King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences
Dr. A. Lyaghfouri
MATH 301/Term 062/Hw#9(9.16)/

2. Let F(z,y,2z) = 6xyi + 4yzj + xe Yk and let D be the region that is
bounded by the three coordinate planes and the plane z +y 4+ 2z = 1. Let
S be the surface representing the exterior boundary of D which we orient
outward (draw a figure). We shall denote by R the projection of S on the
xy— plane.

We would like to verify the divergence formula i.e.

//SF.n dS:///Ddz’v(F)dV. (1)

Note that the components of the vector field F are continuous and have
partial derivatives continuous everywhere. First we have for the right-hand

side of (1)
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Next we have for the left-hand side of (1)

//FndS //lendS+//stndS
+//53F.nd5+//S4F.ndS (3)

S is defined by z = 0 and the unit normal vector to S; is given by n = —k.
So we have
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S, is defined by x = 0 and the unit normal vector to S; is given by n = —i.

So we have
// F.n dS:// —6zy dS = 0. (5)
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S5 is defined by y = 0 and the unit normal vector to S5 is given by n = —j.

So we have
// F.n dS:// —4yz dS = 0. (6)
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Sy is defined by g(x,y, z) = 0, where g(x,y,2) = x +y + 2z — 1. So the unit
normal vector to Sy is given by
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Then we have
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Taking into account (3)-(7), we get
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Comparing (2) and (8), we conclude that (1) is satisfied.

4. Let F = 4zi + yj + 42k and let S be the sphere 2% + y* + 22 = 4 oriented
outwardly. Let D be the domain bounded by S. The components of the
vector field F are continuous and have partial derivatives continuous on any
domain. Therefore we have by the divergence theorem
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11. Let F = 2zzi + 5¢%j — 2%k and let D be the domain bounded by z = v,

z=4—y, z=2— %[BQ, x = 0 and z = 0. We denote by S the exterior

boundary of D. We would like to evaluate the flux F.n dS. Since the

s
components of the vector field F' are continuous and have partial derivatives

continuous everywhere, we have by the divergence theorem

/ /S F.ndS = / / /D divFdzdydz, (1)

Let Dy be the part of D located to the left of the plane y = 2 and let Dy be
the part of D located to its right. Then we have
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First we remark the symmetry of D with respect to the plane y = 2. Using
the change of variables ¢ = 4 — y, we get
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We deduce from (2) and (3) that have
// divFdzdydz = 40V ol(Dy). (4)

Now we have
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Finally we deduce from (1), (4) and (5) that
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