On a class of Free Boundary Problems of type $div(a(X)\nabla u) = -div(\chi(u)H(X))$

S. Challal and A. Lyaghfouri King Fahd University of Petroleum and Minerals P.O. Box 728, Dhahran 31261, Saudi Arabia

Abstract

We consider a class of two dimensional free boundary problems of type $div(a(X)\nabla u) = -div(\chi(u)H(X))$, where H is a Lipschitz vector function satisfying $div(H(X)) \ge 0$. We prove that the free boundary $\partial [u > 0] \cap \Omega$ is represented locally by a family of continuous functions.

AMS Mathematics Subject Classification: 35R35

Introduction

In [4], we studied the following problem :

$$(P_0) \begin{cases} \text{Find } (u,\chi) \in H^1(\Omega) \times L^{\infty}(\Omega) \text{ such that } :\\ (i) \quad u \ge 0, \quad 0 \le \chi \le 1, \quad u(\chi - 1) = 0 \text{ a.e. in } \Omega\\ (ii) \quad \int_{\Omega} (a(X)\nabla u + \chi \mathbf{h}(X)) . \nabla \xi dX \le 0\\ \forall \xi \in H^1(\Omega), \quad \xi = 0 \text{ on } \Gamma_1 \cup \Gamma_3, \quad \xi \ge 0 \text{ on } \Gamma_2, \end{cases}$$

where Ω is the open set $\{X = (x, y) \in \mathbb{R}^2 \mid y \in (a_0, b_0), \gamma_1(y) < x < \gamma_2(y)\}$ with $\gamma_1, \gamma_2 \in C^0(a_0, b_0), \Gamma_1 = \{(\gamma_1(y), y) \mid y \in (a_0, b_0)\}, \Gamma_2 = \{(\gamma_2(y), y) \mid y \in (a_0, b_0)\}$ and $\Gamma_3 = \partial\Omega \setminus (\Gamma_1 \cup \Gamma_2)$. The two-by-two matrix $a = (a_{ij})_{i,j=1,2}$ satisfies the assumptions (1.1), (1.2), (4.1) and (4.2). The function $\mathbf{h} : \Omega \longrightarrow \mathbb{R}$ satisfies

$$0 < \underline{h} \le \mathbf{h}(X) \le h \quad \text{for a.e. } X \in \Omega$$

$$\mathbf{h}_x(X) \in L^p_{loc}, \quad p > 2, \qquad \mathbf{h}_x(X) \ge 0 \quad \text{for a.e. } X \in \Omega$$

Under these assumptions we proved that the free boundary $\partial [u > 0] \cap \Omega$ is a continuous curve $x = \Phi(y)$.

In this paper, we would like to consider the more general class of free boundary problems of type $div(a(X)\nabla u) = -div(\chi(u)H(X))$, where H is a Lipschitz continuous vector function with

 $(divH)(X) \ge 0$. Our objective is to prove that the free boundary can be parameterized by a family of continuous functions.

In the study of the problem (P_0) , the monotonicity of χ with respect to x, i.e. $\chi_x \leq 0$ in $\mathcal{D}'(\Omega)$, was essential to define the free boundary as a function $x = \Phi(y)$. In the problem we are considering, we shall prove a more general monotonicity result for χ . For this purpose we introduce, for each $h \in \pi_y(\Omega)$ and $\omega \in \pi_x(\Omega \cap [y = h])$, the differential equation $(E(\omega, h))$: X'(t) = H(X(t)) with the initial condition $X(0) = (\omega, h)$. We show that the mappings $T_h : (t, \omega) \longmapsto X(t, \omega)$ are $C^{0,1}$ homeomorphisms from domains D_h into $T_h(D_h)$ and the family $(T_h(D_h))_h$ is a covering of Ω . Using the change of variables T_h , we prove that χ is non-increasing along the orbits of $(E(\omega, h))$. This allows us to define a local parameterization of the free boundary by a family of functions $(\phi_h)_h$.

In the first section, we state the problem. In the second section, we show the monotonicity of χ . In section 3, we define the free boundary and establish some properties. In section 4, we construct a barrier function that will be used to establish a key lemma for the proof of the continuity of the functions ϕ_h , which is done in section 5.

We end the paper with some remarks. First when H is $C^{1,1}$, T_h is a C^1 diffeomorphism and the use of this change of variables leads to a problem of type (P_0) i.e.

$$div(\mathbb{A}(t,\omega)\nabla(uoT_h)) = -(\chi oT_h.\mathbf{h})_t$$

with A and h satisfying the assumptions of [4]. However when H is only $C^{0,1}$, the matrix A is not necessarily $C^{0,\alpha}$, and we are not in the framework of [4].

Finally, when H(X) = a(X)e, i.e. for the dam problem, we propose a proof for lemma 4.4 and thus for Theorem 5.1 which does not require the assumptions (4.1)-(4.2).

1 Statement of the problem

Let Ω be a Lipschitz bounded domain of \mathbb{R}^2 . Set $\partial \Omega = \overline{\Gamma}_1 \cup \overline{\Gamma}_2 \cup \overline{\Gamma}_3$, with Γ_1, Γ_2 and Γ_3 relatively open connected subsets of $\partial \Omega$. We are concerned by the study of the following problem :

$$(P) \begin{cases} \text{Find } (u,\chi) \in H^1(\Omega) \times L^{\infty}(\Omega) \text{ such that } : \\ (i) \quad u \ge 0, \quad 0 \le \chi \le 1, \quad u(\chi - 1) = 0 \text{ a.e. in } \Omega \\ (ii) \quad u = \varphi \quad \text{on } \Gamma_2 \cup \Gamma_3 \\ (ii) \quad \int_{\Omega} (a(X)\nabla u + \chi H(X)) . \nabla \xi dX \le 0 \\ \forall \xi \in H^1(\Omega), \quad \xi \ge 0 \text{ on } \Gamma_2, \quad \xi = 0 \text{ on } \Gamma_3 \end{cases}$$

where $a = (a_{ij})_{i,j=1,2}$ is a two-by-two matrix satisfying

$$a_{ij} \in L^{\infty}(\Omega), \quad |a|_{\infty} \le M$$

$$(1.1)$$

$$a(X)\xi.\xi \ge \lambda |\xi|^2 \quad \forall \xi \in \mathbb{R}^2, \quad \text{for a.e. } X \in \Omega,$$
(1.2)

with λ and M positive constants. φ a nonnegative Lipschitz function such that $\varphi = 0$ on Γ_2 and $\varphi > 0$ on Γ_3 . The function $H = (H_1, H_2) : \Omega \longrightarrow \mathbb{R}^2$ satisfies for positive constants \underline{h} and \overline{h} :

$$|H_1(X)| \le \bar{h}, \qquad 0 < \underline{h} \le H_2(X) \le \bar{h} \quad \text{for a.e. } X \in \Omega$$
(1.3)

$$div(H(X)) \in L^{\infty}(\Omega), \quad div(H(X)) \ge 0 \quad \text{for a.e. } X \in \Omega.$$
 (1.4)

The existence of a solution of (P) is classical. We start by giving the following properties

Proposition 1.1. Let (u, χ) be a solution of (P). We have *i*)

$$div(a(X)\nabla u) = -div(\chi H(X)) \qquad in \quad \mathcal{D}'(\Omega).$$
(1.5)

ii)

$$div(\chi H(X)) - \chi([u > 0])div(H(X)) \le 0 \qquad in \quad \mathcal{D}'(\Omega).$$
(1.6)

- *iii)* $u \in C^{0,\alpha}_{loc}(\Omega \cup \Gamma_2 \cup \Gamma_3)$ for all $\alpha \in (0,1)$.
- iv) [u > 0] is an open set.
- $v) \quad \text{If } a \in C^{0,\alpha}_{loc}(\Omega), \text{ then } u \in C^{1,\alpha}_{loc}([u>0]).$

Proof. i) This is an immediate consequence of taking $\pm \xi$, with $\xi \in \mathcal{D}(\Omega)$, as test functions for (P).

ii) Let $\xi \in \mathcal{D}(\Omega), \xi \ge 0$ and let $F_{\epsilon}(s) = \min\left(\frac{s^+}{\epsilon}, 1\right), \epsilon > 0$. Taking $\pm F_{\epsilon}(u)\xi$ as test functions for (P), we obtain

$$\int_{\Omega} (a(X)\nabla u + \chi H(X)) \cdot \nabla (F_{\epsilon}(u)\xi) dX = 0$$

which can be written by taking into account (P)(i), (1.2) and the fact that F_{ϵ} is nondecreasing

$$\int_{\Omega} \left[F_{\epsilon}(u)a(X)\nabla u.\nabla\xi - (F_{\epsilon}(u)\xi)divH(X) \right] dX \le 0.$$

Letting $\epsilon \to 0$, we obtain

$$\int_{\Omega} \left[a(X)\nabla u.\nabla \xi - \chi([u>0])divH(X)\xi \right] dX \le 0.$$

Combining the last inequality and (1.5), we get (1.6).

iii) This is a consequence of (P)(ii), (1.5) and the regularity theory of elliptic problems (see [5], Theorem 8.34 for example).

iv) This a consequence of iii).

v) Using (P)(i) and (1.5) we obtain $div(a(X)\nabla u) = -div(H(X))$ in $\mathcal{D}'([u > 0])$. Hence the result becomes a consequence of the regularity theory of elliptic problems (see [5], Corollary 8.36).

2 A monotonicity property of χ

In all what follows, we shall assume that

$$H \in C^{0,1}(\overline{\Omega}). \tag{2.1}$$

We consider the following differential system

$$(E(\omega,h)) \begin{cases} X'(t,\omega,h) &= H(X(t,\omega,h)) \\ X(0,\omega,h) &= (\omega,h) \end{cases}$$

where $h \in \pi_y(\Omega)$ and $\omega \in \pi_x(\Omega \cap [y = h])$. π_x and π_y are respectively the orthogonal projections on the x and y axes.

By the classical theory of ordinary differential equations, there exists a unique maximal solution $X(., \omega, h)$ of $E(\omega, h)$ defined on $(\alpha_{-}(\omega, h), \alpha_{+}(\omega, h))$ and continuous on the open set

$$\{(t,\omega,h)/ \quad \alpha_{-}(\omega,h) < t < \alpha_{+}(\omega,h), \ h \in \pi_{y}(\Omega), \ \omega \in \pi_{x}(\Omega \cap [y=h])\}$$

Since *H* is bounded and continuous on $\overline{\Omega}$, $X(.,\omega,h)$ is defined on $[\alpha_{-}(\omega,h), \alpha_{+}(\omega,h)]$ (see Lemma 2.1 p 16 [6]). Moreover by Corollary 7.7 p. 103 of [1], we know that $X(\alpha_{-}(\omega,h),\omega,h) \in \partial\Omega \cap [y > h]$, $X(\alpha_{+}(\omega,h),\omega,h) \in \partial\Omega \cap [y > h]$ (see Figure 1).

For simplicity we will denote in the sequel $X(t, \omega, h)$, $\alpha_{-}(\omega, h)$ and $\alpha_{+}(\omega, h)$ respectively by $X(t, \omega)$, $\alpha_{-}(\omega)$ and $\alpha_{+}(\omega)$. We shall also denote by $\gamma(\omega)$ the orbit of $X(., \omega)$.

Remark 2.1. Note that α_+ and α_- are bounded. Indeed, we have by (1.3)

$$\underline{h}\alpha_{+}(\omega) \leq \int_{0}^{\alpha_{+}(\omega)} H_{2}(X(s,\omega)ds = X_{2}(\alpha_{+}(\omega),\omega) - h$$
$$X_{2}(\alpha_{-}(\omega),\omega) - h = -\int_{\alpha_{-}(\omega)}^{0} H_{2}(X(s,\omega)ds \leq \underline{h}\alpha_{-}(\omega).$$

Hence

$$\frac{1}{\underline{h}}\Big(\inf_{y\in\overline{\pi_y(\Omega)}}y-h\Big)\,\leq\,\alpha_-(\omega)<0<\alpha_+(\omega)\,\leq\,\frac{1}{\underline{h}}\Big(\sup_{y\in\overline{\pi_y(\Omega)}}y-h\Big).$$

Definition 2.1. For each $h \in \pi_y(\Omega)$ we define the set

$$D_h = \{(t,\omega) \, / \, \omega \in \pi_x(\Omega \cap [y=h]), \, t \in (\alpha_-(\omega), \alpha_+(\omega))\}$$

and consider the mapping

$$\begin{split} T_h &: D_h \longrightarrow T_h(D_h) \\ & (t,\omega) \longmapsto T_h(t,\omega) = (T_h^1,T_h^2)(t,\omega) = X(t,\omega) \end{split}$$

Clearly each $(x, y) \in \Omega$ can be written as $(x, y) = X(0, \omega) = T_h(0, \omega)$ with $\omega = x$ and h = y. So

$$\Omega = \bigsqcup_{h \in \pi_y(\Omega)} T_h(D_h).$$
(2.2)

Moreover

Figure 1

Proposition 2.1.

 T_h is continuous and one to one.

Proof. By the previous remarks on the regularity of X, we have $T_h \in C^0(D_h)$. Now let $(t_1, \omega_1), (t_2, \omega_2) \in D_h$ such that $T_h(t_1, \omega_1) = T_h(t_2, \omega_2)$ i.e. $X(t_1, \omega_1) = X(t_2, \omega_2)$. Then we consider the following ordinary differential equation

$$\begin{cases} Z'(t) = H(Z(t)) \\ Z(0) = X(t_1, \omega_1) \end{cases}$$

Clearly we have

$$Z(t) = X(t + t_1, \omega_1) = X(t + t_2, \omega_2)$$

$$\forall t \in [\alpha_-(\omega_1) - t_1, \alpha_+(\omega_1) - t_1] = [\alpha_-(\omega_2) - t_2, \alpha_+(\omega_2) - t_2]$$

In particular $t_2 - t_1 \in (\alpha_-(\omega_2), \alpha_+(\omega_2))$. Indeed we have

$$\alpha_{-}(\omega_{1}) - t_{1} = \alpha_{-}(\omega_{2}) - t_{2}$$
 and $\alpha_{+}(\omega_{1}) - t_{1} = \alpha_{+}(\omega_{2}) - t_{2}$.

Then since $\alpha_{-}(\omega_{1}) < 0$ and $\alpha_{+}(\omega_{1}) > 0$, we get

$$\alpha_{-}(\omega_{2}) < \alpha_{-}(\omega_{2}) - \alpha_{-}(\omega_{1}) = t_{2} - t_{1} = \alpha_{+}(\omega_{2}) - \alpha_{+}(\omega_{1}) < \alpha_{+}(\omega_{2}).$$

So we can write $Z(-t_1) = X(0, \omega_1) = X(t_2 - t_1, \omega_2)$, i.e.

$$(\omega_1, h) = (\omega_2, h) + \int_0^{t_2 - t_1} H(X(s, \omega_2)) ds.$$

Therefore

$$\int_0^{t_2 - t_1} H_2(X(s, \omega_2)) ds = 0$$

which leads by (1.3) to $t_2 = t_1$. We then deduce that $\omega_1 = \omega_2$.

Proposition 2.2.

$$T_h$$
 and T_h^{-1} are $C^{0,1}$.

Proof. The proof is done in several steps. For the Lipschitz continuity of T_h , we refer to [?], Theorem 8.3 p 110.

Step 1. Extension.

Since $H \in C^{0,1}(\overline{\Omega})$, there exists by Kirszbraun's theorem (see [2], Theorem 2.10.43 p.210) an extension $\widetilde{H} \in C^{0,1}(\mathbb{R}^2)$ of H with the same Lipschitz constant L. Then

$$\begin{split} \overline{H} &= \left(\min(\bar{h}, \max(\widetilde{H}_1, -\bar{h})), \min(\bar{h}, \max(\widetilde{H}_2, \underline{h}))\right) \in C^{0,1}(\mathbb{R}^2) \\ \text{with} \quad |\overline{H}_1| \leq \bar{h} \quad \text{and} \quad \underline{h} \leq \overline{H}_2 \leq \bar{h}. \end{split}$$

Step 2. Regularization.

Let $H_{\epsilon} = \rho_{\epsilon} * \overline{H}$, where ρ_{ϵ} is the usual mollifier function. Then, it is well known that $H_{\epsilon} \in C^{\infty}(\mathbb{R}^2)$ and satisfies

$$\begin{cases} |H_{\epsilon}^{1}(X)| \leq \bar{h}, & \underline{h} \leq H_{\epsilon}^{2}(X) \leq \bar{h} & \forall X \in \mathbb{R}^{2} \\ H_{\epsilon} \longrightarrow \overline{H} & \text{uniformly on each compact set of } \mathbb{R}^{2} & \text{as } \epsilon \to 0 \\ \|\nabla H_{\epsilon}\|_{L^{\infty}(\mathbb{R}^{2})} \leq \|\nabla \overline{H}\|_{L^{\infty}(\mathbb{R}^{2})} \leq L. \end{cases}$$

Now, for $(\omega, h) \in \mathbb{R}^2$, let X_{ϵ} and \overline{X} be respectively the unique solutions of the differential equations

$$\begin{cases} X'_{\epsilon}(t,\omega) = H_{\epsilon}(X_{\epsilon}(t,\omega)) \\ X_{\epsilon}(0,\omega) = (\omega,h) \end{cases} \quad \text{and} \quad \begin{cases} \overline{X}'(t,\omega) = \overline{H}(\overline{X}(t,\omega)) \\ \overline{X}(0,\omega) = (\omega,h). \end{cases}$$

 X_{ϵ} and \overline{X} are defined on the maximal interval $(-\infty, +\infty)$. Moreover X_{ϵ} is C^{∞} with respect to $t \in \mathbb{R}$ and the initial value $(w, h) \in \mathbb{R}^2$.

Step 3. Local uniform convergence.

Let K be a compact set of \mathbb{R}^2 . There exists T > 0, $\omega_1, \omega_2 \in \mathbb{R}$ such that $K \subset [-T, T] \times [\omega_1, \omega_2] = K'$. For each $(t, \omega) \in K$, we have

$$\begin{aligned} |X_{\epsilon}(t,\omega) - \overline{X}(t,\omega)| &= \left| \int_{0}^{t} (H_{\epsilon}(X_{\epsilon}(s,\omega)) - \overline{H}(\overline{X}(s,\omega))) ds \right| \\ &\leq \left| \int_{0}^{t} (H_{\epsilon}(X_{\epsilon}(s,\omega)) - H_{\epsilon}(\overline{X}(s,\omega))) ds \right| + \left| \int_{0}^{t} (H_{\epsilon}(\overline{X}(s,\omega)) - \overline{H}(\overline{X}(s,\omega))) ds \right| \\ &\leq \left| \int_{0}^{t} L |X_{\epsilon}(s,\omega) - \overline{X}(s,\omega)| ds \right| + |t| |H_{\epsilon} - \overline{H}|_{\infty,\overline{X}(K')} \end{aligned}$$

By Gronwall's Lemma (see [?], p 90), we obtain

$$|X_{\epsilon}(t,\omega) - \overline{X}(t,\omega)| \le |t| |H_{\epsilon} - \overline{H}|_{\infty,\overline{X}(K')} \exp(L|t|).$$

So we have with $C = T \exp(LT)$

$$|X_{\epsilon} - \overline{X}|_{\infty,K} \le C |H_{\epsilon} - \overline{H}|_{\infty,\overline{X}(K')} \to 0 \qquad \text{when } \epsilon \to 0.$$

Step 4. $X_{\epsilon} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a C^1 diffeomorphism.

• $X_{\epsilon}(\mathbb{R}^2) = \mathbb{R}^2$: Indeed let $(x_0, y_0) \in \mathbb{R}^2$ and let $Z = (Z_1, Z_2)$ be the unique maximal solution of the following differential equation

$$\begin{cases} Z'(t) = H_{\epsilon}(Z(t)) \\ Z(0) = (x_0, y_0). \end{cases}$$

It is not difficult to see that Z is defined on $(-\infty, +\infty)$ and that $\lim_{t \to \pm \infty} Z_2(t) = \pm \infty$. Moreover since $Z'_2(t) = H^2_{\epsilon}(Z(t)) \ge \underline{h} > 0$, we deduce that Z_2 is bijective from \mathbb{R} into \mathbb{R} . Therefore there exists $t_0 \in \mathbb{R}$ such that $Z_2(t_0) = h$. Let $\omega_0 = Z_1(t_0)$. Then $Z(t_0) = (\omega_0, h)$ and it is easy to verify that $X_{\epsilon}(t, \omega_0) = Z(t + t_0)$. In particular $X_{\epsilon}(-t_0, \omega_0) = Z(0) = (x_0, y_0)$.

• Since X_{ϵ} is onto, it suffices then to verify that $det(\mathcal{J}X_{\epsilon})$ does not vanish. Here we denote by $\mathcal{J}F$ the Jacobian matrix of the mapping F and by $det(\mathcal{J}F)$ the determinant of $\mathcal{J}F$. One can easily check that

$$\begin{split} Y_h^{\epsilon}(t,\omega) &= \det(\mathcal{J}X_{\epsilon}) = H_{\epsilon}^1(X_{\epsilon}(t,\omega)) \frac{\partial X_{2\epsilon}}{\partial \omega} - H_{\epsilon}^2(X_{\epsilon}(t,\omega)) \frac{\partial X_{1\epsilon}}{\partial \omega}, \\ \frac{\partial Y_h^{\epsilon}}{\partial t}(t,\omega) &= Y_h^{\epsilon}(t,\omega).(div(H_{\epsilon}))(X_{\epsilon}(t,\omega)). \end{split}$$

Therefore

$$Y_h^{\epsilon}(t,\omega) = Y_h^{\epsilon}(0,\omega) \cdot \exp(\int_0^t \{div(H_{\epsilon})\}(X_{\epsilon}(s,\omega))ds).$$

$$(2.3)$$

Since $Y_h^{\epsilon}(0,\omega) = -H_{\epsilon}^2(X_{\epsilon}(0,\omega)) = -H_{\epsilon}^2(\omega,h) < 0$, we get $Y_h^{\epsilon}(t,\omega) < 0 \ \forall (t,\omega) \in \mathbb{R}^2$.

 $Step \ 5.$ We have :

$$||\mathcal{J}X_{\epsilon}^{-1}(x,y)||_{\infty} \leq \frac{1}{\underline{h}} \left(\exp(\frac{L|y-h|}{\underline{h}}) + \overline{h} \right) \qquad \forall (x,y) \in \mathbb{R}^{2}$$

Indeed, we have for $(t,\omega)=X_{\epsilon}^{-1}(x,y)$

$$\begin{aligned} \mathcal{J}X_{\epsilon}^{-1}(x,y) &= \frac{1}{Y_{h}^{\epsilon}(t,\omega)} \begin{pmatrix} \frac{\partial X_{2\epsilon}}{\partial \omega}(t,\omega) & -\frac{\partial X_{1\epsilon}}{\partial \omega}(t,\omega) \\ -H_{\epsilon}^{2}(X_{\epsilon}(t,\omega)) & H_{\epsilon}^{1}(X_{\epsilon}(t,\omega)) \end{pmatrix}. \\ |H_{\epsilon}^{i}(X_{\epsilon}(t,\omega))| &\leq \bar{h}, \quad H_{\epsilon}^{2}(X_{\epsilon}(t,\omega)) \geq \underline{h}, \quad \text{and} \quad div(H_{\epsilon}) \geq 0. \end{aligned}$$

It follows that

$$\frac{1}{|Y_h^{\epsilon}(t,\omega)|} = \frac{1}{H_{\epsilon}^2(\omega,h)} \exp(-\int_0^t \{div(H_{\epsilon})\}(X_{\epsilon}(s,\omega))ds) \le \frac{1}{\underline{h}}$$

We claim that $\left|\frac{\partial X_{\epsilon}}{\partial \omega}\right| \leq \exp(L|t|)$. Indeed for $\omega_1, \omega_2 \in \mathbb{R}$, we have

$$\begin{aligned} |X_{\epsilon}(t,\omega_1) - X_{\epsilon}(t,\omega_2)| &= \left| (\omega_1 - \omega_2, 0) + \int_0^t (H_{\epsilon}(X_{\epsilon}(s,\omega_1)) - H_{\epsilon}(X_{\epsilon}(s,\omega_2))) ds \right| \\ &\leq |\omega_1 - \omega_2| + L \Big| \int_0^t |X_{\epsilon}(s,\omega_1) - X_{\epsilon}(s,\omega_2)| ds \Big|. \end{aligned}$$

By Gronwall's Lemma, we obtain

$$|X_{\epsilon}(t,\omega_1) - X_{\epsilon}(t,\omega_2)| \le |\omega_1 - \omega_2|\exp(L|t|)$$

Now we conclude that

$$\begin{split} \|\mathcal{J}X_{\epsilon}^{-1}(x,y)\|_{\infty} &= \max\left\{\frac{1}{|Y_{h}^{\epsilon}|} \left(\left|\frac{\partial X_{2\epsilon}}{\partial \omega}\right| + |H_{\epsilon}^{2}oX_{\epsilon}|\right), \frac{1}{|Y_{h}^{\epsilon}|} \left(\left|\frac{\partial X_{1\epsilon}}{\partial \omega}\right| + |H_{\epsilon}^{1}oX_{\epsilon}|\right)\right\}(t,\omega) \\ &\leq \frac{1}{\underline{h}} \left(\exp(L|t|) + \overline{h}\right) \leq \frac{1}{\underline{h}} \left(\exp(\frac{L|y-h|}{\underline{h}}) + \overline{h}\right) \end{split}$$

since

$$|y-h| = \Big| \int_0^t H_{\epsilon}^2(X_{\epsilon}(s,\omega)) ds \Big| \ge \underline{h}|t|.$$

Step 6. X_{ϵ}^{-1} is uniformly Lipschitz continuous on each compact set with a Lipschitz constant independent of ϵ .

Let K be a compact set of \mathbb{R}^2 and (x_1, y_1) , (x_2, y_2) be two points in K. We denote by $|(x, y)|_{\infty} = \max(|x|, |y|)$. Then we have

$$\begin{split} |X_{\epsilon}^{-1}(x_{1},y_{1}) - X_{\epsilon}^{-1}(x_{2},y_{2})|_{\infty} &= \left| \int_{0}^{1} \frac{d}{d\tau} X_{\epsilon}^{-1}(\tau(x_{1},y_{1}) + (1-\tau)(x_{2},y_{2}))d\tau \right|_{\infty} \\ &= \left| \int_{0}^{1} \mathcal{J} X_{\epsilon}^{-1}(\tau(x_{1},y_{1}) + (1-\tau)(x_{2},y_{2})).(x_{1} - x_{2},y_{1} - y_{2})d\tau \right|_{\infty} \\ &\leq \int_{0}^{1} |\mathcal{J} X_{\epsilon}^{-1}(\tau(x_{1},y_{1}) + (1-\tau)(x_{2},y_{2}))|_{\infty}.|(x_{1},y_{1}) - (x_{2},y_{2})|_{\infty}d\tau \\ &\leq \left(\frac{1}{\underline{h}} \int_{0}^{1} \left(\exp(\frac{L}{\underline{h}} |(1-\tau)y_{2} + \tau y_{1} - h|) + \overline{h} \right) d\tau \right) |(x_{1},y_{1}) - (x_{2},y_{2})|_{\infty} \\ &\leq c(K) |(x_{1},y_{1}) - (x_{2},y_{2})|_{\infty}, \end{split}$$

with
$$c(K) = \frac{1}{\underline{h}} \left(\exp(\frac{L}{\underline{h}}[m+h]) + \overline{h} \right)$$
 and $m = \max\{|y| / y \in \pi_y(K)\}.$

Step 7. Conclusion.

There exists a subsequence $(X_{\epsilon_n})_{n\geq 0}$ such that $(X_{\epsilon_n}^{-1})_n$ converges uniformly to an element $X^* \in C_{loc}^{0,1}(\mathbb{R}^2)$ on each compact set of \mathbb{R}^2 . We claim that $X^* = \overline{X}^{-1}$. Indeed we have

$$X_{\epsilon}oX_{\epsilon}^{-1}(x,y) = (x,y)$$
 and $X_{\epsilon}^{-1}oX_{\epsilon}(t,\omega) = (t,\omega)$ $\forall (x,y), (t,\omega) \in \mathbb{R}^2$.

Passing to the limit, we obtain

$$\overline{X}oX^*(x,y) = (x,y) \quad \text{and} \quad X^*o\overline{X}(t,\omega) = (t,\omega) \quad \forall (x,y), (t,\omega) \in \mathbb{R}^2.$$

Since $\overline{X}_{|_{D_h}} = X = T_h$, we have $T_h^{-1} = \overline{X}^{-1}_{|_{T_h(D_h)}} \in C^{0,1}(T_h(D_h)).$

Now we have the following Proposition

Proposition 2.3. Let $X(., \omega)$ be the maximal solution of $E(\omega, h)$. We have *i*)

$$\mathcal{J}T_{h} = \begin{pmatrix} H_{1}(X(t,\omega)) & \frac{\partial X_{1}}{\partial \omega}(t,\omega) \\ H_{2}(X(t,\omega)) & \frac{\partial X_{2}}{\partial \omega}(t,\omega) \end{pmatrix} \in L^{\infty}(D_{h})$$
$$Y_{h}(t,\omega) = det\mathcal{J}T_{h} = H_{1}(X(t,\omega))\frac{\partial X_{2}}{\partial \omega}(t,\omega) - H_{2}(X(t,\omega))\frac{\partial X_{1}}{\partial \omega}(t,\omega) \quad in \ L^{\infty}(D_{h}).$$

$$ii) \quad \frac{\partial Y_h}{\partial t}(t,\omega) = Y_h(t,\omega)(divH)(X(t,\omega)) \qquad a.e. \ in \ D_h.$$

iii)
$$Y_h(t,\omega) = -H_2(\omega,h) \exp\left(\int_0^{\infty} (divH)(X(s,\omega))ds\right)$$
 a.e. in D_h .

$$iv) \quad \underline{h} \le -Y_h(t,\omega) \le Ch, \qquad C > 0.$$

Proof. i) Note that since $T_h \in C^{0,1}(D_h)$, we have $T_h \in W^{1,\infty}(D_h)$ and therefore we can talk about $\mathcal{J}T_h$. The formula is trivial.

ii) Given that H, T_h, T_h^{-1} are $C^{0,1}$, we can use the chain rule for $H_i oX$ (see [7]) to get

$$\frac{\partial(H_i o X)}{\partial t} = H_1 \frac{\partial H_i}{\partial x} + H_2 \frac{\partial H_i}{\partial y}.$$
(2.4)

Moreover $H_{\epsilon}, X_{\epsilon} \in C^{\infty}(\mathbb{R}^2)$ and $X_{\epsilon}(t, \omega) = (\omega, h) + \int_0^t H_{\epsilon}(X_{\epsilon}(s, \omega)) ds$. So we have

$$\frac{\partial X_{\epsilon}}{\partial \omega}(t,\omega) = (1,0) + \int_0^t \left(\frac{\partial X_{1\epsilon}}{\partial \omega}(s,\omega)\frac{\partial H_{\epsilon}}{\partial x}(X_{\epsilon}(s,\omega)) + \frac{\partial X_{2\epsilon}}{\partial \omega}(s,\omega)\frac{\partial H_{\epsilon}}{\partial y}(X_{\epsilon}(s,\omega))\right) ds.$$

Since H_{ϵ} and X_{ϵ} converge uniformly to H and X respectively in Ω and D_h , $\frac{\partial X_{\epsilon}}{\partial \omega}$ and ∇H_{ϵ} converge to $\frac{\partial X}{\partial \omega}$ and ∇H respectively in $L^p(D_h)$ and $L^p(\Omega)$ for each $p \ge 1$, we obtain for a.e. $(t, \omega) \in D_h$, by letting $\epsilon \to 0$

$$\frac{\partial X}{\partial \omega}(t,\omega) = (1,0) + \int_0^t \left(\frac{\partial X_1}{\partial \omega}(s,\omega)\frac{\partial H}{\partial x}(X(s,\omega)) + \frac{\partial X_2}{\partial \omega}(s,\omega)\frac{\partial H}{\partial y}(X(s,\omega))\right) ds.$$
(2.5)

It follows from (2.5) that

$$\frac{\partial^2 X}{\partial t \partial \omega}(t,\omega) = \frac{\partial X_1}{\partial \omega}(t,\omega) \cdot \frac{\partial H}{\partial x}(X(t,\omega)) + \frac{\partial X_2}{\partial \omega}(t,\omega) \cdot \frac{\partial H}{\partial y}(X(t,\omega)) \text{ in } L^{\infty}(D_h).$$
(2.6)

Now, since $H_i o X \in W^{1,\infty}(D_h)$ and $\frac{\partial^2 X_i}{\partial t \partial \omega} \in L^{\infty}(D_h)$, we obtain

$$\frac{\partial}{\partial t} \left(H_i o X. \frac{\partial X_i}{\partial \omega} \right) = \frac{\partial}{\partial t} (H_i o X). \frac{\partial X_i}{\partial \omega} + (H_i o X). \frac{\partial^2 X_i}{\partial t \partial \omega}.$$
(2.7)

Using (2.4)-(2.7), we obtain

$$\begin{split} \frac{\partial Y_h}{\partial t}(t,\omega) &= \left(H_1(X(t,\omega))\frac{\partial H_1}{\partial x}(X(t,\omega)) + H_2(X(t,\omega))\frac{\partial H_1}{\partial y}(X(t,\omega))\right)\frac{\partial X_2}{\partial \omega}(t,\omega) \\ &- \left(H_1(X(t,\omega))\frac{\partial H_2}{\partial x}(X(t,\omega)) + H_2(X(t,\omega))\frac{\partial H_2}{\partial y}(X(t,\omega))\right)\frac{\partial X_1}{\partial \omega}(t,\omega) \\ &+ H_1(X(t,\omega))\frac{\partial^2 X_2}{\partial t \partial \omega}(t,\omega) - H_2(X(t,\omega))\frac{\partial^2 X_1}{\partial t \partial \omega}(t,\omega) \\ &= \left(H_1(X(t,\omega))\frac{\partial X_2}{\partial \omega}(t,\omega) - H_2(X(t,\omega))\frac{\partial X_1}{\partial \omega}(t,\omega)\right) \cdot \left(\frac{\partial H_1}{\partial x} + \frac{\partial H_2}{\partial y}\right)(X(t,\omega)) \\ &= Y_h(t,\omega)(divH)(X(t,\omega)). \end{split}$$

iii) By using the product formula and chain rule, we obtain

$$\frac{\partial}{\partial t} \Big((Y_h(t,\omega).\exp\big(-\int_0^t (divH)(X(s,\omega))ds\big) \Big) = \frac{\partial Y_h}{\partial t}.\exp\big(-\int_0^t (divH)(X(s,\omega))ds\big) + Y_h(t,\omega).(-(divH)(X(t,\omega))\exp\big(-\int_0^t (divH)(X(s,\omega))ds\big) = 0.$$

Then $Y_h(t,\omega) \exp\left(-\int_0^t (divH)(X(s,\omega))ds\right) = Cst = Y_h(0,\omega)$ which exists because $Y_h \in C^0(\alpha_-(\omega), \alpha_+(\omega))$. Since we have $\frac{\partial X}{\partial \omega}(0,\omega) = (1,0)$, then $Y_h(0,\omega) = -H_2(X(0,\omega)) = -H_2(\omega,h)$. iv) Since $0 \le divH \le L$, it follows that $\left|\int_0^t (divH)(X(s,\omega))ds\right| \le 2L|t| \le 2L \max(\alpha_+(\omega), -\alpha_-(\omega)) \le C_0$.

L'. We deduce, since
$$\underline{h} \leq H_2(\omega, h) \leq \overline{h}$$
, that $\underline{h} \leq -Y_h(t, \omega) \leq \overline{h} \exp(L')$.

Now we can prove the main result of this section.

Theorem 2.1. Let (u, χ) be a solution of (P). We have for each $h \in \pi_y(\Omega)$

$$\frac{\partial}{\partial t} (\chi o T_h) \le 0 \qquad \text{ in } \mathcal{D}'(D_h).$$

Proof. Let $\varphi \in \mathcal{D}(D_h), \varphi \geq 0$. By (1.6), we have

$$\int_{T_h(D_h)} \left(-\chi H(X) \cdot \nabla(\varphi o T_h^{-1}) - \chi([u > 0]) div H(X) \cdot \varphi o T_h^{-1}\right) dX \le 0$$

Since $T_h, T_h^{-1} \in C^{0,1}$, we can use T_h as a change of variables (see [7]) to obtain

$$\int_{D_h} \Big(-\chi oT_h \frac{\partial \varphi}{\partial t} - \chi ([uoT_h > 0])(divH)oT_h.\varphi \Big) (-Y_h(t,\omega)) dt d\omega \le 0.$$

Given that $\frac{\partial Y_h}{\partial t} = Y_h.(divH)oT_h$, we obtain

$$\begin{split} \int_{D_h} \chi oT_h \frac{\partial (-Y_h.\varphi)}{\partial t} dt d\omega &= \int_{D_h} \chi oT_h \frac{\partial \varphi}{\partial t} (-Y_h) + \chi oT_h.(divH) oT_h.\varphi.(-Y_h) dt d\omega \\ &\geq \int_{D_h} (\chi oT_h - \chi([uoT_h > 0])).(divH) oT_h.\varphi.(-Y_h) dt d\omega \geq 0 \end{split}$$

By approximation the last inequality remains valid for all nonnegative functions φ with compact support and such that $\varphi_t \in L^1(D_h)$. Since $Y_h \in L^{\infty}(D_h)$ and does not vanish, one can choose $\varphi = -\frac{\psi}{Y_h}$, with $\psi \in \mathcal{D}(D_h)$ and $\psi \ge 0$. Thus we get the result.

3 Definition of the Free Boundary and some Technical Results

In this section, we use the monotonicity result of the previous section and the continuity of u to define the free boundary. We also give some other results. First, we have the following key proposition.

Proposition 3.1. Let (u, χ) be a solution of (P) and $X_0 = (x_0, y_0) = T_h(t_0, \omega_0) \in T_h(D_h)$. *i)* If $u(X_0) = uoT_h(t_0, \omega_0) > 0$, then there exists $\epsilon > 0$ such that

$$uoT_h(t,\omega) > 0 \qquad \forall (t,\omega) \in C_\epsilon = \{(t,\omega) \in D_h \, / \, |\omega - \omega_0| < \epsilon, \, t < t_0 + \epsilon\}.$$

 $\label{eq:ii} ii) \quad \textit{If} \quad u(X_0) = uoT_h(t_0, \omega_0) = 0, \quad then \quad uoT_h(t, \omega_0) = 0 \qquad \forall t \geq t_0.$

Proof. It suffices to verify i). By continuity, there exists $\epsilon > 0$ such that

$$uoT_h(t,\omega) > 0$$
 $\forall (t,\omega) \in (t_0 - \epsilon, t_0 + \epsilon) \times (\omega_0 - \epsilon, \omega_0 + \epsilon) = Q_\epsilon.$

Then $\chi oT_h(t, \omega) = 1$ for a.e. $(t, \omega) \in Q_{\epsilon}$. By Theorem 2.1 and since $\chi oT_h \leq 1$, we get $\chi oT_h = 1$ a.e. in C_{ϵ} , i.e. $\chi = 1$ a.e. in $T_h(C_{\epsilon})$.

From (1.4) and (1.5), we have $div(a(X)\nabla u) = -div(H(X)) \leq 0$ in $\mathcal{D}'(T_h(C_{\epsilon}))$. Then by the strong maximum principle we deduce, since $u \geq 0$ in Ω and u > 0 in $T_h(Q_{\epsilon}) \subset T_h(C_{\epsilon})$, that u > 0 in $T_h(C_{\epsilon})$ (see Figure 2).

Thanks to Proposition 3.1, we can define for each $h \in \pi_y(\Omega)$, the following function ϕ_h on $\pi_x(\Omega \cap [y=h])$ by

$$\phi_h(\omega) = \begin{cases} \sup\{t/(t,\omega) \in D_h, \quad uoT_h(t,\omega) > 0\} \\ & \text{if this set is not empty} \\ \alpha_-(\omega) & \text{otherwise.} \end{cases}$$
(3.1)

Remark 3.1. Since $u = \varphi > 0$ on Γ_3 and $u \in C^0(\Omega \cup \Gamma_3)$, we have u > 0 below Γ_3 in the following sense :

$$u(X(t,\omega)) > 0$$
 $\forall t \in [\alpha_{-}(\omega), \alpha_{+}(\omega)]$ such that $X(\alpha_{+}(\omega), \omega) \in \Gamma_{3}$.

Consequently, if $X(t_0, \omega_0) \in \Omega$ and $u(X(t_0, \omega_0)) = 0$, we have necessarily $X(\alpha_+(\omega_0), \omega_0)) \in \overline{\Gamma}_1 \cup \overline{\Gamma}_2$.

Arguing as in [3], we have the following results

Proposition 3.2. ϕ_h is lower semi-continuous on each $\omega \in \pi_x(\Omega \cap [y = h])$ such that $T_h(\phi_h(\omega), \omega) \in \Omega$. Moreover

$$[uoT_h(t,\omega) > 0] \cap D_h = [t < \phi_h(\omega)].$$

Figure 2

The following important lemmas will be useful in Sections 4 and 5. Some of them are extensions of lemmas in [3].

Lemma 3.1. Let $h \in \pi_y(\Omega)$, $\omega_1, \omega_2 \in \pi_x(\Omega \cap [y=h])$ with $\omega_1 < \omega_2$, and $\underline{y} \in \pi_y(\Omega)$. We denote by $t_{\underline{y}}(\omega)$ the unique t (if it exists) at which the orbit $\gamma(\omega)$ meets the line $[\underline{y} = \underline{y}]$. Assume that for i = 1, 2, $\gamma(\omega_i) \cap [\underline{y} = \underline{y}] \neq \emptyset$ and that $[X(t_{\underline{y}}(\omega_1), \omega_1), X(t_{\underline{y}}(\omega_2), \omega_2)] \subset \Omega$. Then we have

$$\begin{split} i) \quad &\gamma(\omega) \cap [y = \underline{y}] \neq \emptyset \quad \forall \omega \in [\omega_1, \omega_2] \\ ii) \quad & [X(t_y(\omega_1), \omega_1), X(t_y(\omega_2), \omega_2)] = \{X(t_y(\omega), \omega) \, / \, \omega \in [\omega_1, \omega_2]\}. \end{split}$$

Proof. i) First note that it is enough to prove the assertion for $\omega \in (\omega_1, \omega_2)$. Moreover if y = h, then the assertion is trivial since in this case for all $\omega \in [\omega_1, \omega_2]$, $\gamma(\omega) \cap [y = \underline{y}] = \{(\omega, h)\}$. So we assume that $y \neq h$ and discuss the two cases :

* $\underline{\underline{y}} > \underline{h}$: For each $\omega \in (\omega_1, \omega_2)$, the half orbit $\gamma^+(\omega) = \gamma(\omega) \cap [t \ge 0]$ is enclosed between

 $\gamma^+(\omega_1)$ and $\gamma^+(\omega_2)$. So if $\gamma^+(\omega) \cap [y = \underline{y}] = \emptyset$, then $\gamma^+(\omega)$ will never reach $\partial\Omega$, which contradicts $X(\alpha_+(\omega), \omega) \in \partial\Omega \cap [y > h]$.

* $\underline{y} < h$: For each $\omega \in (\omega_1, \omega_2)$, the half orbit $\gamma^-(\omega) = \gamma(\omega) \cap [t \le 0]$ is enclosed between $\gamma^-(\omega_1)$ and $\gamma^-(\omega_2)$. So if $\gamma^-(\omega) \cap [y = \underline{y}] = \emptyset$, then $\gamma^-(\omega)$ will never reach $\partial\Omega$, which contradicts $X(\alpha_-(\omega), \omega) \in \partial\Omega \cap [y < h]$.

ii) First note that it is enough to show that

$$(X(t_y(\omega_1),\omega_1),X(t_y(\omega_2),\omega_2)) = \{X(t_y(\omega),\omega) \mid \omega \in (\omega_1,\omega_2)\},\$$

where $(X(t_y(\omega_1), \omega_1), X(t_y(\omega_2), \omega_2))$ denotes the line segment without the extreme points.

• Let $\omega \in (\omega_1, \omega_2)$. Since the orbit $\gamma(\omega)$ is strictly enclosed between the orbits $\gamma(\omega_1)$ and $\gamma(\omega_2)$, and meets the line $[y = \underline{y}]$ at the point $X(t_{\underline{y}}(\omega), \omega)$, we have $X_1(t_{\underline{y}}(\omega_1), \omega_1) < X_1(t_{\underline{y}}(\omega), \omega) < X_1(t_{\underline{y}}(\omega_2), \omega_2)$ and therefore $X(t_{\underline{y}}(\omega), \omega) \in (X(t_{\underline{y}}(\omega_1), \omega_1), X(t_{\underline{y}}(\omega_2), \omega_2))$.

• Let $(x_*, \underline{y}) \in (X(t_{\underline{y}}(\omega_1), \omega_1), X(t_{\underline{y}}(\omega_2), \omega_2))$. We consider $X(., x_*, \underline{y})$ the maximal solution of the differential equation $X'(t) = H(\overline{X}(t)), X(0) = (x_*, y)$.

Note that the orbit $\gamma(x_*, \underline{y})$ of $X(., x_*, \underline{y})$ has no intersection with $\gamma(\omega_i)$, i = 1, 2, because otherwise we will have $\gamma(x_*, \underline{y}) = \gamma(\omega_1)$ or $\gamma(x_*, \underline{y}) = \gamma(\omega_2)$, which is impossible since $x_* \in (X_1(t_{\underline{y}}(\omega_1), \omega_1), X_1(t_{\underline{y}}(\omega_2), \omega_2))$. Hence $\gamma(x_*, \underline{y})$ is strictly enclosed between $\gamma(\omega_1)$ and $\gamma(\omega_2)$. Therefore it meets the line [y = h] at the point (ω_*, h) , with $\omega_* \in (\omega_1, \omega_2)$. It follows that $X(t, x_*, \underline{y}) = X(t + t_{\underline{y}}(\omega_*), \omega_*, h)$ and in particular $(x_*, \underline{y}) = X(0, x_*, \underline{y}) = X(t_{\underline{y}}(\omega_*), \omega_*, h)$. \Box

Lemma 3.2. Let (u, χ) be a solution of (P). Let $h \in \pi_y(\Omega)$, $\omega_1, \omega_2 \in \pi_x(\Omega \cap [y = h])$ with $\omega_1 < \omega_2$. Let $\underline{y} \in \pi_y(\Omega)$ such that $[\underline{y} = \underline{y}] \cap \gamma(\omega_i) \neq \emptyset$ i = 1, 2. Set $D_{\underline{y}} = T_h(\{(t, \omega) \in D_h, \omega \in (\omega_1, \omega_2), t > t_{\underline{y}}(\omega)\}) = T_h([\omega_1 < \omega < \omega_2]) \cap [\underline{y} > \underline{y}]$, and assume that $\overline{D}_y \cap \overline{\Gamma}_3 = \emptyset$ (see Figure 3). Then if $uoT_h(t_y(\omega_i), \omega_i) = 0$ for i = 1, 2, we have

$$\begin{split} &\int_{D_{\underline{y}}} \left(a(X) \nabla u + \chi H(X) \right) . \nabla \zeta dX \ \leq \ 0 \\ &\forall \zeta \in H^1(D_{\underline{y}}), \quad \zeta \geq 0, \quad \zeta(x,\underline{y}) = 0 \quad \text{ for a.e. } (x,\underline{y}) \in \overline{D}_{\underline{y}} \end{split}$$

Proof. First note that $D_{\underline{y}}$ is well defined since by Lemma 3.1 *i*), $t_{\underline{y}}(\omega)$ exists for each $\omega \in (\omega_1, \omega_2)$. Next we claim that

$$\int_{D_{\underline{y}}} \left(a(X)\nabla u + \chi([u>0])H(X) \right) \cdot \nabla \zeta dX \leq \int_{\omega_1}^{\omega_2} -(Y_h \cdot \zeta oT_h)(\phi_h(\omega), \omega) d\omega \quad (3.2)$$

$$\forall \zeta \in H^1(D_{\underline{y}}) \cap C^0(\overline{D}_{\underline{y}}), \quad \zeta \geq 0, \quad \zeta(x, \underline{y}) = 0 \quad \text{ for all } (x, \underline{y}) \in \overline{D}_{\underline{y}}.$$

Indeed, we deduce from $uoT_h(t_{\underline{y}}(\omega_i), \omega_i) = 0$, i = 1, 2 and Proposition 3.1 *ii*) that $uoT_h(t, \omega_i) = 0$, for all $t \ge t_{\underline{y}}(\omega_i)$, i = 1, 2. Therefore for $\epsilon > 0$, $\chi(D_{\underline{y}}) . \min\left(\frac{u}{\epsilon}, \zeta\right)$ is a test function for (P) and we have

Figure 3

$$\begin{split} &\int_{D_{\underline{y}}\cap[u\geq\epsilon\zeta]}a(X)\nabla u.\nabla\zeta dX+\int_{D_{\underline{y}}}\chi([u>0])H(X).\nabla\zeta dX\\ &\leq \int_{D_{\underline{y}}}\chi([u>0])H(X).\nabla\big(\zeta-\frac{u}{\epsilon}\big)^+dX=I_{\epsilon}. \end{split}$$

Using the change of variables ${\cal T}_h$ and the second mean value theorem, we obtain

$$\begin{split} I_{\epsilon} &= \int_{J=\{\omega \in (\omega_{1},\omega_{2}) / \phi_{h}(\omega) > t_{\underline{y}}(\omega)\}} \int_{t_{\underline{y}}(\omega)}^{\phi_{h}(\omega)} \frac{\partial}{\partial t} \Big(\Big(\zeta - \frac{u}{\epsilon}\Big)^{+} oT_{h} \Big) . (-Y_{h}(t,\omega)) dt d\omega \\ &= \int_{J} (-Y_{h}(\phi_{h}(\omega),\omega)) \Big\{ \int_{t^{*}(\omega)}^{\phi_{h}(\omega)} \frac{\partial}{\partial t} \Big(\Big(\zeta - \frac{u}{\epsilon}\Big)^{+} oT_{h} \Big) (t,\omega) dt \Big\} d\omega \\ &\leq \int_{\omega_{1}}^{\omega_{2}} -Y_{h}(\phi_{h}(\omega),\omega) . \zeta oT_{h}(\phi_{h}(\omega),\omega) d\omega, \qquad t^{*}(\omega) \in [t_{\underline{y}}(\omega),\phi_{h}(\omega)]. \end{split}$$

Then by letting ϵ go to 0, the inequality (3.2) holds.

Now to prove the lemma, it suffices to do it for $\zeta \in H^1(D_{\underline{y}}) \cap C^0(\overline{D}_{\underline{y}}), \zeta \geq 0, \zeta(x,\underline{y}) = 0$ for all $(x,\underline{y}) \in \overline{D}_{\underline{y}}$ and conclude by density. So let $\epsilon > 0$ and $h_{\epsilon} = \theta_{\epsilon} o T_h^{-1}$, with $\theta_{\epsilon}(\omega) = \min\left(\frac{(\omega - \omega_1)^+}{\epsilon}, 1\right) \cdot \min\left(\frac{(\omega_2 - \omega)^+}{\epsilon}, 1\right)$. Since $\chi(D_{\underline{y}}) \cdot \zeta \cdot h_{\epsilon}$ is a test function for (P), we have

$$\begin{split} &\int_{D_{\underline{y}}} (a(X)\nabla u + \chi H(X)).\nabla \zeta dX \leq \int_{D_{\underline{y}}} (a(X)\nabla u + \chi H(X)).\nabla ((1-h_{\epsilon})\zeta)dX \\ &= \int_{D_{\underline{y}}} (a(X)\nabla u + \chi ([u>0])H(X)).\nabla ((1-h_{\epsilon})\zeta)dX \\ &\quad + \int_{D_{\underline{y}}} (\chi - \chi ([u>0]))H(X).\nabla ((1-h_{\epsilon})\zeta)dX = I_{\epsilon}^{1} + I_{\epsilon}^{2}. \end{split}$$

Using (3.2) and the fact that $\theta_{\epsilon \rightarrow 0} 1$, we obtain the lemma since we have

$$I_{\epsilon}^{1} \leq \int_{\omega_{1}}^{\omega_{2}} -Y_{h}(\phi_{h}(\omega),\omega).\zeta oT_{h}(\phi_{h}(\omega),\omega).(1-\theta_{\epsilon}(\omega))d\omega,$$

$$I_{\epsilon}^{2} = \int_{T_{h}^{-1}(D_{\underline{y}})} (\chi oT_{h} - \chi([uoT_{h} > 0]))(-Y_{h}(t,\omega)).\frac{\partial}{\partial t}(\zeta oT_{h}).(1-\theta_{\epsilon}(\omega))dtd\omega.$$

Lemma 3.3. Let (u, χ) be a solution of (P) and $X_0 = (x_0, y_0) = T_h(t_0, \omega_0)$ be a point of $T_h(D_h)$. We denote by $B_r(t_0, \omega_0)$ a ball with center (t_0, ω_0) and radius r contained in D_h . If $uoT_h = 0$ in $B_r(t_0, \omega_0)$, then

$$uoT_h = 0$$
 in C_r and $\chi oT_h = 0$ a.e. in C_r

where $C_r = \{(t,\omega) \in D_h, |\omega - \omega_0| < r, t > t_0\} \cup B_r(t_0,\omega_0)$. In other words if u = 0 in $T_h(B_r(t_0,\omega_0))$, then u = 0 and $\chi = 0$ a.e. in $T_h(C_r)$ (see Figure 4).

Proof. By Proposition 3.1, we have $uoT_h = 0$ in C_r . Applying Lemma 3.2 with domains $D_{\underline{y}} = T_h([\omega_1 < \omega < \omega_2]) \cap [y > \underline{y}] \subset T_h(C_r), (\underline{y} \in \pi_y(\Omega))$ satisfying $[y = \underline{y}] \cap \gamma(\omega) \neq \emptyset \ \forall \omega \in [\omega_1, \omega_2]$ and taking $\zeta = (y - y)\chi(D_y)$, we obtain

$$\int_{D_{\underline{y}}} \chi H_2(X) dX \le 0.$$

From (1.3), we deduce that $\chi = 0$ a.e in $D_{\underline{y}}$. This holds for all domains $D_{\underline{y}}$ in $T_h(C_r)$. Hence $\chi = 0$ a.e in $T_h(C_r)$.

Lemma 3.4. Let (u, χ) be a solution of (P), $X_0 = (x_0, y_0) = T_h(t_0, \omega_0)$ be a point of Ω and B_r the open ball in D_h with center (t_0, ω_0) and radius r. Then we cannot have the following situations (see Figure 5)

Figure 4

$$\begin{array}{ll} (i) & \begin{cases} uoT_h(t,\omega_0) = 0 & \forall t \in (t_0 - r, t_0 + r) \\ uoT_h(t,\omega) > 0 & \forall (t,\omega) \in B_r \setminus S, \qquad S = (t_0 - r, t_0 + r) \times \{\omega_0\}, \\ (ii) & \begin{cases} uoT_h(t,\omega) = 0 & \forall (t,\omega) \in B_r \cap [\omega \le \omega_0] \\ uoT_h(t,\omega) > 0 & \forall (t,\omega) \in B_r \cap [\omega > \omega_0], \\ (iii) & \begin{cases} uoT_h(t,\omega) = 0 & \forall (t,\omega) \in B_r \cap [\omega \ge \omega_0] \\ uoT_h(t,\omega) > 0 & \forall (t,\omega) \in B_r \cap [\omega \ge \omega_0] \\ uoT_h(t,\omega) > 0 & \forall (t,\omega) \in B_r \cap [\omega < \omega_0]. \end{cases} \end{array}$$

Proof. Assume ii) holds. The proof of i) and iii) is based on the same arguments. Let $\zeta \in \mathcal{D}(T_h(B_r)), \zeta \geq 0$. Using the fact that, by Lemma 3.2, $\chi oT_h = 0$ a.e on $B_r \cap [\omega < \omega_0]$ and $\pm \zeta$ are tests functions for (P), we obtain after using the change of variables T_h

$$\int_{T_h(B_r)} a(X) \nabla u \cdot \nabla \zeta dX = \int_{B_r \cap [\omega > \omega_0]} \frac{\partial}{\partial t} (-Y_h(t, \omega)) \zeta oT_h dt d\omega \ge 0.$$

Figure 5 (i)

We deduce that $div(a(X)\nabla u) \leq 0$ in $\mathcal{D}'(T_h(B_r))$. By the strong maximum principle, we have either u > 0 or u = 0 in $T_h(B_r)$, which contradicts the assumption.

Lemma 3.5. Let (u, χ) be a solution of (P), $X_0 = (x_0, y_0) = T_h(t_0, \omega_0)$ be a point of Ω such that $uoT_h(t_0, \omega_0) = 0$. Then there exists $\rho > 0$ such that one of the following situations holds :

$$\begin{array}{l} (i) \\ \left\{ \begin{array}{l} uoT_{h}(t,\omega) > 0 \quad \forall (t,\omega) \in B_{\rho}(t_{0},\omega_{0}) \cap [\omega < \omega_{0}], \\ there \ exists \ a \ sequence \ (t_{n},\omega_{n})_{n\geq 1} \subset B_{\rho}(t_{0},\omega_{0}) \cap [\omega > \omega_{0}] \\ such \ that \quad \forall n \geq 1 \quad uoT_{h}(t_{n},\omega_{n}) = 0 \quad and \quad X(t_{n},\omega_{n})_{n \to \infty} X_{0} \\ \left\{ \begin{array}{l} uoT_{h}(t,\omega) > 0 \quad \forall (t,\omega) \in B_{\rho}(t_{0},\omega_{0}) \cap [\omega > \omega_{0}], \\ there \ exists \ a \ sequence \ (t_{n},\omega_{n})_{n\geq 1} \subset B_{\rho}(t_{0},\omega_{0}) \cap [\omega < \omega_{0}] \\ such \ that \quad \forall n \geq 1 \quad uoT_{h}(t_{n},\omega_{n}) = 0 \quad and \quad X(t_{n},\omega_{n})_{n \to \infty} X_{0} \end{array} \right.$$

Figure 5 (ii)

$$(iii) \begin{cases} \text{There exists two sequences } (t_n^{\pm}, \omega_n^{\pm})_{n \ge 1} \subset B_{\rho}(t_0, \omega_0), \\ \text{such that} \quad \forall n \ge 1 \quad \omega_n^- < \omega_0 < \omega_n^+ \quad uoT_h(t_n^-, \omega_n^-) = uoT_h(t_n^+, \omega_n^+) = 0 \\ \text{and} \quad X(t_n^-, \omega_n^-)_{n \to \infty} X_0, \quad X(t_n^+, \omega_n^+)_{n \to \infty} X_0. \end{cases}$$

Proof. Let $\eta > 0$ such that $B_{\eta}(t_0, \omega_0) \subset D_h$. By Proposition 3.1, we have $uoT_h(t, \omega_0) = 0$ $\forall t \geq t_0$. Then for any $\rho \in (0, \eta)$, by Lemma 3.4, one of the following situations holds necessarily

$$\begin{array}{ll} \alpha) & \exists (t_1^-, \omega_1^-) \in B_{\rho}(t_0, \omega_0) \cap [\omega < \omega_0] & \text{such that} & uoT_h(t_1^-, \omega_1^-) = 0 \\ \beta) & \exists (t_1^+, \omega_1^+) \in B_{\rho}(t_0, \omega_0) \cap [\omega > \omega_0] & \text{such that} & uoT_h(t_1^+, \omega_1^+) = 0. \end{array}$$

We discuss the following cases

• If α) and β) holds simultaneously for any $\rho \in (0, \eta)$, then we are in the situation *iii*).

• If for example α does not hold for some $\rho \in (0, \eta)$. Then $uoT_h > 0$ in $B_{\rho}(t_0, \omega_0) \cap [\omega < \omega_0]$. Moreover by Lemma 3.4, β) holds for any $\rho' \in (0, \rho)$. In this case we are in the situation i).

Figure 5 (iii)

• If for example β does not hold, then we show as in the previous case that we obtain the situation *ii*).

4 A Comparison Result

In all what follows, we assume that

$$a \in C_{loc}^{0,\alpha}(\Omega) \qquad (0 < \alpha < 1) \tag{4.1}$$

$$\exists c_0 \in \mathbb{R} \ / \ \forall Y \in \Omega \ : \ div(a(X)(X-Y)) \le c_0 \ \text{in } \mathcal{D}'(\Omega).$$
(4.2)

Note that (4.2) is satisfied in particular if $a \in C^{0,1}$ or simply if $div(a(X)e_1)$, $div(a(X)e_2) \in L^{\infty}(\Omega)$, where $e_1 = (1,0)$ and $e_2 = (0,1)$. Moreover, one can adapt the proof in [4] (see Remark 2.2 of this reference) to verify that $u \in C^{0,1}_{loc}(\Omega)$. The main result of this section is the comparison Lemma 4.4. First, we construct a barrier function and establish some of its properties.

Lemma enough so that **Lemma 4.1.** Let k > 0, (x_1, y) , $(x_2, y) \in \Omega$ with $x_1 < x_2$ and $x_2 - x_1 = 2k\epsilon$, where ϵ is small

$$(x_1 - \epsilon, x_2 + \epsilon) \times (\underline{y}, \underline{y} + 2\epsilon) \subset \Omega$$

enough so that $(x_1 - \epsilon, x_2 + \epsilon) \times (\underline{y}, \underline{y} + 2\epsilon) \subset \subset \Omega.$ Let $Z = (x_1 - \epsilon, x_2 + \epsilon) \times (\underline{y}, \underline{y} + \epsilon)$ and denote by v the unique solution in $H^1(Z)$ of

$$div(a(X)\nabla v) = -div(H(X)) \quad in Z$$

$$v = \epsilon(\underline{y} + \epsilon - y)^{+} \quad on \ \partial Z.$$
(4.3)

Then, there exists a positive constant C independent of ϵ such that

$$\begin{array}{ll} i) & 0 < v \leq C\epsilon^2 & in \quad Z \\ ii) & |\nabla v(X)| \leq C\epsilon & \forall X \in T = [x_1, x_2] \times \{\underline{y} + \epsilon\}. \end{array}$$

Proof. i) Since $div(a(X)\nabla v) = -div(H(X)) \leq 0$ in Z and due to the boundary condition, we deduce by the weak and strong maximum principles (see [5]) that v > 0 in Z.

To prove the second inequality, we introduce the function

$$\omega : \widehat{Z} = (0, 2k+2) \times (0, 1) \longrightarrow \mathbb{R}^+$$
$$X' = (x', y') \longmapsto \omega(X') = v(x_1 - \epsilon + \epsilon x', \underline{y} + \epsilon y').$$

It is not difficult to check that

$$\begin{cases} div(\widehat{a}(X')\nabla\omega) = -\epsilon^2 \widehat{divH} & \text{in } \widehat{Z} \\ \omega = \epsilon^2 (1-y')^+ & \text{on } \partial \widehat{Z} \end{cases}$$
(4.4)

where

$$\widehat{a}(X') = a(x_1 - \epsilon + \epsilon x', \underline{y} + \epsilon y'), \quad \widehat{divH}(X') = (divH)(x_1 - \epsilon + \epsilon x', \underline{y} + \epsilon y').$$

Moreover we have

$$\begin{split} \widehat{a}(X')\xi.\xi \geq \lambda |\xi|^2, \qquad \forall \xi \in \mathbb{R}^2, \quad \forall X' \in \widehat{Z} \\ |\widehat{a}|_{\infty,\widehat{Z}} \leq M, \qquad 0 \leq \widehat{divH}(X') \leq C = |divH|_{\infty}, \qquad \forall X' \in \widehat{Z}. \end{split}$$

Applying Theorem 8.16 p. 191 of [5], we get

$$\sup_{\widehat{Z}} \omega \leq \sup_{\partial \widehat{Z}} \omega + C_1 \frac{|\epsilon^2 \widehat{div} \widehat{H}|_{L^{q/2}}}{\lambda}$$

where q > 2 and C_1 is a positive constant depending only on Y. So

$$\sup_{Z} v = \sup_{\widehat{Z}} \omega \le \epsilon^2 + C_2 \epsilon^2 = C \epsilon^2.$$

ii) Let $S = (\frac{1}{2}, 2k + \frac{3}{2}) \times \{1\}$ and $\widehat{Z}' = (\frac{1}{2}, 2k + \frac{3}{2}) \times (\frac{1}{2}, 1)$. Since S is a $C^{1,\alpha}$ boundary portion of $\partial \widehat{Z}, \omega = 0$ on S, we deduce from (4.4) by applying Corollary 8.36 p. 212 [5] that $\omega \in C^{1,\alpha}(\widehat{Z} \cup S)$ with the following estimate

$$|\omega|_{1,\alpha,\widehat{Z}'} \leq C\Big(|\omega|_{0,\widehat{Z}} + |\epsilon^2 \widehat{divH}|_{0,\widehat{Z}}\Big)$$

where $C = C(\lambda, M, K, d', S)$ is a constant independent of ϵ , $d' = d(\widehat{Z}', \partial \widehat{Z} \setminus S)$ and $K = \max_{i,j} (|a_{ij}|_{0,\alpha})$. Taking into account the estimate in i), we obtain

$$|\nabla \omega|_{0,\widehat{Z}'} \leq |\omega|_{1,\alpha,\widehat{Z}'} \leq C\epsilon^2$$

which, in particular, leads to

$$|\nabla \omega(x',1)| \le C\epsilon^2 \qquad \forall x' \in [1,1+2k].$$

Therefore

$$|\nabla v(x,\underline{y}+\epsilon)| = \frac{1}{\epsilon} \Big| \nabla \omega \Big(\frac{x-x_1+\epsilon}{\epsilon}, 1 \Big) \Big| \le C \epsilon \qquad \forall x \in [x_1, x_2].$$

 $\begin{array}{l} \text{Lemma 4.2. Let } h \in \pi_y(\Omega), \ \omega_1, \omega_2 \in \pi_x(\Omega \cap [y=h]) \ \text{with } \omega_1 < \omega_2. \\ \text{Let } \underline{y} \in \pi_y(\Omega) \ \text{such that } \gamma(\omega_i) \cap [\underline{y}=\underline{y}] \neq \emptyset \ i=1,2. \\ \text{Set } \overline{D}_{\underline{y}} = T_h([\omega_1 < \omega < \omega_2]) \cap [\underline{y} > \underline{y}]. \ \text{Assume that } D_{\underline{y}} \cap [\underline{y} < \underline{y} + \epsilon] \subset (x_1, x_2) \times (\underline{y}, \underline{y} + \epsilon) \subset Z \\ \text{with } \overline{Z} \ \text{defined in Lemma 4.1. Then after extending } v \ by \ 0 \ \text{to } \overline{D}_{\underline{y}}, we \ \text{obtain} \end{array}$

$$\int_{D_{\underline{y}}} (a(X)\nabla v + \chi([v>0])H(X))\nabla \zeta dX \ge 0 \quad \forall \zeta \in H^1(D_{\underline{y}}), \, \zeta \ge 0, \, \zeta = 0 \text{ on } \partial D_{\underline{y}} \cap \Omega.$$

Proof. Set $T' = [y = \underline{y} + \epsilon] \cap \overline{D}_{\underline{y}} \subset T$ and let ν be the outward unit normal vector to T. We have by Lemma 4.1 *ii*) $a(X)\nabla v.\nu + H(X).\nu = a(X)\nabla v.e_y + H_2(X) \geq -C\epsilon + \underline{h} \geq 0$ on T' for ϵ small enough. Now, for $\zeta \in H^1(D_y), \zeta \geq 0, \zeta = 0$ on $\partial D_y \cap \Omega$, we have

$$\int_{D_{\underline{y}}} (a(X)\nabla v + \chi([v>0])H(X))\nabla\zeta dX = \int_{T'} (a(X)\nabla v \cdot v + H(X) \cdot v)\zeta dX \ge 0.$$

The following lemma extends a lemma proved in [4] for $H(X) = h(X)e_2$.

Lemma 4.3. Let (u, χ) be a solution of (P). Assume that the hypothesis of Lemma 4.2 hold, $\overline{D}_y \cap \Gamma_3 = \emptyset$ and (see Figure 6)

$$uoT_h(t_{\underline{y}}(\omega_1), \omega_1) = uoT_h(t_{\underline{y}}(\omega_2), \omega_2) = 0$$
$$uoT_h(t_y(\omega), \omega) \le \epsilon^2 = v(t_y(\omega), \omega) \qquad \forall \omega \in (\omega_1, \omega_2),$$

then we have

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_{D_{\underline{u}} \cap [v > 0] \cap [0 < u - v < \delta]} a(X) \nabla (u - v)^+ \cdot \nabla (u - v)^+ dX = 0.$$

Figure 6

Proof. For $\delta, \eta > 0$, let $F_{\delta}(s)$ be the function introduced in the proof of Proposition 1.1, $d_{\eta}(y) = F_{\eta}(y-\bar{y})$ and $\bar{y} = \underline{y} + \epsilon$. By applying Lemma 3.2 and Lemma 4.2 for $\zeta = F_{\delta}(u-v) + d_{\eta}(1-H_{\delta}(u))$ and for $\zeta = F_{\delta}(u-v)$ respectively, we get

$$\int_{D_{\underline{y}}} (a(X)\nabla u + \chi H(X)) \cdot \nabla (F_{\delta}(u-v)) dX$$

$$\leq -\int_{D_{\underline{y}}} (a(X)\nabla u + \chi H(X)) \cdot \nabla (d_{\eta}(1-F_{\delta}(u))) dX.$$
(4.5)

$$\int_{D_{\underline{y}}} (a(X)\nabla v + \chi([v>0])H(X)) . \nabla(F_{\delta}(u-v)) dX \ge 0.$$
(4.6)

Using (4.5) and (4.6), we get since $d_{\eta} = 0$ on [v > 0]

$$\int_{D_{\underline{y}}\cap[v>0]} F_{\delta}'(u-v)a(X)\nabla(u-v).\nabla(u-v)dX$$

$$\leq -\int_{D_{\underline{y}}\cap[v=0]} (1-d_{\eta}) \big(a(X)\nabla u + \chi H(X) \big) . \nabla (F_{\delta}(u)) dX -\int_{D_{\underline{y}}\cap[v=0]} (1-F_{\delta}(u)) \big(a(X)\nabla u + \chi H(X) \big) . \nabla d_{\eta} dX = I_1^{\delta\eta} + I_2^{\delta\eta}.$$

Since

$$|I_1^{\delta\eta}| \le \int_{D_{\underline{y}\cap[\bar{y}< y<\bar{y}+\eta]}} |(a(X)\nabla u + \chi H(X)).\nabla(F_{\delta}(u))|dX,$$

we obtain $\lim_{\eta\to 0} I_1^{\delta\eta} = 0.$ As for $I_2^{\delta\eta}$, we have

$$I_2^{\delta\eta} = -\int_{D_{\underline{y}}\cap[u=v=0]} \chi H(X) \cdot \nabla d_\eta dX$$

$$-\int_{D_{\underline{y}}\cap[u>0=v]} (1-F_{\delta}(u)) \big(a(X)\nabla u + H(X)\big) \cdot \nabla d_\eta dX = I_3^{\delta\eta} + I_4^{\delta\eta} \le I_4^{\delta\eta}.$$

since

$$I_{3}^{\delta} = -\int_{D_{\underline{y}} \cap [u=v=0]} H_{2}(X) \cdot \chi \cdot \partial_{y} d_{\eta} dX = \frac{-1}{\eta} \int_{D_{\underline{y}} \cap [u=v=0] \cap [\bar{y} < y < \bar{y} + \eta]} H_{2}(X) \chi dX \le 0.$$

Moreover since $u \in C^{0,1}_{loc}(\Omega)$, one has for some constant C

$$\begin{split} |I_4^{\delta\eta}| &\leq \frac{C}{\eta} \int_{D_{\underline{y}} \cap [u > v = 0] \cap [\overline{y} < y < \overline{y} + \eta]} (1 - F_{\delta}(u)) dX \\ &= \frac{C}{\eta} \int_J \int_{t_{\overline{y}}(\omega)}^{\min(\phi_h(\omega), t_{\overline{y} + \eta}(\omega))} (1 - F_{\delta}(uoT_h))(t, \omega) . (-Y_h(t, \omega)) dt d\omega \\ &\leq C \int_J \Big(\frac{1}{\eta} \int_{t_{\overline{y}}(\omega)}^{t_{\overline{y}}(\omega) + \frac{\eta}{h}} (1 - F_{\delta}(uoT_h)) dt \Big) d\omega, \end{split}$$

where $J = \{\omega \in (\omega_1, \omega_2) / \phi_h(\omega) > t_{\bar{y}}(\omega) \}$. Since the function $t \mapsto 1 - F_{\delta}(uoT_h(t, \omega))$ is continuous, we obtain

$$\limsup_{\eta \to 0} |I_4^{\delta\eta}| \le C \int_J (1 - F_\delta(uoT_h(t_{\bar{y}}(\omega), \omega))) d\omega.$$

Hence

$$\int_{D_{\underline{y}}\cap[v>0]\cap[0< u-v<\delta]} \frac{1}{\delta} a(X)\nabla(u-v)^+ \cdot \nabla(u-v)^+ dX \le C \int_J (1-F_\delta(uoT_h(t_{\overline{y}}(\omega),\omega)))d\omega.$$

But given that $\omega \in J$, we have $uoT_h(t_{\bar{y}}(\omega), \omega) > 0$. Thus $\lim_{\delta \to 0} (1 - F_{\delta}(uoT_h(t_{\bar{y}}(\omega), \omega))) = 0$ and the result follows.

Lemma 4.4. Let (u, χ) be a solution of (P). Assume that the hypothesis of Lemma 4.3 hold. Then we have

$$u \equiv 0$$
 in $D_y \cap [y > y + \epsilon]$.

Proof. Let

$$D^{+} = D_{\underline{y}} \cap [v > 0] = D_{\underline{y}} \cap [\underline{y} < y < \underline{y} + \epsilon]$$

$$\triangle = T_h \big(\{ (t, \omega) \in D_h / \omega \in (\omega_1, \omega_2), \ \alpha_-(\omega) < t < t_{\underline{y} + \epsilon}(\omega) \} \big)$$

$$w = \begin{cases} (u - v)^+ & \text{in} \quad D^+ \\ 0 & \text{in} \quad \triangle \setminus \overline{D}^+. \end{cases}$$

We have $w \in H^1(\triangle)$ since by assumption $u \leq v$ on $\triangle \cap [y = \underline{y}]$. Let $\zeta \in \mathcal{D}(\triangle)$. We have

$$\int_{\Delta} a(X) \nabla w \cdot \nabla \zeta dX = \int_{D^+} a(X) \nabla (u-v)^+ \cdot \nabla \zeta dX$$
$$= \lim_{\delta \to 0} \int_{D^+} F_{\delta}(u-v) a(X) \nabla (u-v)^+ \cdot \nabla \zeta dX = \lim_{\delta \to 0} I_{\delta}.$$

Note that

$$I_{\delta} = \int_{D^+} a(X)\nabla(u-v)^+ \cdot \nabla(F_{\delta}(u-v)\zeta)dX$$

$$-\frac{1}{\delta} \int_{D^+ \cap [0 < u-v < \delta]} \zeta a(X)\nabla(u-v) \cdot \nabla(u-v)dX = I_{\delta}^1 - I_{\delta}^2.$$

By Lemma 4.3, $\lim_{\delta \to 0} I_{\delta}^2 = 0$, since we have

$$|I_{\delta}^{2}| \leq \sup_{\Delta} |\zeta| \cdot \frac{1}{\delta} \int_{D^{+} \cap [0 < u - v < \delta]} a(X) \nabla(u - v) \cdot \nabla(u - v) dX.$$

Moreover, we have since $(F_{\delta}(u-v)\zeta) \in H_0^1(D^+)$,

$$\begin{split} I_{\delta}^{1} &= \int_{D^{+}} a(X) \nabla u. \nabla (F_{\delta}(u-v)\zeta) dX - \int_{D^{+}} a(X) \nabla v. \nabla (F_{\delta}(u-v)\zeta) dX \\ &= -\int_{D^{+}} \chi H(X). \nabla (F_{\delta}(u-v)\zeta) dX + \int_{D^{+}} H(X). \nabla (F_{\delta}(u-v)\zeta) dX \\ &= 0 \quad \text{since} \quad \chi = 1 \quad \text{a.e. in} \quad [u > 0]. \end{split}$$

It follows that

$$\int_{\Delta} a(X) \nabla w \cdot \nabla \zeta dX = 0 \qquad \forall \zeta \in \mathcal{D}(\Delta).$$

Since $\omega = 0$ in $\Delta \setminus \overline{D^+}$, we obtain by the strong maximum principle : w = 0 in \triangle . Consequently, $u \leq v$ in D^+ and then $uoT_h(t_{\underline{y}+\epsilon}(\omega), \omega) = 0 \ \forall \omega \in [\omega_1, \omega_2]$. Therefore

$$uoT_h(t,\omega) = 0 \qquad \forall t \ge t_{y+\epsilon}(\omega) \qquad \forall \omega \in [\omega_1,\omega_2].$$

Combining Lemma 3.5 and Lemma 4.4, we obtain the following useful lemma

Lemma 4.5. Let $X_0 = T_h(t_0, \omega_0) = (x_0, y_0) \in \Omega$, $\omega_{01}, \omega_{02} \in \pi_y(\Omega \cap [y = h])$ such that $u(X_0) = 0, \ \omega_{01} < \omega_0 < \omega_{02} \ and \ \gamma(\omega_{0i}) \cap [y = y_0] \neq \emptyset, \ i = 1, 2.$

Let $\epsilon > 0$ and $D_{y_0} = T_h([\omega_{01} < \omega < \omega_{02}]) \cap [y > y_0]$. We assume that for some k > 0, $D_{y_0} \cap [y < y_0 + \epsilon] \subset (x_0 - 2k\epsilon, x_0 + 2k\epsilon) \times (y_0, y_0 + 2\epsilon) \subset \Omega$, and for all $\omega \in (\omega_{01}, \omega_{02})$ $uoT_h(t_{y_0}(\omega),\omega) \leq \epsilon^2$. Then the following situations cannot hold :

- $(i) \begin{cases} There \ exits \ a \ sequence \ (t_n, \omega_n)_{n \ge 1} \subset B_{\rho_0}(t_0, \omega_0) \cap [\omega < \omega_0] \ satisfying \\ uoT_h(t_n, \omega_n) = 0 \quad \forall n \ge 1, \qquad X(t_n, \omega_n)_{n \to \infty} X_0, \\ \forall n \ge 1, \quad X(\alpha_+(\omega_n), \omega_n) \ does \ not \ belong \ to \ the \ connected \ component \ of \ \Gamma_1 \cup \Gamma_2 \\ which \ contains \ X(\alpha_+(\omega_0), \omega_0) \end{cases}$

 $(ii) \begin{cases} There \ exits \ a \ sequence \ (t_n, \omega_n)_{n \ge 1} \subset B_{\rho_0}(t_0, \omega_0) \cap [\omega > \omega_0] \ satisfying \\ uoT_h(t_n, \omega_n) = 0 \quad \forall n \ge 1, \qquad X(t_n, \omega_n)_{n \to \infty} X_0 \\ \forall n \ge 1, \quad X(\alpha_+(\omega_n), \omega_n) \ does \ not \ belong \ to \ the \ connected \ component \ of \ \Gamma_1 \cup \Gamma_2 \\ which \ contains \ X(\alpha_+(\omega_0), \omega_0). \end{cases}$

Proof. We will consider only the first situation. The second one can be treated similarly. Let $(x^*, y^*) \in M$ such that $y^* > y_0 + \epsilon$, where M is the domain enclosed between $\gamma(\omega_{01}), \gamma(\omega_0)$, $[y = y_0]$ and $\partial \Omega$. Consider the maximal solution $X(., x^*, y^*)$ of X'(t) = H(X(t)), X(0) = (x^*, y^*) . The orbit $\gamma(x^*, y^*)$ of $X(., x^*, y^*)$ leaves M from the top at a point of $\partial\Omega$ and from the bottom at a point (x_*, y_0) of $[y = y_0]$.

From Lemma 3.1 *ii*), we know that $(x_*, y_0) = X(t_{y_0}(\omega_*), \omega_*, h)$ for some $\omega_* \in (\omega_{01}, \omega_0)$. It follows that the two orbits $\gamma(x^*, y^*)$ and $\gamma(\omega_*, h)$ coincide. Therefore we have $X(t, x^*, y^*) =$ $X(t + t^*, \omega_*, h)$, where $t^* = t_{y^*}(\omega_*)$ is defined by $(x^*, y^*) = X(t^*, \omega_*, h)$.

We have $X_1(t_{y^*}(\omega_{01}), \omega_{01}, h) < x^* < X_1(t_{y^*}(\omega_0), \omega_0, h)$ and $X_{1n}(t_{y^*}(\omega_0), \omega_n, h)$ converges to $X_1(t_{y^*}(\omega_0), \omega_0, h)$ when $n \to \infty$. So there exists $n_1 > 1$ such that $x^* < X_{1n_1}(t_{y^*}(\omega_0), \omega_{n_1}, h)$. We deduce that $(x^*, y^*) \in M_{n_1}$: the domain enclosed between $\gamma(\omega_{01}), \gamma(\omega_{n_1}), [y = y_0]$ and $\partial \Omega$. It follows, by Lemma 4.4, that $u \equiv 0$ in $M_{n_1} \cap [y \geq y_0 + \epsilon]$. In particular, we obtain $u(x^*, y^*) = 0$. This holds for any point of M. Then $u \equiv 0$ in $M \cap [y \geq y_0 + \epsilon]$. But (see Remark 3.1), this contradicts $\overline{M} \cap \Gamma_3 \neq \emptyset$ and u > 0 on Γ_3 .

Remark 4.1. Lemma 4.5 becomes trivial if α_+ is continuous. However we know only that α_+ is lower semi-continuous (see Lemma 10.5 p. 125, [1]). Of course one can have more regularity for α_+ if one assumes more regularity on H and the boundary of Ω . Actually one can verify that α_+ is C^1 if $H \in C^1(\overline{\Omega})$, $\partial\Omega$ is C^1 and $H(X).\nu$ does not vanish on $\partial\Omega$ (see Proposition 2.1, [3]).

5 Continuity of the Free Boundary

The main result of this section is the continuity of the functions ϕ_h representing the free boundary. Note that by Remark 3.1, if $X(\phi_h(\omega), \omega) \in \Omega$, then $X(\alpha_+(\omega), \omega) \in \partial\Omega \setminus \Gamma_3$. Here we will consider the case where $X(\alpha_+(\omega), \omega) \in \partial\Omega \setminus \overline{\Gamma}_3$.

Theorem 5.1. For each $h \in \pi_y(\Omega)$, the function ϕ_h is continuous at each $\omega \in \pi_x(\Omega \cap [y = h])$ such that $X(\phi_h(\omega), \omega) \in \Omega$ and $X(\alpha_+(\omega), \omega) \in \partial\Omega \setminus \overline{\Gamma}_3$.

Proof. Let $\omega_0 \in \pi_x(\Omega \cap [y = h])$ such that $X(\phi_h(\omega_0), \omega_0) = T_h(\phi_h(\omega_0), \omega_0) = T_h(t_0, \omega_0) = (x_0, y_0) = X_0 \in \Omega$ and $X(\alpha_+(\omega_0), \omega_0) \in \partial\Omega \setminus \overline{\Gamma}_3$. Let $0 < \epsilon < \min\left(\frac{h}{3}(\alpha_+(\omega_0) - t_0), \frac{h}{2}(t_0 - \alpha_-(\omega_0))\right)$. Since $u(X_0) = 0$ and u continuous, there exists $\rho^* \in (0, \epsilon)$ such that

$$u(X) \le \epsilon^2 \qquad \forall X \in B_{\rho^*}(X_0) \subset T_h(D_h).$$
(5.1)

Since (t_0, ω_0) belongs to the open set $T_h^{-1}(B_{\rho^*}(X_0))$, there exists $\eta_1 \in (0, \rho^*)$ such that

$$B_{\eta_1}(t_0,\omega_0) \subset T_h^{-1}(B_{q\rho^*}(X_0)) \qquad \text{with } q = \underline{h}/4\overline{h}.$$
(5.2)

By Theorem 3.4 p 24 [6], $\exists \eta_2 \in (0, \eta_1)$ such that

$$X(t,\omega) \quad \text{exists for all } (t,\omega) \in [\alpha_{-}(\omega_{0}), \alpha_{+}(\omega_{0})] \times (\omega_{0} - \eta_{2}, \omega_{0} + \eta_{2})$$
(5.3)
and $(t,\omega) \longmapsto X(t,\omega) \quad \text{is continuous.}$

So there exists $\eta_3 \in (0, \eta_2)$ such that

$$|X(t,\omega) - X(t_0,\omega_0)| < \epsilon \qquad \forall (t,\omega) \in B_{\eta_3}(t_0,\omega_0).$$
(5.4)

Set $\rho = \eta_3 < \epsilon$. By Lemma 3.4, one of the following situations is true :

i)
$$\exists (t_1, w_1) \in B_{\rho}(t_0, \omega_0)$$
 such that $\omega_1 < \omega_0$ and $uoT_h(t_1, \omega_1) = 0$
ii) $\exists (t_2, \omega_2) \in B_{\rho}(t_0, \omega_0)$ such that $\omega_2 > \omega_0$ and $uoT_h(t_2, \omega_2) = 0$.

We will consider only the case where *i*) holds (see Figure 7). The other case can obviously be treated in a similar way. Note that $X(t_1, \omega_1)$ is at the left hand side of the orbit $\gamma(\omega_0)$ since $X(0, \omega_1) = (\omega_1, h), X(0, \omega_0) = (\omega_0, h)$ and $\omega_1 < \omega_0$. Set $y = \max(X_2(t_0, \omega_0), X_2(t_1, \omega_1))$. Then

$$uoT_h(t_y(\omega_i), \omega_i) = 0$$
 $i = 0, 1.$ (5.5)

Figure 7

Consider the set

$$\mathcal{O} = \{(x, y) = X(t, \omega) \in T_h(D_h) / |\omega - \omega_0| < \rho\} \cap [\underline{y} < y < \underline{y} + \epsilon].$$

Then we have

Lemma 5.1. For all ω in $(\omega_0 - \rho, \omega_0 + \rho)$, we have

$$\gamma(\omega) \cap [y = \underline{y}] \neq \emptyset$$
 and $X_2(\alpha_-(\omega_0), \omega) < \underline{y} < \underline{y} + \epsilon < X_2(\alpha_+(\omega_0), \omega).$

Moreover the open set \mathcal{O} can be written

$$\mathcal{O} = T_h \Big(\{ (t, \omega) \in D_h / |\omega - \omega_0| < \rho, \ t_{\underline{y}}(\omega) < t < t_{\underline{y}+\epsilon}(\omega) \} \Big).$$

Proof. i) First we show that

$$X_2(\alpha_-(\omega_0),\omega) < \underline{y} < \underline{y} + \epsilon < X_2(\alpha_+(\omega_0),\omega) \qquad \forall \omega \in (\omega_0 - \rho, \omega_0 + \rho).$$
(5.6)

Indeed we have for $\omega \in (\omega_0 - \rho, \omega_0 + \rho)$

$$X_{2}(\alpha_{+}(\omega_{0}),\omega) - X_{2}(t_{0},\omega) = \int_{t_{0}}^{\alpha_{+}(\omega_{0})} H_{2}(X(s,\omega))ds \ge \underline{h}(\alpha_{+}(\omega_{0}) - t_{0})$$
$$X_{2}(\alpha_{-}(\omega_{0}),\omega) - X_{2}(t_{0},\omega) = -\int_{\alpha_{-}(\omega_{0})}^{t_{0}} H_{2}(X(s,\omega))ds \le -\underline{h}(t_{0} - \alpha_{-}(\omega_{0})).$$

Using (5.4), we get

$$X_2(\alpha_+(\omega_0),\omega) \ge X_2(t_0,\omega_0) - \epsilon + \underline{h}(\alpha_+(\omega_0) - t_0)$$

$$X_2(\alpha_-(\omega_0),\omega) \le X_2(t_0,\omega_0) + \epsilon - \underline{h}(t_0 - \alpha_-(\omega_0))$$

Since $|X_2(t_0, \omega_0) - \underline{y}| \le |X_2(t_0, \omega_0) - X_2(t_1, \omega_1)| < \rho < \epsilon$ (by (5.4)), we get

$$X_2(\alpha_+(\omega_0),\omega) \ge \underline{y} - 2\epsilon + \underline{h}(\alpha_+(\omega_0) - t_0)$$
$$X_2(\alpha_-(\omega_0),\omega) \le \underline{y} + 2\epsilon - \underline{h}(t_0 - \alpha_-(\omega_0))$$

To conclude it is enough to verify that

$$-2\epsilon + \underline{h}(\alpha_{+}(\omega_{0}) - t_{0}) > \epsilon$$
 and $2\epsilon - \underline{h}(t_{0} - \alpha_{-}(\omega_{0})) < 0$

which is assured by the choice of ϵ .

As a consequence of (5.6), we obtain by the intermediate value theorem that $\gamma(\omega) \cap [y = \underline{y}] \neq \emptyset$ for all $\omega \in (\omega_0 - \rho, \omega_0 + \rho)$.

ii) Clearly $\mathcal{O}' = T_h \Big(\{ (t, \omega) \in D_h, |\omega - \omega_0| < \rho, t_{\underline{y}}(\omega) < t < t_{\underline{y}+\epsilon}(\omega) \} \Big) \subset \mathcal{O}$. To prove that $\mathcal{O} \subset \mathcal{O}'$, it is enough to show that

$$\forall (\omega, y) \in (\omega_0 - \rho, \omega_0 + \rho) \times [\underline{y}, \underline{y} + \epsilon] \quad \exists t_y(\omega) \in (\alpha_-(\omega_0), \alpha_+(\omega_0)) : \quad X_2(t_y(\omega), \omega) = y$$

which is a consequence of (5.6) and the continuity of the function $t \mapsto X_2(t, \omega)$.

Lemma 5.2. We have

$$|t_{\underline{y}}(\omega) - t_0| < \frac{2\epsilon}{\underline{h}} \qquad \forall \omega \in (\omega_0 - \rho, \omega_0 + \rho).$$
(5.7)

Proof. Let $\omega \in (\omega_0 - \rho, \omega_0 + \rho)$. We have

$$\underline{y} - X_2(t_0, \omega) = X_2(t_{\underline{y}}(\omega), \omega) - X_2(t_0, \omega) = \int_{t_0}^{t_{\underline{y}}(\omega)} H_2(X(s, \omega)) ds.$$

 $\begin{array}{ll} \text{If } \underline{y} = X_2(t_0,\omega_0), \, \text{then by (5.4)}, \quad |\underline{y} - X_2(t_0,\omega)| < \epsilon. \\ \text{If } \underline{y} = X_2(t_1,\omega_1), \, \text{then we have} \end{array}$

$$|\underline{y} - X_2(t_0, \omega)| \le |X_2(t_1, \omega_1) - X_2(t_0, \omega_0)| + |X_2(t_0, \omega_0) - X_2(t_0, \omega)|.$$

Using (5.4) and the fact that $(t_1, \omega_1) \in B_{\rho}(t_0, \omega_0)$, we deduce that $|\underline{y} - X_2(t_0, \omega)| < 2\epsilon$. We conclude by distinguishing the cases $t_y(\omega) > t_0$, $t_y(\omega) < t_0$ and use (1.3) to conclude. \Box

We claim that

Lemma 5.3.

$$\mathcal{O} \subset (x_0 - k\epsilon, x_0 + k\epsilon) \times (\underline{y}, \underline{y} + \epsilon), \qquad k = c_0 \left(1 + \frac{2}{\underline{h}}\right) + \frac{\overline{h}}{\underline{h}}.$$

Proof. Indeed, let $X(t,\omega) \in \mathcal{O}$. By definition of \mathcal{O} , we have $\underline{y} < X_2(t,\omega) < \underline{y} + \epsilon$. So we only need to verify that $|X_1(t,\omega) - x_0| < k\epsilon$. Note that, since $T_h \in C^{0,1}(D_h)$, we have

$$|X_1(t_{\underline{y}}(\omega),\omega) - X_1(t_0,\omega_0)| \le c_0(|t_{\underline{y}}(\omega) - t_0| + |\omega - \omega_0|).$$

Using (5.7), we get for all ω in $(\omega_0 - \rho, \omega_0 + \rho)$

$$|X_1(t_{\underline{y}}(\omega),\omega) - X_1(t_0,\omega_0)| < c_0(\frac{2\epsilon}{\underline{h}} + \rho) < c_0(1 + \frac{2}{\underline{h}})\epsilon.$$
(5.8)

We also have for $\omega \in (\omega_0 - \rho, \omega_0 + \rho)$ and $t_{\underline{y}}(\omega) < t = t_y(\omega) < t_{\underline{y}+\epsilon}(\omega)$

$$\epsilon \ge y - \underline{y} = X_2(t,\omega) - X_2(t_{\underline{y}}(\omega),\omega) = \int_{t_{\underline{y}}(\omega)}^t H_2(X(s,\omega))ds \ge \underline{h}(t - t_{\underline{y}}(\omega))$$
$$|X_1(t,\omega) - X_1(t_{\underline{y}}(\omega),\omega)| = \left|\int_{t_{\underline{y}}(\omega)}^t H_1(X(s,\omega))ds\right| \le \overline{h}(t - t_{\underline{y}}(\omega)) \le \frac{\overline{h}}{\underline{h}}\epsilon.$$
(5.9)

Combining (5.8) and (5.9), we obtain

$$\begin{aligned} |X_1(t,\omega) - X_1(t_0,\omega_0)| &\leq |X_1(t,\omega) - X_1(t_{\underline{y}}(\omega),\omega)| + |X_1(t_{\underline{y}}(\omega),\omega) - X_1(t_0,\omega_0)| \\ &< \left(c_0\left(1 + \frac{2}{\underline{h}}\right) + \frac{\overline{h}}{\underline{h}}\right)\epsilon = k\epsilon \qquad \forall X(t,\omega) \in \mathcal{O}. \end{aligned}$$

From now on, we assume that ϵ is small enough to ensure that

$$(x_0 - (k+1)\epsilon, x_0 + (k+1)\epsilon) \times (y, y+2\epsilon) \subset \Omega.$$

We set

$$\begin{aligned} x_1 &= x_0 - k\epsilon, \qquad x_2 = x_0 + k\epsilon \\ Z &= (x_1 - \epsilon, x_2 + \epsilon) \times (\underline{y}, \underline{y} + \epsilon) \\ D_{\underline{y}} &= T_h \Big(\big\{ (t, \omega) \in D_h, \ \omega \in (\omega_1, \omega_0), \ t > t_{\underline{y}}(\omega) \big\} \Big). \end{aligned}$$

We have

Lemma 5.4. The line segment $S = [X(t_{\underline{y}}(\omega_1), \omega_1), X(t_{\underline{y}}(\omega_0), \omega_0)] \subset B_{\rho^*}(X_0).$

Proof. Since $B_{\rho^*}(X_0)$ is convex, it suffices to prove that $X(t_{\underline{y}}(\omega_1), \omega_1), X(t_{\underline{y}}(\omega_0), \omega_0) \in B_{\rho^*}(X_0)$. First, we have $(t_1, \omega_1) \in B_{\rho}(t_0, \omega_0)$, and by (5.2), we are led to $X(t_1, \omega_1) \in B_{q\rho^*}(X_0)$. Using the definition of \underline{y} , we get

$$|\underline{y} - X_2(t_0, \omega_0)| < q\rho^* < \rho^*/4.$$

In the same way we have

$$|\underline{y} - X_2(t_1, \omega_1)| \le |X_2(t_0, \omega_0) - X_2(t_1, \omega_1)| < q\rho^* < \rho^*/4.$$

Now, for i = 0, 1, we have

$$\begin{aligned} X_1(t_{\underline{y}}(\omega_i),\omega_i) - X_1(t_i,\omega_i) &= \int_{t_i}^{t_{\underline{y}}(\omega_i)} H_1(X(s,\omega_i))ds\\ \underline{y} - X_2(t_i,\omega_i) &= X_2(t_{\underline{y}}(\omega_i),\omega_i) - X_2(t_i,\omega_i) = \int_{t_i}^{t_{\underline{y}}(\omega_i)} H_2(X(s,\omega_i))ds \ge 0, \end{aligned}$$

from which we deduce that

$$|X_1(t_{\underline{y}}(\omega_i),\omega_i) - X_1(t_i,\omega_i)| \le \frac{\overline{h}}{\underline{h}} |\underline{y} - X_2(t_i,\omega_i)| < \rho^*/4.$$

Hence

$$\begin{aligned} |X_1(t_{\underline{y}}(\omega_0),\omega_0) - X_1(t_0,\omega_0)| &< \rho^*/4 \\ |X_1(t_{\underline{y}}(\omega_1),\omega_1) - X_1(t_0,\omega_0)| &\leq |X_1(t_{\underline{y}}(\omega_1),\omega_1) - X_1(t_1,\omega_1)| + |X_1(t_1,\omega_1) - X_1(t_0,\omega_0)| \\ &< \rho^*/4 + q\rho^* < \rho^*/2. \end{aligned}$$

We conclude that $|X(t_{\underline{y}}(\omega_i), \omega_i) - X(t_0, \omega_0)| \le \sqrt{(\rho^*/4)^2 + (\rho^*/2)^2} < \rho^*.$

End of the Proof of Theorem 5.1. As a consequence of Lemma 3.1 ii) and Lemma 5.4, we have

$$uoT_h(t_{\underline{y}}(\omega), \omega) \le \epsilon^2 \qquad \forall \omega \in (\omega_1, \omega_0).$$
 (5.10)

Moreover by Lemma 5.3, we have $D_{\underline{y}} \cap [\underline{y} < y < \underline{y} + \epsilon] \subset (x_1, x_2) \times (\underline{y}, \underline{y} + \epsilon)$. We discuss the following cases :

<u>1st case</u>: $\overline{D}_y \cap \Gamma_3 = \emptyset$

Applying Lemma 4.4, we deduce that $u \equiv 0$ in $D_y \cap [y \ge y + \epsilon]$.

Set $X'_0 = X(t'_0, \omega'_0) = X(t_{\underline{y}+\epsilon}(\omega_0), \omega_0)$. Arguing as before, one can find $(t_2, \omega_2) \in B_{\rho'}(t'_0, \omega'_0) \cap [\omega > \omega_0]$ such that $uoT_h(t_2, \omega_2) = 0$. We define $\underline{y}' = \max(X_2(t'_0, \omega'_0), X_2(t_2, \omega_2))$ and $D_{\underline{y}'} = T_h(\omega_0 < \omega < \omega_2) \cap [y > y']$.

• If $D_{\underline{y}'} \cap \Gamma_3 = \emptyset$, then $u \equiv 0$ in $T_h(\omega_0 < \omega < \omega_2) \cap [y > \underline{y}' + \epsilon]$. So for all $\omega \in (\omega_1, \omega_2)$, we have

$$\begin{split} \phi_h(\omega) &\leq t_{\underline{y}'+\epsilon}(\omega) \leq t_{\underline{y}'}(\omega) + \frac{\epsilon}{\underline{h}} < t_0' + \frac{3\epsilon}{\underline{h}} \\ &< t_{\underline{y}}(\omega_0) + \frac{\epsilon}{\underline{h}} + \frac{3\epsilon}{\underline{h}} < t_0 + 2\frac{\epsilon}{\underline{h}} + \frac{4\epsilon}{\underline{h}} = \phi_h(\omega_0) + \frac{6\epsilon}{\underline{h}} \end{split}$$

which is the upper semi-continuity (u.s.c) of ϕ_h at ω_0 .

• If $D_{\underline{y}'} \cap \Gamma_3 \neq \emptyset$, then $X(\alpha_+(\omega_2), \omega_2)$ does not belong to the same connected component of $\Gamma_1 \cup \Gamma_2$ containing $X(\alpha_+(\omega_0), \omega_0)$. Moreover we are now in the situation iii) of Lemma 3.5. So there exists $(t_n^+, \omega_n^+) \in B_{\rho'}(t'_0, \omega_0) \cap [\omega > \omega_0]$ satisfying $uoT_h(t_n^+, \omega_n^+) = 0$ and $X(t_n^+, \omega_n^+)_{n \to \infty} X'_0$. By Lemma 4.5, there exists $n_0 \ge 1$ such that $X(\alpha_+(\omega_{n_0}), \omega_{n_0})$ belongs to the same connected component of $\Gamma_1 \cup \Gamma_2$ which is containing $X(\alpha_+(\omega_0), \omega_0)$. Necessarily, the set $\{X(\alpha_+(\omega), \omega), \omega \in [\omega_0, \omega_{n_0}^+]\}$ is contained in this connected component. Then, by considering $D_{\underline{y}'} \cap [\omega_1 < \omega < \omega_{n_0}^+]$, we can argue as in the previous case, since $\overline{D_{\underline{y}'} \cap [\omega_1 < \omega < \omega_{n_0}^+]} \cap \Gamma_3 = \emptyset$, to show that ϕ_h is u.s.c at ω_0 .

<u>2nd case</u>: $\overline{D}_y \cap \Gamma_3 \neq \emptyset$

From Lemma 3.5, we can have a sequence $(t_n^-, \omega_n^-)_{n\geq 1}$ in $B_\rho(t_0, \omega_0) \cap [\omega < \omega_0]$ or a sequence $(t_n^+, \omega_n^+)_{n\geq 1}$ in $B_\rho(t_0, \omega_0) \cap [\omega > \omega_0]$ or both of them, converging to X_0 and such that uoT_h vanishes on each point of the sequences. By Lemma 4.5, we can find $\omega_{n_1}^- < \omega_0$ or $\omega_{n_2}^+ > \omega_0$ such that $X(\alpha_+(\omega_{n_1}^-), \omega_{n_1}^-)$ or $X(\alpha_+(\omega_{n_2}^+), \omega_{n_2}^+)$ or both of them belong to the same connected component of $\Gamma_1 \cup \Gamma_2$ which is containing $X(\alpha_+(\omega_0), \omega_0)$. We conclude for the last case by considering $D_{\underline{y}'} \cap [\omega_{n_1}^- < \omega < \omega_{n_2}^+]$. For the other cases, we are back to the 1st one.

6 Some Remarks

In this section we first propose a different proof for Theorem 5.1 when H is more regular. Then we show that conditions (4.1)-(4.2) are not sharp. Finally we show that in condition (3.1), one can replace the direction e = (0, 1) by any other direction.

Remark 6.1. When $H \in C^{1,1}(\overline{\Omega})$, it is possible to give another proof for Theorem 5.1 much simpler than the above one. It consists on using the change of variables T_h , which is now a $C^{1,1}$ diffeomorphism, to reduce the problem to a problem of type (P_0) .

Prof of Theorem 5.1 when $H \in C^{1,1}(\overline{\Omega})$. Indeed let $h \in \pi_y(\Omega)$, $\xi \in H^1(D_h)$, $\xi = 0$ on $(\partial D_h \cap T_h^{-1}(\Gamma_3)) \cup (\partial D_h \cap \Omega)$ and $\xi \ge 0$ on $\partial D_h \cap T_h^{-1}(\Gamma_2)$. Then $\xi \circ T_h^{-1}\chi(T_h(D_h))$ is a test function for (P) and we have

$$\int_{T_h(D_h)} (a(X)\nabla u + \chi H(X)) \cdot \nabla(\xi o T_h^{-1}) dX \le 0$$

which can be written using the change of variables T_h

$$\int_{D_h} (\mathbb{A}(t,\omega) \nabla (uoT_h) + \chi oT_h.\mathbf{h}(t,\omega) e_t).\nabla \xi dt d\omega \leq 0$$

where the matrix \mathbb{A} and the function **h** are given by

$$\begin{split} \mathbf{h}(t,\omega) &= |Y_h(t,\omega)|, \quad e_t = (1,0) \\ \mathbb{A}(t,\omega) &= |Y_h(t,\omega)|^t P(t,\omega).a(X(t,\omega)).P(t,\omega) \\ \text{with} \quad P &= ({}^t \mathcal{J}T_h)^{-1} = \frac{1}{Y_h(t,\omega)} \begin{pmatrix} \frac{\partial X_2}{\partial \omega}(t,\omega) & -H_2(X(t,\omega)) \\ -\frac{\partial X_1}{\partial \omega}(t,\omega) & H_1(X(t,\omega)) \end{pmatrix}. \end{split}$$

Note that from Proposition 2.3, the function h satisfies

$$\left\{ \begin{array}{ll} 0 < \underline{h} \leq \mathbf{h}(t,\omega) \leq C\bar{h} & \text{ for a.e } (t,\omega) \in D_h \\ 0 \leq \mathbf{h}_t(t,\omega) \leq C\bar{h} & \text{ for a.e } (t,\omega) \in D_h. \end{array} \right.$$

From the proof of Proposition 2.3, $\frac{\partial X}{\partial \omega} = U(t, \omega)$ satisfies the following differential equation

$$\begin{cases} U'(t,\omega) = DH(X(t,\omega)).U(t,\omega) \\ U(0,\omega) = (1,0). \end{cases}$$

Arguing as in the proof of Proposition 2.3, we deduce, since $DH \in C^{0,1}(\overline{\Omega})$, that $\frac{\partial X}{\partial \omega} \in C^{0,1}(D_h)$. Moreover $\frac{1}{Y_h(t,\omega)} = -\frac{1}{H_2(\omega,h)} \exp\left(-\int_0^t (divH)(X(s,\omega))ds\right)$ clearly belongs to $C^{0,1}(D_h)$. Hence the matrix \mathbb{A} satisfies

$$\mathbb{A} \in C^{0,1}(D_h)$$
 and $|\mathbb{A}(t,\omega)| \le C$

where C is a positive constant. To conclude, it remains to verify the following ellipticity condition

$$\mathbb{A}(t,\omega)\xi.\xi \ge \mu|\xi|^2 \quad \forall \xi \in \mathbb{R}^2, \quad \text{for a.e. } (t,\omega) \in D_h, \quad \text{for some positive constant } \mu.$$

So, let $\xi \in \mathbb{R}^2$. We have

$$\mathbb{A}(t,\omega)\xi.\xi = |Y_h|. < aoT_h.P\xi, P\xi \ge \lambda |Y_h||P\xi|^2 = \lambda |Y_h| <^t PP\xi, \xi > .$$

Denote by Q the matrix ^tPP. Since Q is symmetric, its eigenvalues κ_1 and κ_2 are real numbers. Moreover, we have

$$\kappa_1 \cdot \kappa_2 = detQ = (detP)^2 = \frac{1}{Y_h^2}$$
(6.1)

$$\kappa_1 + \kappa_2 = trQ = \frac{1}{Y_h^2} \Big(H_1^2 + H_2^2 + \Big(\frac{\partial X_1}{\partial \omega}\Big)^2 + \Big(\frac{\partial X_2}{\partial \omega}\Big)^2 \Big).$$
(6.2)

Then $\kappa_1 > 0$ and $\kappa_2 > 0$. Assume for example that $\kappa_1 \leq \kappa_2$ and set $m = \inf_{\substack{(t,\omega) \in D_h \\ (t,\omega) \in D_h \\ }} \kappa_1(t,\omega)$. Suppose m = 0. There exists a sequence $(t_n, \omega_n) \in D_h$ such that $m = \lim_{n \to \infty} \kappa_1(t_n, \omega_n) = 0$. Since H and $\frac{\partial X}{\partial \omega}$ are bounded, we deduce from (6.2) that the sequence $\kappa_2(t_n, \omega_n)$ is bounded in \mathbb{R}^+ . So there exists a subsequence $(n_k)_{k\geq 1}$ such that $\lim_{k\to\infty} \kappa_2(t_{n_k}, \omega_{n_k}) = \kappa^*$ with $0 \leq \kappa^* < \infty$. Now, letting $k \to \infty$ in (6.1), we get $\lim_{k\to\infty} \frac{1}{Y_h^2(t_{n_k}, \omega_{n_k})} = 0$ which is a contradiction with Proposition 2.3 iv). So m > 0.

Now since Q is symmetric, there exists an orthogonal matrix O (i.e $O^tO = {}^tOO = I_2$) such that $Q = ODO^{-1}$, D is a diagonal matrix with diagonal coefficients equal to the eigenvalues of Q. Then we have

$$< Q\xi, \xi > = < DO^{-1}\xi, ^t O\xi > = < D^t O\xi, ^t O\xi > \ge m |^t O\xi|^2 = m |\xi|^2.$$

Hence

$$< \mathbb{A}\xi, \xi > \geq \lambda m |Y_h|\xi|^2 \geq \lambda m \underline{h} |\xi|^2 \qquad \forall \xi \in \mathbb{R}^2.$$

We conclude (see [4]) that the free boundary $\partial [uoT_h > 0] \cap D_h$ is a continuous curve $[t = \phi_h(\omega)]$.

Remark 6.2. The conditions under which Theorem 5.1 is proved are not sharp. Indeed we present below a proof when H(X) = a(X)e, that is to say when (P) is the weak formulation of the dam problem with Dirichlet boundary conditions, with a(X) satisfying (1.1)-(1.2), $a(X)e \in C^{0,1}(\overline{\Omega})$, but not the assumptions (4.1)-(4.2). Note that only the proof of Lemma 4.4. requires the last assumptions. Actually the proof given in section 4 is based on the comparison of u with respect to the barrier function defined by (4.3). It uses the local Lipschitz continuity of u which requires the assumptions (4.1)-(4.2). For this special case, we propose another proof using an explicit barrier function. Moreover the assumption " $uoT_h(t_{\underline{y}}(\omega), \omega) \leq \epsilon^2 \ \forall \omega \in (\omega_1, \omega_2)$ " in Lemma 4.3, will be modified by changing ϵ^2 to ϵ .

Proof of lemma 4.4 when H(X) = a(X)e. Let $v(y) = (\epsilon + \underline{y} - y)^+$ and $\xi(x, y) = \chi(D_{\underline{y}})(u - v)^+$. Since $v \ge 0 = u$ on $(\partial D_{\underline{y}} \setminus ([y = \underline{y}])) \cap \Omega$, we have $\xi = 0$ on $(\partial D_{\underline{y}} \setminus ([y = \underline{y}])) \cap \Omega$. Moreover $v(\underline{y}) = \epsilon \ge u(x, \underline{y})$ and then $\xi(x, \underline{y}) = 0$. It follows that $\xi = 0$ on $(\partial D_{\underline{y}} \cap \Omega) \cup (\partial D_{\underline{y}} \cap \Gamma_2)$, and $\pm \xi$ are test functions for (P). So we have

$$\int_{D_{\underline{y}}} (a(X)\nabla u + \chi a(X)e) \cdot \nabla (u-v)^+ dX \le 0.$$
(6.3)

We also have

$$\int_{D_{\underline{y}}} (a(X)\nabla v + \chi([v>0])a(X)e) \cdot \nabla(u-v)^+ dX = 0.$$
(6.4)

Subtracting (6.4) from (6.3), we obtain

$$\int_{D_{\underline{y}}\cap[v>0]} a(X)\nabla(u-v).\nabla(u-v)^+ dX$$

$$+ \int_{D_{\underline{y}} \cap [v=0]} a(X)(\nabla u + \chi e) \cdot \nabla u dX \le 0.$$
(6.5)

By Lemma 3.2, we have for $D_{\underline{y}+\epsilon} = [y > \underline{y} + \epsilon] \cap D_{\underline{y}} = D_{\underline{y}} \cap [v = 0]$ and $\zeta = y - (\underline{y} + \epsilon)$

$$\int_{D_{\underline{y}}\cap[v=0]} a(X)(\nabla u + \chi e).edX \le 0.$$
(6.6)

Adding (6.5) and (6.6), we get by taking into account (P)i

$$\int_{D_{\underline{y}}\cap[v>0]} a(X)\nabla(u-v).\nabla(u-v)^{+}dX$$
$$+\int_{D_{\underline{y}}\cap[u>v=0]} a(X)(\nabla u+e).(\nabla u+e)dX$$
$$+\int_{D_{\underline{y}}\cap[u=v=0]} \chi a(X)e.edX \le 0.$$

or by (1.2)

$$\int_{D_{\underline{y}}\cap[v>0]} |\nabla(u-v)^+|^2 dX + \int_{D_{\underline{y}}\cap[u>v=0]} |\nabla u+e|^2 dX + \int_{D_{\underline{y}}\cap[u=v=0]} \chi dX \le 0.$$

Since the three integrals in the left hand side of the above inequality are all nonnegative, we obtain $\nabla(u-v)^+ = 0$ a.e. in $D_{\underline{y}} \cap [v > 0]$ and then, since $(u-v)^+ = 0$ on $\partial D_{\underline{y}} \cap [y = \underline{y}]$, we get $u \leq v$ in $D_{\underline{y}} \cap [v > 0]$. This leads to $u(x, \underline{y} + \epsilon) = 0 \ \forall x \in \pi_x(D_{\underline{y}} \cap [y = \underline{y} + \epsilon])$. Hence u = 0 in $D_y \cap [y \geq \underline{y} + \epsilon]$.

Remark 6.3. The assumption (1.3) can be replaced by the more general one

$$|H_1(X)| \le \overline{h}, \qquad 0 < \underline{h} \le H(X).\nu \le \overline{h} \qquad a.e. \ X \in \Omega \tag{6.7}$$

where $\nu \neq 0$ is a constant vector.

Proof of Remark 6.3 Indeed, set $\nu = (\nu_1, \nu_2)$, $n = (-\nu_2, \nu_1)$. We can assume that $|\nu| = \nu_1^2 + \nu_2^2 = 1$. Clearly (n, ν) is an orthonormal basis of \mathbb{R}^2 .

For a point $M \in \Omega$, we denote by X (resp. Y) its coordinates in the canonical (resp. new) basis (e_1, e_2) (resp. (n, ν)). We have

$$X = RY$$
 with $R = R^{-1} = \begin{pmatrix} -\nu_2 & \nu_1 \\ & & \\ & \nu_1 & \nu_2 \end{pmatrix}$.

Consider the change of variables $\theta : Y \mapsto X = RY$ from $\theta^{-1}(\Omega) = \widetilde{\Omega}$ into Ω . Let $\xi \in H^1(\widetilde{\Omega})$, $\xi = 0$ on $\widetilde{\Gamma_3}$, $\xi \ge 0$ on $\widetilde{\Gamma_2}$, where $\widetilde{\Gamma_i} = \theta^{-1}(\Gamma_i)$ for i = 1, 2, 3. Using $\xi o \theta^{-1}$ as a test function for (P), we obtain

$$\int_{\Omega} (a(X)\nabla u + \chi H(X)) \cdot \nabla(\xi o\theta^{-1}) dX$$

=
$$\int_{\theta^{-1}(\Omega)} (R.ao\theta \cdot R\nabla_Y (uo\theta) + \chi o\theta R \cdot Ho\theta) \cdot \nabla_Y \xi dY$$

=
$$\int_{\widetilde{\Omega}} (\widetilde{a}(Y)\nabla \widetilde{u} + \widetilde{\chi} \widetilde{H}(Y)) \nabla \xi dY.$$

where $\tilde{a}(Y) = R.ao\theta(Y).R$, $\tilde{u} = uo\theta$, $\tilde{\chi} = \chi o\theta$, and $\tilde{H}(Y) = R.Ho\theta(Y)$. Note that $Ho\theta = H_1o\theta e_1 + H_2o\theta e_2 = \tilde{H}_1(Y)n + \tilde{H}_2(Y)\nu = R.\tilde{H}(Y)$. Then

$$\widetilde{H}_1(Y) = -\nu_2 H_1 o\theta(Y) + \nu_1 H_2 o\theta(Y) \quad \text{and} \quad \widetilde{H}_2(Y) = \nu_1 H_1 o\theta(Y) + \nu_2 H_2 o\theta(Y) = H o\theta(Y) \cdot \nu.$$

We deduce that

$$|\widetilde{H}_1(Y)| \le 2\overline{h}, \qquad 0 < \underline{h} \le \widetilde{H}_2(Y) \le \overline{h} \qquad \text{a.e. } Y \in \theta^{-1}(\Omega).$$

Finally, one can check easily that $(div_Y \widetilde{H})(Y) = (div_X H)(X)$ from which we deduce that

 $div_Y \widetilde{H} \in L^{\infty}(\theta^{-1}(\Omega))$ and $(div_Y \widetilde{H}(Y)) \ge 0$ a.e. $Y \in \theta^{-1}(\Omega)$.

Similarly one can check that $\tilde{a}(Y)$ satisfies the assumptions (1.1)-(1.2) and (4.1)-(4.2).

Acknowledgments We would like to thank KFUPM for its continuing support and facilities provided.

References

- Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis. Walter de Gruyter. Berlin. New York 1990.
- [2] Federer, H. : Geometric Measure Theory. Springer-Verlag 1969.
- [3] Challal, S., Lyaghfouri, A. : A Filtration Problem through a Heterogeneous Porous Medium. Interfaces and Free Boundaries 6, 55-79 (2004).
- [4] Challal, S., Lyaghfouri, A. : Continuity of the Free Boundary in Problems of type $div(a(x)\nabla u) = -(\chi(u)h(x))_{x_1}$. Nonlinear Analysis : Theory, Methods & Applications, Vol. 62, No. 2, 283-300 (2005).
- [5] Gilbarg, D., Trudinger, N.S. : Elliptic Partial Differential Equations of Second Order. Springer-Verlag 1983.
- [6] Hale, J. : Ordinary Differential Equations. Second Edition. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.
- [7] Ziemer, W.P. : Weakly Differential Functions. Graduate Texts in Mathematics 120. Springer-Verlag 1989.