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Abstract

We consider a class of two dimensional free boundary problems including the
heterogeneous dam, lubrication and aluminium electrolysis problems. We prove the
Lipschitz continuity of the solution and the continuity of the free boundary.

Introduction

Many free boundary problems are described by the following weak formulation

(P )





Find (u, χ) ∈ H1(Ω)× L∞(Ω) such that :
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Ω
(ii) u = ϕ on Γ1

(iii)
∫

Ω

(
a(x)∇u + χH(x)

)
.∇ξdx ≤ 0

∀ξ ∈ H1(Ω), ξ = 0 on Γ1, ξ ≥ 0 on Γ2

where Ω is a bounded domain, a(x) = (aij(x)) is a 2-by-2 matrix, x = (x1, x2), H(x) is
a vector function, Γ1 and Γ2 are parts of the boundary ∂Ω of Ω.

Indeed if a(x) is the permeability of a porous medium Ω and if H(x) = a(x)e2, where
e2 = (0, 1), then (P ) is the weak formulation of the heterogeneous dam problem with
Dirichlet boundary conditions (see [1], [11]).

When a(x) = h3(x)I2 and H(x) = h(x)e2, where I2 is the 2-by-2 identity matrix and h(x)
a scalar function related to the Reynolds equation, then we have the weak formulation
of the lubrication problem (see [4]).

A third model corresponds to a(x) = k(x)I2 and H(x) = h(x)e1, where e1 = (1, 0), k(x)
and h(x) are scalar functions. It corresponds to the aluminium electrolysis problem (see
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[5]). In this case we obtain, after a suitable change of variables, a similar formulation to
(P ) (see [7]).

In these problems we are interested to study the free boundary Γf = ∂[u > 0] ∩ Ω
separating two different regions. In the case of the dam and lubrication problems, it
separates the region containing the fluid from the rest of the domain. In the case of the
aluminium electrolysis problem, the free boundary separates the regions containing liquid
and solid aluminium.
The regularity of Γf has been studied by many authors in different situations. In [2],
H.W. Alt proved that it is an analytic curve x2 = Φ(x1) when a(x) = I2 and H(x) = e2.

In [11], A. Lyaghfouri proved that Γf is a continuous curve x2 = Φ(x1) provided that

H(x) = a(x)e2, a12(x) = 0 and
∂a22

∂x2
≥ 0 in D′(Ω). Recently, this result was extended

in [8] to the case where div
(
a(x)e2

) ≥ 0. Γf was shown to be locally represented by
continuous curves.

In [6], M. Chipot considered the case where H(x) = h(x)e1, h(x) ∈ L∞(Ω), and hx1 ≥ 0
in D′(Ω). Then under the following assumptions :

• (A1) a21
h

a11
is Lipschitz continuous, nondecreasing in x2,

for any α > x1, the function

• (A2) a12

∫ α

x1

( h

a11

)
x2

(ξ, x2)dξ is Lipschitz continuous and non-increasing in x1,

• (A3) a22

∫ α

x1

( h

a11

)
x2

(ξ, x2)dξ is Lipschitz continuous and non-increasing in x2,

and for any α < x1, the function

• (A4) a21

∫ x1

α

( h

a11

)
x2

(ξ, x2)dξ is nonnegative, Lipschitz continuous and non-

increasing in x1,

• (A5) a22

∫ x1

α

( h

a11

)
y
(ξ, x2)dξ is Lipschitz continuous and non-increasing in x2,

he proved that Γf is a continuous curve x1 = Φ(x2).

In this paper, we would like to consider the problem studied in [6] with the objective
of removing the technical assumptions (A.1)− (A.5), that we believe impose unnecessary
relationships between h and the matrix a. We shall replace them by the two conditions
(2.8)-(2.9).
First we prove that any solution is locally Lipshitz continuous. Then by extending tech-
niques developed in [3], we establish the continuity of the corresponding free boundary.
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1 Statement of the problem and reminder of some
results

Let Ω be the open bounded domain of R2 defined by

Ω = {(x1, x2) ∈ R2 / x2 ∈ (a0, b0), γ1(x2) < x1 < γ2(x2)}
where γ1 and γ2 are two Lipschitz continuous functions from (a0, b0) into R. We set

• Γ1 = {(γ1(x2), x2) / x2 ∈ (a0, b0)}
• Γ2 = {(γ2(x2), x2) / x2 ∈ (a0, b0)}
• Γ3 = ∂Ω \ (

Γ1 ∪ Γ2

)
.

Let a = (aij) be a two-by-two matrix with

aij ∈ L∞(Ω), |a(x)| ≤ M, for a.e. x ∈ Ω, (1.1)
a(x)ξ.ξ ≥ λ|ξ|2 ∀ξ ∈ R2, for a.e. x ∈ Ω, (1.2)

where λ and M are positive constants.
Let h be a function satisfying for some positive constants h̄ ≥ h and p > 2

h ≤ h(x) ≤ h̄ for a.e. x ∈ Ω (1.3)
hx1 ∈ Lp

loc(Ω) (1.4)
hx1(x) ≥ 0 for a.e. x ∈ Ω. (1.5)

We are interested to study the following problem (see [6])

(P )





Find (u, χ) ∈ H1(Ω)× L∞(Ω) such that :
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(χ− 1) = 0 a.e. in Ω

(ii)
∫

Ω

(
a(x)∇u + χh(x)e1

)
.∇ξdx ≤ 0

∀ξ ∈ H1(Ω), ξ = 0 on Γ1 ∪ Γ3, ξ ≥ 0 on Γ2.

Remark 1.1. i) For the existence of a solution of (P ), we refer to [1].

ii) If for ζ ∈ D(Ω), one takes ±ζ as test functions in (P )ii), one gets div
(
a(x)∇u

)
=

−(hχ)x1 in D′(Ω). Since hχ ∈ Lp
loc(Ω) and due to (1.1)-(1.2), it follows (see [9] Theorem

8.24, p. 202) that u ∈ C0,α
loc (Ω) for some α ∈ (0, 1). As a consequence the set [u > 0] is

open.

iii) Now we have div
(
a(x)∇u

)
= −hx1 in D′([u > 0]). So if a ∈ C0,α

loc (Ω) (0 < α < 1), we
deduce (see [9] Corollary 8.36 and the Remark just after, p. 212 ) that u ∈ C1,α

loc ([u > 0]).
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In the following we recall some of the properties of the solutions of (P ) established in
[6]. Actually the Propositions 1.1-1.3 are the equivalent of Propositions 2.1, Corollary 2.4
and Proposition 2.5 of [6] respectively. Proposition 1.4 is the equivalent of Propositions
3.1 and 3.2. Finally Lemma 1.1 is Lemma 3.4 of [6].

Proposition 1.1. Let (u, χ) be a solution of (P ). We have

χx1 ≤ 0 in D′(Ω). (1.6)

Remark 1.2. In [6], (1.6) is proved assuming that h ∈ H1(Ω) and that hx1 is nonnega-
tive. Actually one can verify easily that (1.6) remains valid if one assumes only that hx1

belongs to L1
loc(Ω) and is nonnegative, which is ensured by (1.4)-(1.5). Indeed using only

the fact that hx1 ∈ L1
loc(Ω) and the nonnegativity of hx1 , the author showed in [6] that

∫

Ω

χ(hξ)x1 ≥ 0 ∀ξ ∈ D(Ω), ξ ≥ 0.

By approximation this inequality remains true for any nonnegative function ξ with com-
pact support in Ω and such that ξx1 ∈ L2(Ω). Therefore one can take ξ = ζ

h for any
ζ ∈ D(Ω), ζ ≥ 0 and conclude as in [6].

Proposition 1.2. Let (u, χ) be a solution of (P ) and x0 = (x01, x02) ∈ Ω.

i) If u(x0) > 0, then there exists ε > 0 such that

u(x1, x2) > 0 ∀(x1, x2) ∈ Cε = Bε(x0) ∪ {(x1, x2) ∈ Ω / |x2 − x02| < ε, x1 < x01}

where Bε(x0) is the ball centered at x0 with radius r.

ii) If u(x0) = 0, then u(x1, x02) = 0 ∀x1 ≥ x01.

We then define the function Φ by

Φ(x2) =

{
γ1(x2) if {x1 / (x1, x2) ∈ Ω, u(x1, x2) > 0} = ∅
sup{x1 / (x1, x2) ∈ Ω, u(x1, x2) > 0} otherwise.

(1.7)

Φ is well defined and satisfies

Proposition 1.3. Φ is lower semi-continuous on (a0, b0) and

[u(x1, x2) > 0] = [x1 < Φ(x2)].
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Proposition 1.4. Let (u, χ) be a solution of (P ). Let x0 = (x01, x02) ∈ Ω and r > 0
such that Br(x0) ⊂ Ω. Then we cannot have the following situations in Br(x0)

(i) u(x) = 0 for x2 = x02 and u(x) > 0 for x2 6= x02.

(ii) u(x) = 0 for x2 ≥ x02 and u(x) > 0 for x2 < x02.

(iii) u(x) > 0 for x2 > x02 and u(x) = 0 for x2 ≤ x02.

Lemma 1.1. Let (u, χ) be a solution of (P ). Let (x1, x12), (x1, x22) ∈ Ω with x12 < x22

and u(x1, xi2) = 0 for i = 1, 2. Let D =
(
(x1,+∞)× (x12, x22)

) ∩ Ω. Then we have
∫

D

(
a(x)∇u + χh(x)e1

)
.∇ζdx ≤ 0

∀ζ ∈ H1(D) ∩ L∞(D), ζ ≥ 0, ζ(x1, x2) = 0 a.e. x2 ∈ (x12, x22).

From now on, we assume that

a ∈ C0,α
loc (Ω), α ∈ (0, 1) (1.8)

∃c0 ∈ R / ∀y ∈ Ω : div(a(x)(x− y)) ≤ c0 in D′(Ω). (1.9)

Note that (1.9) is satisfied in particular if a ∈ C0,1 or simply if div(a(x)e1), div(a(x)e2) ∈
L∞(Ω), where e1 and e2 are the vectors defined in the introduction.

2 Lipschitz Continuity of u

Given the jump condition along the free boundary, the optimal regularity we can expect
for solutions u of (P ) is the local Lipschitz continuity which was proved in [1] assuming a
and a−1(h(x)e1) in C0,α

loc (Ω). Here we propose a different approach that extends the one
given in [3] for the homogeneous dam problem.

Theorem 2.1. Let (u, χ) be a solution of (P ). Then

u ∈ C0,1
loc (Ω).

First, we prove two Lemmas
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Lemma 2.1. Let x0 = (x01, x02) and r, d > 0 such that Br(x0) ⊂ [u > 0], Br(x0) ⊂
Bd(x0) ⊂ Ω and ∂Br(x0) ∩ ∂[u > 0] 6= ∅. Then we have for some positive constant C
depending only on λ, h̄, c0 and d, but not on r

min
∂Br/2(x0)

u = min
Br/2(x0)

u ≤ C r.

Proof. First note that we have χ = 1 a.e. in Br(x0) and then div(a(x)∇u) = −(hχ)x1 =
−hx1 ≤ 0 in H−1(Br(x0)). Let now m = min

Br/2(x0)
u and v = u−m. Then v satisfies v ≥ 0

in Br/2(x0), v ∈ H1(Br/2(x0)) and div(a(x)∇v) ≤ 0 in H−1(Br/2(x0)). Using the weak
Harnack inequality (see [10] Theorem 4.15 p. 83) for f ≡ 0, one can see that either v ≡ 0
or v > 0 in Br/2(x0). This means that either u ≡ m or u > m in Br/2(x0). In both cases
we have min

∂Br/2(x0)
u = min

Br/2(x0)
u.

Let δ > 0 such that Br+δ(x0) ⊂ Ω, and v defined by

v(x) = k
(
e−µρ2 − e−µ(r+δ)2

)

where ρ2 = (x1 − x01)2 + (x2 − x02)2, k = m/
(
e−µr2/4 − e−µ(r+δ)2

)
, m = min

∂Br/2(x0)
u and

µ =
κ

r2
with κ > max

(
2,

2c0

λ

)
and c0 is the constant in (1.9).

Then one can verify that v satisfies




div(a(x)∇v) ≥ 0 in D = Br+δ(x0) \Br/2(x0)
v = m on ∂Br/2(x0)
v = 0 on ∂Br+δ(x0)
|∇v| = 2kµρe−µρ2

decreases with respect to ρ.

Indeed we have for ζ ∈ D(D), ζ ≥ 0

∫

D

a(x)∇v.∇ζ =
∫

D

−2µke−µρ2
a(x)(x− x0).∇ζ

= −2µk

∫

D

a(x)(x− x0).∇(e−µρ2
ζ) + 2µk

∫

D

ζ[−2µe−µρ2
]a(x)(x− x0).(x− x0)

≤ 2µkc0

∫

D

ζe−µρ2 − 4µ2kλ
r2

4

∫

D

ζe−µρ2
by (1.2) and since |x− x0|2 ≥ r2/4

= µk[2c0 − µλr2]
∫

D

ζe−µρ2

= µk[2c0 − λκ]
∫

D

ζe−µρ2 ≤ 0 since κ >
2c0

λ
. (2.1)
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Now since v ≤ u on ∂D, ζ = (v− u)+χ(D) ∈ H1
0 (Ω), where χ(E) denotes the character-

istic function of the set E. So ±ζ are test functions for (P ) and we have
∫

D

(a(x)∇u + χh(x)e1).∇(v − u)+dx = 0. (2.2)

Moreover clearly (2.1) can be extended by density to non-negative functions of H1
0 (D).

Since (v − u)+ ∈ H1
0 (D) and is non-negative, we obtain

∫

D

a(x)∇v.∇(v − u)+dx ≤ 0. (2.3)

Subtracting (2.2) from (2.3), we get
∫

D

a(x)∇(v − u).∇(v − u)+dx−
∫

D

χh(x)(v − u)+x1
dx ≤ 0

which can be written

∫

D

a(x)∇(v − u).∇(v − u)+dx−
∫

D∩[u=0]

(χ− 1)h(x)vx1dx

−
∫

D

h(x)(v − u)+x1
dx ≤ 0. (2.4)

Using (1.2), (P )i) and integrating by part the last term in (2.4), we obtain

λ

∫

D

|∇(v − u)+|2dx−
∫

D∩[u=0]

(χ− 1)h(x)vx1dx ≤ −
∫

D

hx1(v − u)+dx.

This leads by (1.3) and (1.5) to
∫

D∩[u>0]

|∇(v − u)+|2dx ≤
∫

D∩[u=0]

|∇v|( h̄

λ
− |∇v|)dx.

We claim that
∫

D∩[u>0]

|∇(v − u)+|2dx > 0. Otherwise we will have in particular
∫

Br(x0)\Br/2(x0)

|∇(v − u)+|2dx = 0 which leads to ∇(v − u)+ = 0 in Br(x0) \ Br/2(x0).

Since v ≤ u on ∂Br/2(x0), we get v ≤ u in Br(x0) \ Br/2(x0). By continuity one has
v ≤ u on ∂Br(x0). Note that ∂Br(x0)∩ ∂[u > 0] is not empty by assumption . Moreover
it is contained in [u = 0], since ∂Br(x0) ∩ ∂[u > 0] ⊂ Ω ∩ ∂[u > 0] = ([u > 0] \ [u >
0]) ∩ Ω = [u > 0] ∩ [u = 0] ⊂ [u = 0]. It follows that we have u(z0) = 0 for some
z0 ∈ ∂Br(x0) ∩ ∂[u > 0], which leads to v(z0) ≤ 0. But this is impossible since v > 0 in
D = Br+δ(x0) \Br/2(x0) ⊃ ∂Br(x0). Hence
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∫

D∩[u=0]

|∇v|( h̄

λ
− |∇v|)dx > 0. (2.5)

We claim now that |∇v| <
h̄

λ
on ∂Br+δ(x0). Indeed, if not, we will have |∇v| ≥ h̄

λ
in

D since |∇v| is non-increasing with respect to ρ and get a contradiction with (2.5). We

deduce that |∇v||∂Br+δ(x0)
= 2kµ(r + δ)e−µ(r+δ)2 <

h̄

λ
.

Letting δ → 0, we get

m ≤ h̄

2κλ
|1− e3κ/4|r = C r.

Lemma 2.2. Under the assumptions of Lemma 2.1, we have for a constant C > 0
depending only on λ, M , h̄, c0, p and d, but not on r

u(x0) ≤ C r.

Proof.

We define w(x) =
u(x0 + rx)

r
for x ∈ B1, where B1 is the open unit ball of center (0, 0).

It is not difficult to check that

div
(
ã(x)∇ω

)
= f(x) in B1, (2.6)

with

ã(x) =
(
ãij(x)

)
, ãij(x) = aij(x0 + rx)

f(x) = r(−hx1)(x0 + rx).

Since ã ∈ L∞(B1) is strictly elliptic, and f ∈ Lp(B1), we can apply Theorem 4.17 p. 90
[10] (Moser’s Harnack inequality) to (2.6). If we denote by B1/2 the open ball of center
(0, 0) and radius 1/2, we get for a positive constant C1 depending only on λ,M, and p

max
B1

w ≤ C1

(
min
B1/2

w + |f |Lp(B1)

)

Since p > 2 and due to (1.4), we have for some constant C ′1 depending only on d

|f |Lp(B1) =
(∫

B1

rphp
x1

(x0 + rx)dx
)1/p

=
(∫

Br

rp

r2
hp

x1
(y)dy

)1/p

= r(1− 2
p )|hx1 |Lp(Br) ≤ d(1− 2

p )|hx1 |Lp(Bd) = C ′1(d).

8



We deduce by using Lemma 2.1

1
r
u(x0) ≤ 1

r
max
B1

u(x0 + rx) ≤ C1

(1
r

min
B1/2

u(x0 + rx) + C ′1
)

= C1

(1
r

min
Br/2(x0)

u + C ′1
)

= C1

(m

r
+ C ′1

)
≤ C.

Remark 2.1. If (1.4) is replaced by hx1 ∈ Lp(Ω), the constants in Lemmas 2.1 and 2.2
clearly will not depend on d.

Proof of Theorem 2.1. Let x, y ∈ Ω. Without loss of generality, one can choose x, y such
that

|x− y| < d/2 and B2d(x), B2d(y) ⊂ Ω for some d > 0.

Set r(z) = min(d, dist(z, [u = 0])), where dist(z, [u = 0]) denotes the distance between z
and the set [u = 0]. Remark that we have Br(z)(z) ⊂ [u > 0] whenever r(z) > 0.
Indeed, if z′ ∈ Br(z)(z), we have

dist(z′, [u = 0]) ≥ dist(z, [u = 0])− |z − z′| ≥ r(z)− |z − z′| > 0.

Now if u(x) = u(y) = 0, we have |u(x)− u(y)| = 0 ≤ |x− y|.

If u(x) > 0 and u(y) = 0, then y 6∈ Br(x)(x) ⊂ [u > 0].
So r(x) ≤ |x− y| < d/2 < d and then ∂Br(x)(x) ∩ ∂[u > 0] 6= ∅.
By Lemma 2.2, we obtain u(x) ≤ Cr(x). Therefore

|u(x)− u(y)| = u(x) ≤ Cr(x) ≤ C|x− y|.

If u(x) = 0 and u(y) > 0, we conclude as before.

Let us assume u(x) > 0 and u(y) > 0. We distinguish two cases :

i)
1
2

max(r(x), r(y)) < |x− y| :

Then we have r(x), r(y) < d and ∂Br(x)(x) ∩ ∂[u > 0] 6= ∅, ∂Br(y)(y) ∩ ∂[u > 0] 6= ∅.
Applying Lemma 2.2, we obtain

|u(x)− u(y)| ≤ u(x) + u(y) ≤ C(r(x) + r(y)) ≤ 2C max(r(x), r(y)) ≤ 4C|x− y|.

ii)
1
2

max(r(x), r(y)) ≥ |x− y| > 0 :
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Assume that r(x) ≥ r(y). Then
1
2

max(r(x), r(y)) =
r(x)
2

≥ |x− y|. We distinguish two
cases :

∗ r(x) <
d

2
.

Let z ∈ B1. We have for z′ ∈ [u = 0]

d(x + r(x)z, [u = 0]) ≤ d(x + r(x)z, z′) ≤ d(x + r(x)z, x) + d(x, z′)
= r(x) ‖ z ‖ + ‖ x− z′ ‖≤ r(x)+ ‖ x− z′ ‖ because z ∈ B1.

Since this holds for arbitrary z′ ∈ [u = 0], we obtain

d(x + r(x)z, [u = 0]) ≤ r(x) + d(x, [u = 0]) = 2r(x) < d.

So r(x + r(x)z) < d and then ∂Br(x+r(x)z)(x + r(x)z) ∩ ∂[u > 0] 6= ∅. Applying Lemma
2.2, we get

u(x + r(x)z) ≤ Cr(x + r(x)z) ≤ 2Cr(x).

We deduce that the function v defined by

v(z) =
u(x + r(x)z)

r(x)
, z ∈ B1

is uniformly bounded in B1 i.e. v(z) ≤ 2C ∀z ∈ B1. Moreover, it satisfies

{
div(ã(z)∇v) = f(z) in B1

v ∈ C1,α(B1) (see [9], Corollary 8.36 p. 212 and the Remark after it)

where

ã(z) = ã(x + r(x)z) and f(z) = −r(x)(hx1)(x + r(x)z).

Applying Theorem 8.32 p 210 of [9] and taking into account the Remark after Corollary
8.36, we get

|v|1,α,B1/2
≤ C

(
|v|0,B1 + |f |p,B1

)
,

where C depends only on dist(B1/2, ∂B1). In particular, |∇v|0,B1/2
is uniformly bounded.

Now, since (y − x)/r(x) ∈ B1/2, we have
∣∣∣v

(y − x

r(x)

)
− v(0)

∣∣∣ ≤ C
∣∣∣y − x

r(x)

∣∣∣

from which we deduce that

|u(y)− u(x)| ≤ C|y − x|.
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∗ r(x) ≥ d

2
.

We consider, as above, the function v defined on B1. Remark that we have

|v|0,B1 ≤
|u|0,Bd(x)

r(x)
≤ 2

d
|u|0,Bd(x).

Then |∇v|0,B1/2
≤ C(d) and we get by arguing as before

|u(y)− u(x)| ≤ C(d)|y − x|.

Remark 2.2. If in (P )(ii), h(x)e1 is replaced by a vector function H(x) that satisfies

|H(x)| ≤ h̄ for a.e. x ∈ Ω
div(H) ∈ Lp

loc(Ω), p > 2
div(H)(x) ≥ 0 for a.e. x ∈ Ω,

then one can verify that the above proof can be easily extended to show that the solution
u is also locally Lipschitz continuous.

3 A Barrier Function

In this section, we construct a function that will be used to prove the continuity of φ by
comparing it to u near a free boundary point.

Let (x1, x12), (x1, x22) ∈ Ω such that x12 < x22. We assume that ε = x22 − x12 is
small enough to guarantee that

(x1, x1 + 2ε)× (x12 − ε, x22 + ε) ⊂⊂ Ω.

Let Z = (x1, x1 + ε)× (x12− ε, x22 + ε). We denote by v the unique solution in H1(Z) of
{

div(a(x)∇v) = −hx1 in Z

v = ϕ(x) = ε(x1 + ε− x1)+ on ∂Z.
(3.1)

Remark 3.1. We deduce from (3.1) (see [9], Corollary 8.36 p. 212 and the Remark after
it) that v ∈ C1,α

loc

(
Z ∪ {x1 + ε} × (x12 − ε, x22 + ε)

)
.

First we have the following estimate

11



Proposition 3.1. There exists a positive constant C independent of ε such that

0 < v ≤ Cε2(1−
1
p ) in Z.

Proof. Since div(a(x)∇v) = −hx1 ≤ 0 in Z and v ≥ 0 on ∂Z, we obtain by the weak
maximum principle (see [9], Theorem 8.1 p. 179) that v ≥ 0 in Z.
Now because of the boundary condition, the strong maximum principle (see [9], Theorem
8.19 p. 198) leads to v > 0 in Z.

To prove the second inequality, we introduce the function

ω : Y = (0, 1)× (0, 3) −→ R+

x′ = (x′1, x
′
2) 7−→ ω(x′) = v(x1 + εx′1, x12 − ε + εx′2).

Then it is not difficult to check that
{

div(â(x′)∇ω) = −ε2ĥx1 in Y

ω = ε2(1− x′1) on ∂Y
(3.2)

where

â(x′) = a(x1 + εx′1, x12 − ε + εx′2), ĥx1(x
′) = hx1(x1 + εx′1, x12 − ε + εx′2).

Note that we have by (1.1), (1.2) and (1.5)

â(x′)ξ.ξ ≥ λ|ξ|2, ∀ξ ∈ R2, ∀x′ ∈ Y

|â(x′)| ≤ M, 0 ≤ ĥx1(x
′), a.e. x′ ∈ Y.

Applying Theorem 8.16 p. 191 of [9], we get

sup
Y

ω ≤ sup
∂Y

ω +
C1

λ
|ε2ĥx1 |Lq/2(Y )

where q = 2p > 2 and C1 is a positive constant depending only on Y . Moreover

|ε2ĥx1 |Lq/2(Y ) =
(∫

Y

ε2pĥx1

p
(x′)dx′

)1/p

=
(∫

Z

ε2p

ε2
hp

x1
(x)dx

)1/p

= ε2(1−
1
p )|hx1 |Lp(Z).

Hence for ε small enough

sup
Z

v = sup
Y

ω ≤ ε2 +
C1

λ
ε2(1−

1
p )|hx1 |Lp(Z) ≤ ε2 +

C1

λ
ε2(1−

1
p )|hx1 |Lp(Z′) ≤ Cε2(1−

1
p )

where Z ′ is a subset of Ω that contains Z̄ and which does not depend on ε.

Now we have the following gradient estimate

12



Proposition 3.2. There exists a positive constant C independent of ε such that

|∇v(x)| ≤ Cε(1−
2
p ) ∀x ∈ T = {x1 + ε} × [x12, x22].

Proof. Let S = {1}× ( 1
4 , 11

4 ) and Y ′ = ( 1
2 , 1)× ( 1

2 , 5
2 ). Since S is a C1,α boundary portion

of ∂Y , ω = 0 on S, we deduce from (3.2) by applying Corollary 8.36 p. 212 of [9] that
ω ∈ C1,α(Y ∪ S) with the following estimate

|ω|1,α,Y ′ ≤ C
(
|ω|0,Y + |ε2ĥx1 |p,Y

)

where C = C(λ,M, K, d′, S), d′ = dist(Y ′, ∂Y \ S), K = max
i,j

(|aij |0,α,Z′). Clearly C

is a constant independent of ε.
Taking into account the estimate in Proposition 3.1 and the fact that |ε2ĥx1 |p,Y =
ε2(1−

1
p )|hx1 |p,Z ≤ ε2(1−

1
p )|hx1 |p,Z′ , we obtain for another constant independent of ε still

denoted by C

|∇ω|0,Y ′ ≤ |ω|1,α,Y ′ ≤ Cε2(1−
1
p )

which leads, in particular, to

|∇ω(1, x′2)| ≤ Cε2(1−
1
p ) ∀x′2 ∈ [1, 2].

Therefore

|∇v(x1 + ε, x2)| =
1
ε

∣∣∣∇ω
(
1,

x2 − x12 + ε

ε

)∣∣∣ ≤ C ε(1−
2
p ) ∀x2 ∈ [x12, x22].

The main result of this section is the following Lemma

Lemma 3.1. For ε small enough, we have

∫

D

(
a(x)∇v + χ([v > 0])h(x)e1

)
.∇ζ ≥ 0

∀ζ ∈ H1(D), ζ ≥ 0, ζ = 0 on ∂D \ Γ2 (3.3)

where v is extended by 0 to D =
(
(x1,+∞)× (x12, x22)

)
∩ Ω

Proof. Let ν be the outward unit normal vector to D. First we have by Proposition 3.2
and (1.3) a(x)∇v.ν + h(x)νx1 ≥ −MC.ε(1−

2
p ) + h ≥ 0 on T for ε small enough. Next, for

ζ ∈ H1(D), ζ ≥ 0, ζ = 0 on ∂D \ Γ2, we have

13



∫

D

(
a(x)∇v + χ([v > 0])h(x)e1

)
.∇ζdx

=
∫

D∩[v>0]

(
a(x)∇v + χ([v > 0])h(x)e1

)
.∇ζdx

= −
∫

D∩[v>0]

(
div(a(x)∇v) + hx1(x)

)
ζdx +

∫

T

(
a(x)∇v.ν + h(x)νx1

)
ζdσ ≥ 0.

4 Continuity of The Free Boundary

This last section is devoted to the upper semi-continuity of φ. The proof is based on
comparing u with respect to barrier functions introduced in the previous section.
Using the notations of Section 3, we first prove the following lemma

Lemma 4.1. Let v be the barrier function defined by (3.1). Let (u, χ) be a solution of
(P ). Assume that

u(x1, x2) ≤ v(x1, x2) ∀x2 ∈ (x12, x22) and u(x1, xi2) = 0 i = 1, 2.

Then we have

lim
δ→0

1
δ

∫

Dδ

a(x)∇(u− v)+.∇(u− v)+dx = 0

where Dδ = D ∩ [v > 0] ∩ [0 < u− v < δ].

Proof. For δ, η > 0, we consider

Hδ(s) = min
(s+

δ
, 1

)
, dη(x1) = Hη(x1 − x̄1), x̄1 = x1 + ε.

Then ζ = Hδ(u−v)+dη(1−Hδ(u)) ∈ H1(D)∩L∞(D) is a nonnegative function vanishing
on [x = x1]. So by Lemma 1.1, we have

∫

D

(
a(x)∇u + χh(x)e1

)
.∇(Hδ(u− v))dx

≤ −
∫

D

(
a(x)∇u + χh(x)e1

)
.∇(dη(1−Hδ(u)))dx. (4.1)
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Given that u(x1, xi2) = 0 for i = 1, 2, we deduce from Proposition 1.2 ii) that u(x1, xi2) =
0 ∀x1 ≥ x1, i = 1, 2. This leads to u(x1, xi2) = 0 ≤ v(x1, xi2) ∀x1 ≥ x1, i = 1, 2.
Moreover we have u(x1, x2) ≤ v(x1, x2) ∀x2 ∈ (x12, x22). It follows that u ≤ v on ∂D∩Ω,
and therefore since Hδ(s) = 0 for s ≤ 0, we obtain Hδ(u− v) = 0 on ∂D ∩Ω = ∂D \ Γ2.
Hence we have by (3.3)

−
∫

D

(
a(x)∇v + χ([v > 0])h(x)e1

)
.∇(Hδ(u− v))dx ≤ 0. (4.2)

Adding (4.1) and (4.2), we get

∫

D

a(x)∇(u− v).∇(Hδ(u− v))dx ≤
∫

D

h(x)(χ([v > 0])− χ)e1.∇(Hδ(u− v))dx

−
∫

D

(
a(x)∇u + χh(x)e1

)
.∇(dη(1−Hδ(u)))dx

which can be written since dη = 0 on [v > 0]

∫

D∩[v>0]

H ′
δ(u− v)a(x)∇(u− v).∇(u− v)dx

≤ −
∫

D∩[v=0]

H ′
δ(u)a(x)∇u.∇u−

∫

D∩[v=0]

χh(x)e1.∇(Hδ(u))dx

+
∫

D∩[v=0]

(
a(x)∇u + χh(x)e1

)
.∇((1− dη)(1−Hδ(u)))dx

+
∫

D∩[v=0]

(
a(x)∇u + χh(x)e1

)
.∇(Hδ(u))dx

= Iδ
1 + Iδ

2 + Iδ
3 + Iδ

4 .

Note that Iδ
1 + Iδ

2 + Iδ
4 = 0. Moreover

Iδ
3 = −

∫

D∩[v=0]

(1− dη)
(
a(x)∇u + χh(x)e1

)
.∇(Hδ(u))dx

−
∫

D∩[v=0]

(1−Hδ(u))
(
a(x)∇u + χh(x)e1

)
.∇dηdx = Iδ

5 + Iδ
6 .

Since dη → 1 a.e. in D ∩ [v = 0] when η → 0, we obtain by the Lebesgue theorem in
L1(D ∩ [v = 0]) that lim

η→0
Iδ
5 = 0.

Now we have
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Iδ
6 = −

∫

D∩[u=v=0]

χh(x)e1.∇dηdx

−
∫

D∩[u>v=0]

(1−Hδ(u))
(
a(x)∇u + h(x)e1

)
.∇dηdx

= Iδ
7 + Iδ

8 .

Note that

Iδ
7 = −

∫

D∩[u=v=0]

χh(x).∂x1dηdx =
−1
η

∫

D∩[u=v=0]∩[x̄1<x1<x̄1+η]

χh(x)dx ≤ 0.

Since u ∈ C0,1
loc (Ω), one has for some constant C

|Iδ
8 | ≤ C

η

∫

D∩[u>v=0]∩[x̄1<x1<x̄1+η]

(1−Hδ(u))dx

=
C

η

∫

J

∫ min(φ(x2),x̄1+η)

x̄1

(1−Hδ(u))dx

≤ C

∫

J

(1
η

∫ x̄1+η

x̄1

(1−Hδ(u))dx1

)
dx2,

where J = {x2 ∈ (x12, x22) / φ(x2) > x̄1 }.
Since the function x1 7→ 1−Hδ(u(x1, x2)) is continuous, we have

lim
η→0

fη(x2) = 1−Hδ(u(x̄1, x2)) ∀x2 ∈ (x12, x22)

where fη(x2) =
1
η

∫ x̄1+η

x̄1

(1−Hδ(u(x1, x2)))dx1. Moreover |fη(x2)| ≤ 1 for all x2 ∈
(x12, x22). Then we obtain by using the Lebesgue theorem in L1(J)

lim
η→0

∫

J

fη(x2)dx2 =
∫

J

(1−Hδ(u(x̄1, x2)))dx2.

So

lim sup
η→0

|Iδ
8 | ≤ C

∫

J

(1−Hδ(u))(x̄1, x2)dx2.

Hence

∫

D∩[v>0]∩[0<u−v<δ]

1
δ
a(x)∇(u− v)+.∇(u− v)+dx ≤ C

∫

J

(1−Hδ(u(x̄1, x2)))dx2.
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But for x2 ∈ J , we have u(x̄1, x2) > 0 and then lim
δ→0

1−Hδ(u(x̄1, x2)) = 0. Letting δ → 0

in the above inequality, we get the result by the Lebesgue theorem in L1(J).

Theorem 4.1.

φ is continuous at each x2 ∈ (a0, b0) such that (φ(x2), x2) ∈ Ω.

Proof. Let ε > 0 small enough. Let x02 ∈ (a0, b0). Set x0 = (φ(x02), x02) = (x01, x02) and
assume that x0 ∈ Ω. Since u(x0) = 0 and u is continuous, there exists η1 ∈ (0, ε) such
that

u(x1, x2) ≤ ε2 ∀(x1, x2) ∈ Bη1(x0). (4.3)

By Proposition 1.4, one of the following situations is true

i) ∃(x11, x12) ∈ Bη1(x0) such that x12 < x02 and u(x11, x12) = 0
ii) ∃(x21, x22) ∈ Bη1(x0) such that x22 > x02 and u(x21, x22) = 0.

Let us assume that i) holds.
Set x1 = max(φ(x02), x11) and assume that ε is small enough so that

(x1 − ε, x1 + 2ε)× (x12 − ε, x12 + 2ε) ⊂⊂ Ω.

Let v1 be the barrier function defined by (3.1) in the set Z1 = (x1, x1 +ε)×(x12−ε, x12 +
2ε). We consider the extension by 0 of v1 to D1 =

(
(x1, +∞) × (x12, x02)

)
∩ Ω which

clearly satisfies (3.3).
Now since {x1} × (x12, x02) ⊂ Bη1(x0), we have

u(x1, x2) ≤ ε2 = v1(x1, x2) ∀x2 ∈ (x12, x02). (4.4)

Moreover since u(x1, x12) = u(x1, x02) = 0, we get by Proposition 1.2 ii)

u(x1, x12) = u(x1, x02) = 0 ∀x1 ≥ x1. (4.5)

Let D+
1 = (x1, x1 + ε)× (x12, x02) and ∆1 = (x1 − ε, x1 + ε)× (x12, x02). Due to (4.4)

one can extend (u − v1)+ by 0 to ∆1 \D+
1 so that (u − v1)+ ∈ H1(∆1). Then we have

for ζ ∈ D(∆1) by the Lebesgue theorem in L1(D+
1 )

∫

∆1

a(x)∇(u− v1)+.∇ζdx =
∫

D+
1

a(x)∇(u− v1)+.∇ζdx

= lim
δ→0

∫

D+
1

Hδ(u− v1)a(x)∇(u− v1)+.∇ζdx = lim
δ→0

Iδ.
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Note that

Iδ =
∫

D+
1

a(x)∇(u− v1)+.∇(Hδ(u− v1)ζ)dx

−1
δ

∫

D+
1 ∩[0<u−v1<δ]

ζa(x)∇(u− v1).∇(u− v1)dx

= I1
δ − I2

δ .

By Lemma 4.1, lim
δ→0

I2
δ = 0, since

|I2
δ | ≤ sup

D+
1

|ζ| . 1
δ

∫

D+
1 ∩[0<u−v1<δ]

a(x)∇(u− v1).∇(u− v1)dx.

We claim that I1
δ = 0. Indeed, first because Hδ(u − v1) = 0 whenever u ≤ v1, we have

∇(u− v1)+.∇(Hδ(u− v1)ζ) = ∇(u− v1).∇(Hδ(u− v1)ζ) a.e. in D+
1 . Therefore

I1
δ =

∫

D+
1

a(x)∇u.∇(Hδ(u− v1)ζ)dx−
∫

D+
1

a(x)∇v1.∇(Hδ(u− v1)ζ)dx.

Since u ≤ v1 on ∂D+
1 \ [x1 = x1 + ε], we have Hδ(u − v1) = 0 on ∂D+

1 \ [x1 = x1 + ε].
Moreover ζ = 0 on [x1 = x1 + ε]. So Hδ(u − v1)ζ ∈ H1

0 (D+
1 ) and therefore from the

definition of v1, we obtain
∫

D+
1

a(x)∇v1.∇(Hδ(u− v1)ζ)dx = −
∫

D+
1

h(x).(Hδ(u− v1)ζ)x1dx.

Now ±Hδ(u − v1)ζχ(D+
1 ) are test functions for (P ), χ = 1 a.e. in D+

1 ∩ [u > 0] and
Hδ(u− v1) = 0 whenever u = 0. So we obtain

∫

D+
1

a(x)∇u.∇(Hδ(u− v1)ζ)dx = −
∫

D+
1

χh(x).(Hδ(u− v1)ζ)x1dx

= −
∫

D+
1 ∩[u>0]

h(x).(Hδ(u− v1)ζ)x1dx = −
∫

D+
1

h(x).(Hδ(u− v1)ζ)x1dx.

Hence I1
δ = 0. Consequently

∫

∆1

a(x)∇(u− v1)+.∇ζdx = 0 ∀ζ ∈ D(∆1)

which leads by (4.4) and the strong maximum principle to (u− v1)+ ≡ 0 in ∆1. Conse-
quently u ≤ v1 in D+

1 and in particular u(x1 + ε, x2) = 0 ∀x2 ∈ (x12, x02). Therefore

u(x1, x2) = 0 ∀x1 ≥ x1 + ε = x̄1, ∀x2 ∈ [x12, x02].
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Now, by continuity of u there exists η2 ∈ (0, x02 − x12) such that

u(x1, x2) ≤ ε2 ∀(x1, x2) ∈ Bη2(x̄1, x02).

By Proposition 1.4, there exists (x21, x22) ∈ Bη2(x̄1, x02) such that

x21 > x̄1, x22 > x02 and u(x21, x22) = 0.

Set x′1 = x21 and assume that ε is small enough so that

(x′1, x
′
1 + 2ε)× (x22 − 2ε, x22 + ε) ⊂⊂ Ω.

Let v2 be the barrier function defined by (3.1) in the set Z2 = (x′1, x
′
1 + ε) × (x22 −

2ε, x22 + ε). Clearly the extension by 0 of v2 to D2 =
(
(x′1, +∞)× (x02, x22)

)
∩Ω satisfies

(3.3).
Then, since {x′1} × (x02, x22) ⊂ Bη2(x̄1, x02), we have

u(x′1, x2) ≤ ε2 = v2(x′1, x2) ∀x2 ∈ (x02, x22).

Arguing as above, we deduce that (u− v2)+ ≡ 0 in D2 ∩ [v2 > 0]. Then

u(x1, x2) ≡ 0 ∀x1 ≥ x′1 + ε, ∀x2 ∈ [x02, x22].

Hence

u(x1, x2) ≡ 0 ∀x1 ≥ x′1 + ε, ∀x2 ∈ [x12, x22].

Note that if ii) holds, we argue similarly to obtain the same conclusion. Finally we have
proved for all x2 ∈ (x12, x22)

φ(x2) ≤ x′1 + ε < x̄1 + η2 + ε = x1 + ε + η2 + ε < x01 + η1 + η2 + 2ε < φ(x02) + 4ε

which is the upper semi-continuity of φ at x02.
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