(ω)]. (3.5)

Proof. First we show the lower semi-continuity of Φh. Let ω0 ∈ πx(Ω∩ [y = h]).
If Φh(ω0) = 0 then for ε > 0, Φh(ω) ≥ 0 > Φh(ω0)− ε ∀ω.
If Φh(ω0) > 0 then for ε > 0, there exists τε = Lh(tε, ω0) > 0 with tε ∈
(α−(ω0), α+(ω0)) such that

Φh(ω0) ≥ τε > Φh(ω0)− ε/2 and p̃(ω0, τε) > 0.

Moreover one can find (see Theorem 3.4 p 24 in [23]) η1 > 0 such that

X(t, ω) exists for all (t, ω) ∈ [α−(ω0), α+(ω0)]× (ω0 − η1, ω0 + η1)
and (t, ω) 7−→ X(t, ω) is continuous.

Then by continuity, there exists 0 < η2 < η1 such that

p(X(t, ω)) > 0 ∀(t, ω) ∈ (tε − η2, tε + η2)× (ω0 − η2, ω0 + η2).

By Theorem 3.1, we deduce that

p(X(t, ω)) > 0 ∀(t, ω) ∈ (α−(ω), tε + η2)× (ω0 − η2, ω0 + η2).

Using the definition of Φh we get for ω ∈ (ω0 − η2, ω0 + η2)

Φh(ω) = sup
t∈(α−(ω),α+(ω))

{Lh(t, ω) / (t, ω) ∈ Dh and p(X(t, ω)) > 0}

≥ Lh(tε, ω).

Since Lh(tε, ω) =
∫ tε

α−(ω)

|A(X(s, ω), e)|ds is continuous with respect to ω, there

exists 0 < η < η2 such that ∀ω ∈ (ω0 − η, ω0 + η)

Lh(tε, ω) =
∫ tε

α−(ω)

|A(X(s, ω), e)|ds ≥
∫ tε

α−(ω0)

|A(X(s, ω0), e)|ds− ε

2

= Lh(tε, ω0)− ε

2
= τε − ε

2
> Φh(ω0)− ε

2
− ε

2
.

Thus Φh(ω) ≥ Φh(ω0)− ε ∀ω ∈ (ω0 − η, ω0 + η).
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Now we prove (3.5). Let (ω0, τ0) ∈ [τ < Φh(ω)]. Assume that p̃(ω0, τ0) = 0 then
by Theorem 3.1, p̃(ω0, τ) = 0 ∀τ ≥ τ0. So Φh(ω0) = sup{τ / (ω0, τ) ∈ Sh(Dh)
and p̃(ω0, τ) > 0} ≤ τ0, which is a contradiction.
Now let (ω0, τ0) ∈ [p̃(ω, τ) > 0]. By continuity, there exists η > 0 such that
p̃(ω0, τ) > 0 ∀τ ∈ (τ0 − η, τ0 + η). By Theorem 3.1, we deduce that
p̃(ω0, τ) > 0 ∀τ < τ0+η such that (ω0, τ) ∈ Sh(Dh). Hence Φh(ω0) ≥ τ0+η > τ0

and (ω0, τ0) ∈ [τ < Φh(ω)].

4 Some Technical Lemmas

The following lemma plays an important role in the proof of the continuity of
the free boundary.

Lemma 4.1. Let (u, g) be a solution of (P ). Let (ω1, τ0), (ω2, τ0) ∈ Sh(Dh) with
ω1 < ω2 and

p̃(ωi, τ) = 0 ∀(ωi, τ) ∈ Sh(Dh), τ > τ0 ≥ 0.

Set Zτ0 = Th

(
(ω1, ω2)× (τ0, +∞) ∩ Sh(Dh)

)
and assume that Z̄τ0 ∩ S3 = ∅.

Let y0 ∈ IR such that Dy0,τ0 = [y > y0] ∩ Zτ0 6= ∅ (see Figure 4). Then we have
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.edX ≤ 0.

To prove this lemma, we need another one

Lemma 4.2. Under the assumptions of Lemma 4.1, we have
∫

Dy0,τ0

(A(X,∇u)− χ([u = y])A(X, e)
)
.∇ζdX

≤
∫ ω2

ω1

Yh(s, Φh(s)).ζ̃(s, Φh(s))ds

∀ζ ∈ W 1,q(Dy0,τ0) ∩ C0(D̄y0,τ0), ζ ≥ 0, ζ(x, y0) = 0 ∀(x, y0) ∈ D̄y0,τ0 .

Proof. For ε > 0, ξ = χ(Dy0,τ0)min
(u− y

ε
, ζ

)
is a test function for (P ). So we

have since g.(u− y) = 0 a.e. in Ω
∫

Dy0,τ0

A(X,∇u).∇(u− y

ε
∧ ζ

)
dX ≤ 0

Using the monotonicity of A, we get
∫

Dy0,τ0∩[u−y≥εζ]

(A(X,∇u)−A(X, e)
)
.∇ζdX ≤ −

∫

Dy0,τ0

A(X, e).∇(u− y

ε
∧ ζ

)
dX

= −Iε.
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Moreover

Iε =
∫

Dy0,τ0

χ([u > y])A(X, e).∇(u− y

ε
∧ ζ

)
dX

=
∫

Dy0,τ0

χ([u > y])A(X, e).∇ζdX

−
∫

Dy0,τ0

A(X, e).∇(
ζ − u− y

ε

)+
χ([u > y])dX = I1 − I2

ε .

Now using the change of variables Th, we obtain

I2
ε =

∫

T−1
h (Dy0,τ0 )

χ([poTh(t, ω) > 0])A(X(t, ω), e).
(∇(

ζ − p

ε

)+)
oTh|Yh(t, ω)|dtdω

= −
∫

T−1
h (Dy0,τ0 )

χ([poTh(t, ω) > 0]).Yh(t, ω).
∂

∂t

((
ζ − p

ε

)+
oTh

)
dtdω

since

A(X(t, ω), e).
(∇(

ζ − p

ε

)+)
oTh.|Yh(t, ω)| = −Yh(t, ω).

∂

∂t

((
ζ − p

ε

)+
oTh

)
.

Next using the change of variables S−1
h , we get

I2
ε = −

∫

ShoT−1
h (Dy0,τ0 )

χ([p̃(ω, τ) > 0]).YhoS−1
h (ω, τ)
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.
( ∂

∂t

((
ζ − p

ε

)+
oTh

))
oS−1

h (ω, τ).|detJ S−1
h |dωdτ

=
∫

T −1
h (Dy0,τ0 )

χ([p̃(ω, τ) > 0]).Yh(ω, τ).
∂

∂τ

˜(
ζ − p

ε

)+(ω, τ)dωdτ

since
( ∂

∂t

((
ζ−p

ε

)+
oTh

))
oS−1

h (ω, τ) =
∂

∂τ

((
ζ−p

ε

)+
oThoS−1

h

)
(ω, τ).|A(ThoS−1

h (ω, τ), e)|.

Therefore

I2
ε =

∫

(ω1,ω2)×(τ0,+∞)∩T −1
h ([y>y0])

χ([τ < Φh(ω)]).Yh.
∂

∂τ

˜(
ζ − p

ε

)+
dωdτ.

Note that ∀ω ∈ (ω1, ω2), ∃!ty0(ω) such that

X2(ty0(ω), ω) = y0, τy0(ω) =
∫ ty0 (ω)

α−(ω)

|A(X(s, ω), e)|ds

and one can check that
(
(ω1, ω2)× (τ0, +∞)

) ∩ U−1
h ([y > y0])

= {(ω, τ) ∈ Sh(Dh), ω ∈ (ω1, ω2)/ τ > sup(τ0, τy0(ω))}.

It follows that by using the second mean value theorem

I2
ε =

∫ ω2

ω1

∫ Φh(ω)

sup(τ0,τy0 (ω))

Yh(ω, τ).
∂

∂τ

˜(
ζ − p

ε

)+(ω, τ)dωdτ

=
∫ ω2

ω1

Yh(ω, Φh(ω))
∫ Φh(ω)

τ∗(y0,ω)

∂

∂τ

˜(
ζ − p

ε

)+(ω, τ)dτ

≤
∫ ω2

ω1

Yh(ω, Φh(ω))ζ̃(ω, Φh(ω))dω,

where τ∗(y0, ω) ∈ [sup(τ0, τy0(ω)),Φh(ω)]. Thus
∫

Dy0,τ0∩[u−y≥εζ]

(A(X,∇u)−A(X, e)
)
.∇ζdX +

∫

Dy0,τ0

χ([u > y])A(X, e).∇ζdX

≤
∫ ω2

ω1

Yh(ω, Φ(ω)).ζ̃(ω, Φh(ω))dω

and the lemma follows by letting ε go to 0.

Proof of Lemma 4.1. Let ε > 0 and hε = θεoShoT−1
h , where

θε(ω) = min
( (ω − ω1)+

ε
, 1

)
. min

( (ω2 − ω)+

ε
, 1

)
.
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Since χ(Dy0,τ0)hε(y − y0) is a test function for (P ) we have
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.edX

=
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.∇(y − y0)dX

=
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.∇(hε(y − y0))dX

+
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.∇((1− hε)(y − y0))dX

≤
∫

Dy0,τ0

(A(X,∇u)− gA(X, e)
)
.∇((1− hε)(y − y0))dX

=
∫

Dy0,τ0

(A(X,∇u)− χ([u = y])A(X, e)
)
.∇((1− hε)(y − y0))dX

+
∫

Dy0,τ0

(χ([u = y])− g)A(X, e).∇((1− hε)(y − y0))dX = J1
ε + J2

ε .

By Lemma 4.2, with ζ = (1− hε).(y − y0) = (1− θεoShoT−1
h ).(y − y0), we have

J1
ε ≤

∫ ω2

ω1

Yh(ω, Φh(ω)).(1− θε(ω)). ˜(y − y0)(ω, Φh(ω))dω.

Moreover

J2
ε =

∫

T −1
h (Dy0,τ0 )

(χ([p̃(ω, τ) = 0])− g̃(ω, τ))

.Yh(ω, τ).
∂

∂τ

(
(1− θε(ω)). ˜(y − y0)(ω, τ)

)
dωdτ

=
∫

T −1
h (Dy0,τ0 )

(χ([p̃(ω, τ) = 0])− g̃(ω, τ)).

.Yh(ω, τ).(1− θε(ω))
∂

∂τ

(
T 2

hoS−1
h (ω, τ)

)
dωdτ.

Since θε → 1 when ε → 0, we conclude that J1
ε + J2

ε → 0. This achieves the
proof.

Lemma 4.3. Let (u, g) be a solution of (P ). Let Ch be the connected component
of [τ < Φh(ω)] such that Th(Ch) ∩ S3 = ∅. Then we have for Ch = Th(Ch)

∫

Ch

(A(X,∇u)− gA(X, e)
)
.edX ≤ 0.

Proof.

16



1st step : Arguing as in the proof of Lemma 4.2, we get for all nonnegative
ζ ∈ W 1,q(Ch) ∩ C0(C̄h)
∫

Ch

(A(X,∇u)−χ([u = y])A(X, e)
)
.∇ζdX ≤

∫

πω(Ch)

Yh(s,Φh(s)).ζ̃(s,Φh(s))ds.

2nd step : Let ε > 0 and A = IR \ πω(Ch). Set αε(ω) = min
(
1,

d(ω,A)
ε

)
and

hε = αεoT −1
h . Then we argue as in the proof of Lemma 4.1.

Lemma 4.4. Let (u, g) be a solution of (P ). Let X0 = (x0, y0) = Th(ω0, τ0)
be a point in Ω, (ω0, τ0) ∈ Sh(Dh). We denote by Br(ω0, τ0) a ball with center
(ω0, τ0) and radius r contained in Sh(Dh).
If p̃ = 0 in Br(ω0, τ0), then we have (see Figure 5)

p̃ = 0 in Cr, g̃ = 1 a.e. in Cr

where Cr = {(ω, τ) ∈ Sh(Dh), |ω − ω0| < r, τ > τ0} ∪Br(ω0, τ0) i.e.
if p = 0 in Th(Br(ω0, τ0)), then p = 0, g = 1 a.e. in Th(Cr).

 
 S2 
 
 
 
 
 
 
 
                                                                      p=0 
                                                                  
 
               
                                         p=0  
                                                                                                        ThoSh

-1(Dr) 
              
 
 
 
 
                                                                    ThoSh

-1(Br) 
 

 
 
 

Figure 5

Proof. Note that by Remark 3.2, we necessarily have

X(α+(ω), ω) ∈ S2 ∀ω ∈ (ω0 − r, ω0 + r).

By Theorem 3.1 ii), we have p̃ = 0 in Cr.
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Applying Lemma 4.1 with domains Zτ0 = Th

(
(ω1, ω2)× (τ0, +∞) ∩ Sh(Dh)

) ⊂
Th(Cr) we obtain
∫

[y>y0]∩Zτ0

(1− g)A(X, e).edX ≤ 0 ∀y0 ∈ IR such that [y > y0] ∩ Zτ0 6= ∅.

So g = 1 a.e. in Zτ0 . This holds for all domains Zτ0 in Th(Cr) and we get g = 1
a.e. in Th(Cr).

The following result is a sort of maximum principle.

Lemma 4.5. Let (u, g) be a solution of (P ), X0 = (x0, y0) = Th(ω0, τ0) be a
point of Ω and Br be the open ball in Sh(Dh) with center (ω0, τ0) and radius r.
Then we cannot have the following situations (see Figure 6, 7 and 8)

(i)

{
p̃(ω0, τ) = 0 ∀τ ∈ (τ0 − r, τ0 + r)
p̃(ω, τ) > 0 ∀(ω, τ) ∈ Br \ S, S = {ω0} × (τ0 − r, τ0 + r),

(ii)

{
p̃(ω, τ) = 0 ∀(ω, τ) ∈ Br ∩ [ω ≤ ω0]
p̃(ω, τ) > 0 ∀(ω, τ) ∈ Br ∩ [ω > ω0],

(iii)

{
p̃(ω, τ) = 0 ∀(ω, τ) ∈ Br ∩ [ω ≥ ω0]
p̃(ω, τ) > 0 ∀(ω, τ) ∈ Br ∩ [ω < ω0].

 
 
 
 
 
 
                     
 
                  
 
 
 
 
                               p>0                 p>0 

 
 
 
 p=0 
 
 
                                                            ThoSh

-1 ( Bε (ω0,τ0) ) 
 
 
 
 
 
 
 
 

 

Figure 6
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Proof. i) Since u > y a.e. in Th(Br), we have g = 0 a.e. in Th(Br) and then by
(1.4) u is A−Harmonic in this domain. It follows then by Lemma 3.1 that u > y
or u = y in Th(Br) which is in contradiction with i).
ii) Let ξ ∈ D(Th(Br)), ξ ≥ 0. Using the fact that ±ξ are test functions for (P )

 
 
 
 
 
 
                     
 
                  
 
 
 
 
                               p=0                 p>0 

 
 
 
  
 
 
 
                                                             ThoSh

-1 ( Bε (ω0,τ0) ) 
 
 
 
 
 
 

 
 

Figure 7

and the changes of variables Th and Sh we obtain as in the proof of Theorem
2.1

∫

Th(Br)

A(X,∇u).∇ξdX =
∫

Th(Br)

gA(X, e).∇ξdX =
∫

Br

g̃.Yh.
∂ξ̃

∂τ
dωdτ.

Now by Lemma 4.4, we have g̃ = 1 a.e. in Br ∩ [ω < ω0] and then

∫

ThoS−1
h (Br)

A(X,∇u).∇ξdX =
∫

Br∩[ω<ω0]

Yh.
∂ξ̃

∂τ
dωdτ

=
∫

Br∩[ω<ω0]

−ξ̃
∂Yh

∂τ
dωdτ +

∫

S

Yhξ̃ντ =
∫

Br∩[ω<ω0]

−ξ̃
∂Yh

∂τ
dωdτ.

It follows then
∫

Th(Br)

(A(X,∇u)−A(X,∇y)
)
.∇ξdX =

∫

Br

ξ̃
∂Yh

∂τ
dωdτ

−
∫

Br∩[ω<ω0]

ξ̃
∂Yh

∂τ
dωdτ =

∫

Br∩[ω>ω0]

ξ̃
∂Yh

∂τ
dωdτ ≥ 0.
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Since u ≥ y in Th(Br), u = y in Th(Br ∩ [ω ≤ ω0]), ∇y = e 6= 0, we deduce
from Lemma 3.1 that u = y in Th(Br) which contradicts the fact that u > y in
Th(Br ∩ [ω > ω0]).
iii) We argue as in ii).
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Figure 8

20



5 Continuity of the Free Boundary

In this section we assume that A is strictly monotone in the following sense
(A(X, ξ)−A(X, ζ)

)
.(ξ − ζ) > 0 ∀ξ 6= ζ, ∀X ∈ Ω. (5.1)

Then we have

Theorem 5.1. For each h ∈ πy(Ω) the function Φh defined in (3.4) is contin-
uous on πx(Ω ∩ [y = h]).

Proof. It suffices to prove that Φh is upper semi-continuous. Let X0 = Th(ω0, τ0) ∈
Ω ∩ ∂[p > 0] and ε > 0 small enough. Thanks to Theorem 3.1 and Remark 3.2
we have necessarily X(α+(ω0), ω0) 6∈ S3. Two cases are to be distinguished:

i) First we assume that X(α+(ω0), ω0) 6∈ S3, where S3 denotes the closure of
S3 relative to ∂Ω.
Since p(X0) = p̃(ω0, τ0) = 0 and p, α+ are continuous, there exists a ball
Bε′(ω0, τ0) (0 < ε′ < ε) such that :

{
p̃(ω, τ) ≤ ε ∀(ω, τ) ∈ Bε′(ω0, τ0)
X(α+(ω), ω) 6∈ S3 ∀ω ∈ (ω0 − ε′, ω0 + ε′).

Using Lemma 4.5, one of the following situations occurs

a) ∃(ω1, τ1) ∈ Bε′(ω0, τ0) such that ω1 < ω0 and p̃(ω1, τ1) = 0
b) ∃(ω2, τ2) ∈ Bε′(ω0, τ0) such that ω2 > ω0 and p̃(ω2, τ2) = 0.

Assume that for example a) holds and set X1 = Th(ω1, τ1) and τM = max(τ0, τ1)
(see Figure 9). Then we have by Theorem 3.1

p̃(ωi, τ) = 0 ∀(ωi, τ) ∈ Sh(Dh) such that τ > τM (i = 0, 1).

Set ZτM = Th

(
(ω1, ω0)×(τM , +∞)∩Sh(Dh)

)
and let y0 ∈ IR such that T −1

h ([y =
y0]) ∩Bε′(ω0, τ0) ∩ [τ > τM ] 6= ∅.
Note that

T −1
h ([y = y0]) = {(ω, τy0(ω)) ∈ Sh(Dh) /τy0(ω) =

∫ ty0 (ω)

α−(ω)

|A(X(s, ω), e)|ds,

X2(ty0(ω), ω) = y0}.
Set 




Dy0,τM
= [y > y0] ∩ ZτM

6= ∅,
v(y) = (ε + y0 − y)+ + y,

ξ(x, y) = χ(Dy0,τM )(u− v)+.

Since v ≥ y = u on ∂Dy0,τM
\ ([y = y0]), we have ξ = 0 on ∂Dy0,τM

\ ([y = y0]).
Moreover v(y0) = ε + y ≥ u(x, y0) and then ξ(x, y0) = 0. It follows that ξ = 0
on ∂Dy0,τM

. So ±ξ are test functions for (P ) and we have
∫

Dy0,τM

(A(X,∇u)− gA(X, e)
)
.∇(u− v)+dX = 0. (5.2)
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We also have
∫

Dy0,τM

(A(X,∇v)− χ([v = y])A(X, e)
)
.∇(u− v)+dX = 0. (5.3)

Subtracting (5.3) from (5.2), we obtain
∫

Dy0,τM
∩[v>y]

(A(X,∇u)−A(X,∇v)
)
.∇(u− v)+dX

+
∫

Dy0,τM
∩[v=y]

(A(X,∇u)− gA(X, e)
)
.∇(u− y)dX = 0. (5.4)

By Lemma 4.1, we have for [y > y0 + ε] ∩ ZτM
= Dy0,τM

∩ [v = y]
∫

Dy0,τM
∩[v=y]

(A(X,∇u)− gA(X, e)
)
.edX ≤ 0. (5.5)

Adding (5.4) and (5.5), we get by taking into account (P )i)
∫

Dy0,τM
∩[v>y]

(A(X,∇u)−A(X,∇v)
)
.∇(u− v)+dX

+
∫

Dy0,τM
∩[v=y]∩[u>y]

A(X,∇u).∇udX

+
∫

Dy0,τM
∩[v=y]∩[u=y]

(1− g)A(X, e).edX ≤ 0.
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Since the three integrals in the left hand side of the above inequality are all
nonnegative, we obtain by (5.1) that ∇(u − v)+ = 0 a.e. in Dy0,τM

∩ [v > y]
and then, since (u − v)+ = 0 on ∂Dy0,τM

, we get u ≤ v in Dy0,τM
∩ [v > y].

This leads to p(x, y0 + ε) = 0 ∀x ∈ πx(Dy0,τM
). Now for each ω ∈ (ω1, ω0), there

exists a unique ty0,ε(ω) ∈ (α−(ω), α+(ω)) such that

X2(ty0,ε(ω), ω) = y0 + ε and p(X1(ty0,ε(ω), ω), y0 + ε) = 0

and if τy0,ε(ω) = Ly0+ε(ty0,ε(ω), ω), we obtain p̃(ω, τy0,ε(ω)) = poTh(ty0,ε(ω), ω) =
p(X1(ty0,ε(ω), ω), y0 + ε) = 0 ∀ω ∈ (ω1, ω0). Therefore Φh(ω) ≤ τy0,ε(ω). But
since X2 is increasing with respect to t, X2(ty0(ω), ω) = y0 and X2(ty0,ε(ω), ω) =
y0 + ε, it follows that ty0(ω) < ty0,ε(ω) and then

ε = X2(ty0,ε(ω), ω)−X2(ty0(ω), ω) =
∫ ty0,ε(ω)

ty0 (ω)

a2(X(s, ω))ds

≥ λ(ty0,ε(ω)− ty0(ω))

and

τy0,ε(ω) = τy0(ω) +
∫ ty0,ε(ω)

ty0 (ω)

|A(X(s, ω), e)|ds

≤ τy0(ω) + M(ty0,ε(ω)− ty0(ω)) ≤ τy0(ω) +
M

λ
ε.

So

Φh(ω) ≤ τy0(ω) +
M

λ
ε < τ0 + ε′ +

M

λ
ε < Φh(ω0) +

(
1 +

M

λ

)
ε ∀ω ∈ (ω1, ω0).

Hence Φh is u.s.c at ω0 from the left.
Using Lemma 4.5 and arguing as above, one can prove that Φh is u.s.c at ω0

from the right. Thus Φh is continuous at ω0.
ii) Now we assume that X(α+(ω0), ω0) ∈ S3 \ S3. Then one of the following
situations holds
{

a)∃η > 0 : ∀ω ∈ (ω0 − η, ω0 + η) X(α+(ω), ω) ∈ S3 ⇔ ω ∈ (ω0, ω0 + η)
b)∃η > 0 : ∀ω ∈ (ω0 − η, ω0 + η) X(α+(ω), ω) ∈ S3 ⇔ ω ∈ (ω0 − η, ω0).

Assume for example that a) holds. Then it is easy to see that

Φh(ω) = Lh(α+(ω), ω) ∀ω ∈ (ω0, ω0 + η). (5.6)

Arguing as in i) one can prove that Φh is continuous at ω0 from the left. On
the other hand we deduce from (5.6) that u > y in a right neighborhood of
the curve X(., ω0). Using the continuity from the left and Lemma 4.5, we have
necessarily Φh(ω0) = Lh(α+(ω0), ω0). Therefore we have now

Φh(ω) = Lh(α+(ω), ω) ∀ω ∈ [ω0, ω0 + η)

which leads to the continuity from the right of Φh at ω0.
We argue similarly if b) holds.
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Remark 5.1. i) For each X0 ∈ Ω ∩ ∂[p > 0], there exists h ∈ πy(Ω) such that
X0 ∈ Th(Dh) ∩ ∂[p > 0] and then X0 = Th(ω0, τ0) with τ0 = Φh(ω0). Therefore
from Theorem 5.1, the free boundary is represented in a neighborhood of X0 by
the graph of the continuous function Φh.
ii) Since the free boundary is now represented locally by graphs of continuous
functions, it follows in particular that ∂[p > 0] is of Lebesgue’s measure zero.

The following result expresses that g is the characteristic function of the dry
region.

Corollary 5.1. Let (u, g) be a solution of (P ). Then we have :

g = χ([p = 0]) = χ([u = y]). (5.7)

Proof. First by (P )i), we have g = 0 in [p > 0]. Next if (x0, y0) ∈ Ω\[p > 0], then
since Ω \ [p > 0] is an open set there exists ε0 > 0 small enough and h ∈ πy(Ω)
such that Bε0(x0, y0) ⊂

(
Ω \ [p > 0]

) ∩ Th(Dh).
By Lemma 4.4, g̃ = 1 a.e. in T −1

h (Bε0(x0, y0)) or equivalently g = 1 in Bε0(x0, y0).
Therefore g = 1 in Ω \ [p > 0].
Since the set ∂[p > 0] ∩ Ω is of Lebesgue’s measure zero, we conclude that
g = χ([p = 0]) = χ([u = y]).

6 Uniqueness of the Reservoirs-Connected So-
lutions

Definition 6.1. A solution (u, g) of (P ) is a Reservoirs-Connected Solution if
for all connected component C of [u > y], we have C ∩ S3 6= ∅.
Remark 6.1. Thanks to Remark 3.2, if C ⊃ S3,i (i = 1, ..., N), then C contains
the strip of Ω below S3,i and S3,i on its boundary in the following sense

⋃

h∈πy(Ω)

(
Th

((
πω(Sh

3,i)× IR
) ∩ Sh(Dh)

)) ⊂ C, where Sh
3,i = T −1

h (S3,i).

Theorem 6.1. Let (u, g) be a solution of (P ) and C a connected component of
[u > y] such that C ∩ S3 = ∅. Set hC = sup{y / (x, y) ∈ C}. Then we have

u(x, y) = (hC − y)+χ(C) + y and g = 1− χ(C)

for (x, y) ∈
⋃

h∈πy(Ω)

(
Th

(
πω(Ch)× IR ∩ Sh(Dh)

))
,

where Ch = T −1
h (C ∩ Th(Ω)).
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Proof. Since ±χ(C)(u− y) are test functions for (P ), we have :
∫

C

(A(X,∇u)− gA(X, e)
)
.∇(u− y)dX = 0. (6.1)

By Lemma 4.3, we have
∫

C

(A(X,∇u)− gA(X, e)
)
.edX ≤ 0. (6.2)

Adding (6.1) and (6.2), we obtain
∫

C∩[u>y]

A(X,∇u).∇udX +
∫

C∩[u=y]=∅
(1− g)A(X, e).edX ≤ 0.

It follows that ∇u = 0 a.e. in C and then u is equal to some positive constant
k in C that can be easily verified to be equal to hC .
Using Theorem 3.1 and (5.7) we deduce that u = (hC − y)+χ(C) + y and
g = 1− χ(C) in

⋃
h∈πy(Ω)

(
Th

(
πω(Ch)× IR ∩ Sh(Dh))

)
.

Definition 6.2. We call a Pool in Ω a pair (ū, ḡ) of functions defined in Ω by

ū = (hC − y)+χ(C) + y and ḡ = 1− χ(C) a.e. in Ω,

where C is a sub-domain of Ω and hC = max{y/(x, y) ∈ C}.
Theorem 6.2. Each solution (u, g) of (P ) can be written as the sum of a
Reservoirs-Connected Solution and Pools.

Proof. See [14], [15], [16] and [27].

In order to prove the uniqueness of the Reservoirs-Connected Solution we assume
that S3 is of class C1,α, Ω is covered by a finite number of sets Th(Dh) that is

∃h1, ..., hn ∈ πy(Ω) such that Ω =
k=n⋃

k=1

Thk
(Dhk

). (6.3)

We also assume that

A(X, ξ) = |a(X)ξ · ξ| q−2
2 a(X)ξ where a(X) ∈ C1(Ω) is a 2-by-2 matrix.

(6.4)
Then we can state our uniqueness theorem

Theorem 6.3. Under assumptions (6.3)-(6.4), the Reservoirs-Connected So-
lution is unique.

The proof of Theorem 6.3 requires three lemmas.
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Lemma 6.1. Let (u1, g1) and (u2, g2) be two solutions of (P ). Then we have
for i = 1, 2 and ζ ∈ W 1,q(Ω)

Fi(ζ) =
∫

Ω

(
(A(X,∇ui)−A(X,∇um))− (gi − gM )A(X, e)

)
.∇ζdX = 0,

where um = min(u1, u2) and gM = max(g1, g2).

To prove Lemma 6.1 we need another one

Lemma 6.2. Let (u1, g1) and (u2, g2) be two solutions of (P ) and Φi
hk

(i =
1, 2 and k = 1, ..., n) be the corresponding free boundary functions. Then we
have for i = 1, 2 and ζ ∈ W 1,q(Ω) ∩ C0(Ω̄), ζ ≥ 0

Fi(ζ) ≤
k=n∑

k=1

∫

Di
hk

Yhk
(ω, Φi

hk
(ω)).ζoThk

oS−1
hk

(ω, Φi
hk

(ω))dω,

where Di
hk

= {ω ∈ πω(Shk
(Dhk

)) / Φ0
hk

(ω) = min(Φ1
hk

(ω), Φ2
hk

(ω)) < Φi
hk

(ω)}.
Proof. First thanks to (6.3) there exits a partition of unity (θk)k=n

k=1 corresponding
to the open covering

(
Thk

(Dhk
)
)k=n

k=1
of Ω that is

θk ∈ D(Thk
(Dhk

)), 0 ≤ θk ≤ 1 ∀k = 1, ..., n,

k=n∑

k=1

θk = 1 in Ω. (6.5)

Let ζ ∈ W 1,q(Ω) ∩ C0(Ω̄), ζ ≥ 0 and let ζk = θkζ. Since Fi(ζ) =
∑k=n

k=1 Fi(ζk),
it suffices to show that

Fi(ζk) ≤
∫

Di
hk

Yhk
(ω, Φi

hk
(ω)).ζkoThk

oS−1
hk

(ω, Φi
hk

(ω))dω (6.6)

So let ε > 0 and ξk = min
(
ζk,

(u1 − u2)+

ε

)
. Clearly ±ξk are test functions for

(P ) and we have
∫

Thk
(Dhk

)

(
(A(X,∇u1)−A(X,∇u2))− (g1 − g2)A(X, e)

)
.∇ξkdX = 0. (6.7)

Since we integrate only on the set [u1 > u2] where u2 = um, (6.7) is equivalent
to F1(ζk) = 0 which can be written

∫

Thk
(Dhk

)∩[(u1−u2)+>εζk]

(
(A(X,∇u1)−A(X,∇um)).∇ζkdX

−
∫

Thk
(Dhk

)

(g1 − gM )A(X, e).∇ζkdX

≤ −
∫

Thk
(Dhk

)

(g1 − gM )A(X, e).∇(
ζk − (u1 − u2)+

ε

)+
dX = Ik

ε .
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Using the C1-diffeomorphisms Thk
and Shk

we obtain with g̃1k = g1oThk
oS−1

hk

and g̃Mk = gMoThk
oS−1

hk

Ik
ε = −

∫

Shk
(Dhk

)

(g̃1k − g̃Mk).Yhk
(ω, τ)

∂

∂τ

(
ζ̃k −

˜(u1 − u2)+

ε

)+
dωdτ

=
∫

[ep1k>0=epmk=ep2k]

Yhk
(ω, τ)

∂

∂τ

(
ζ̃k −

˜(u1 − u2)+

ε

)+
dωdτ

=
∫

[Φ2
hk

(ω)<τ<Φ1
hk

(ω)]

Yhk
(ω, τ)

∂

∂τ

(
ζ̃k −

˜(u1 − u2)+

ε

)+
dωdτ

=
∫

D1
hk

∫ Φ1
hk

(ω)

Φ2
hk

(ω)

Yhk
(ω, τ)

∂

∂τ

(
ζ̃k −

˜(u1 − u2)+

ε

)+
dωdτ.

By the second mean value theorem there exists Φ∗k(ω) ∈ [Φ2
hk

(ω), Φ1
hk

(ω)] such
that

Ik
ε =

∫

D1
hk

Yhk
(ω, Φ1

k(ω))
∫ Φ1

hk
(ω)

Φ∗k(ω)

∂

∂τ

(
ζ̃k −

˜(u1 − u2)+

ε

)+
dωdτ

≤
∫

D1
hk

Yhk
(ω, Φ1

hk
(ω)).ζ̃k(ω, Φ1

hk
(ω))dω.

It follows that∫

Thk
(Dhk

)∩[(u1−u2)+>εζk]

(A(X,∇u1)−A(X,∇um)).∇ζkdX

−
∫

Thk
(Dhk

)

(g1 − gM )A(X, e).∇ζkdX

≤
∫

D1
hk

Yhk
(ω, Φ1

hk
(ω)).ζ̃k(ω, Φ1

hk
(ω))dω.

Letting ε go to 0, we get (6.6) for i = 1. The proof for i = 2 is similar.

Proof of Lemma 6.1. Let ζ ∈ C1(Ω̄), ζ ≥ 0. For δ > 0 we set

Am =
k=n⋃

k=1

[p̃mk > 0], αδ(ω, τ) =
(
1− d((ω, τ), Am)

δ

)+

, hδ = αδoShk
oT−1

hk

and remark that F1(ζ) = F1(hδζ) + F1((1− hδ)ζ).
By the previous lemma we have

F1(hδζ) ≤
k=n∑

k=1

∫

D1
hk

Yhk
(ω, Φ1

hk
(ω)))ζ̃k(ω, Φ1

hk
(ω))αδ(ω, Φ1

hk
(ω))dω.

Since (1− hδ)ζ is a test function for (P ) we have
∫

Ω

(A(X,∇u1)− g1A(X, e)).∇((1− hδ)ζ)dX ≤ 0.
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Moreover the function (1− αδ) vanishes on Am and gM = 1 in Ω \Am. So :
∫

Ω

(A(X,∇um)− gMA(X, e)).∇((1− hδ)ζ)dX = 0.

This leads to F1((1− hδ)ζ) ≤ 0 and

F1(ζ) ≤
k=n∑

k=1

∫

D1
hk

Yhk
(ω, Φ1

hk
(ω))ζ̃k(ω, Φ1

hk
(ω))αδ(ω, Φ1

hk
(ω))dω.

Letting δ −→ 0, we deduce F1(ζ) ≤ 0.

It is then easy (see [15], [16], [27]) to show that F1(ζ) = 0 for all ζ ∈ W 1,q(Ω).
Similarly we prove that F2(ζ) = 0 for all ζ ∈ W 1,q(Ω).

Lemma 6.3. Let Ω0 be a domain of IR2, Γ0 ⊂ ∂Ω0 of class C1,α and let u1,
u2 ∈ W 1,q

loc (Ω0) such that:




i) div(A(X,∇u1)) = div(A(X,∇u2)) = 0 in D′(Ω0)
ii) u1 ≤ u2 in Ω0

iii) u1 = u2 on Γ0, u1, u2 ∈ C1(Ω0 ∪ Γ0)
iv) A(X,∇u1).ν = A(X,∇u2).ν on Γ0

v) ∇u1(X) 6= 0 ∀X ∈ Γ0 or ∇u2(X) 6= 0 ∀X ∈ Γ0.

Then u1 = u2 in Ω.

Proof. See [17]

Proof of Theorem 6.3. When q = 2 the proof is given in [27]. For the general
case we use Lemma 6.3.
Let (u1, g1), (u2, g2) be two solutions of (P ). By Lemma 6.1 one can see that
(um, gM ) is also a solution of (P ). Let Cm,i be the connected component of the
set [um > y] that contains S3,i on its boundary. By Lemma 6.1 we deduce easily
that u1 and um satisfy the conditions i) and iv) of Lemma 6.3 with Ω0 = Cm,i

and Γ0 = S3,i.
The condition ii) is obviously satisfied and the first part of iii) is true since
u1 = u2 = ϕ + y on S3. The second part of iii) is also true (see [19] and [26]).
So if we show that v) is satisfied we will get u1 = um in Cm,i. For this purpose,
we distinguish two cases :
• If ∇u1 and ∇um are not identically zero on Γ0 then by iii) ∃Γ′0 ⊂ Γ0 such
that ∇u1 6= 0 on Γ′0 or ∇um 6= 0 on Γ′0. Therefore v) is satisfied on Γ′0.
• If ∇u1 = 0 on Γ0 and ∇um = 0 on Γ0, then u1 and um are both constant
along Γ0. Since u1 = um on S3, it follows that u1 = um = hi on Γ0 for some
constant hi. Therefore one can extend u1 and um into B \Ω by hi where B is a
ball centered at a point of S3,i = Γ0 in such a way that uj ∈ C1(Cm,i ∪B) and
div(A(X,∇uj)) = 0 in D′(Cm,i ∪B). So ∇uj has non-isolated zeros and then
(see [4]) uj = hi in Cm,i (j = 1,m). Then u1 = um in Cm,i.
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On can show as in [15], [16], [27] that C1,i = Cm,i and u1 = um in C1,i. In the
same way we prove that u2 = um in C2,i = Cm,i. We conclude that u1 = u2 in
C1,i = C2,i for all i = 1, ..., N. This means that u1 = u2 in [u1 > y] = [u2 > y]
which leads to u1 = u2 in Ω. Finally we deduce from (5.7) that g1 = g2 in Ω.

Remark 6.2. The assumption (6.4) is needed only to ensure the isolation of
zeros of the gradient of A−harmonic functions (see [4]).
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