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3. Let S be that portion of the cylinder x2 + z2 = 16 that is above the
xy−plane and within the planes x = 0, x = 2, y = 0 and y = 5. We would
like to evaluate the surface area of S.
Since S is defined by the equation z = f(x, y) =

√
16− x2, the area of S is

given by

Area(S) =

∫ ∫

R

√
1 + f 2

x + f 2
y dxdy, (1)

where R is the projection of S on the xy−plane. Moreover we have

fx =
−x√

16− x2
, fy = 0

√
1 + f 2

x + f 2
y =

√
1 +

x2

16− x2
=

4√
16− x2

.

We deduce then from (1)

Area(S) =

∫ ∫

R

4√
16− x2

dxdy = 4

∫ 5

0

( ∫ 2

0

dx√
16− x2

)
dy

= 4

∫ 5

0

[
sin−1(

x

4
)
]2

0
dy = 4

∫ 5

0

π

6
dy =

10π

3
.

10. Let S be the surface defined by the portions of the cone z2 = 1
4
(x2 + y2)

that are within the cylinder (x − 1)2 + y2 = 1 (draw a figure). We have
S = S+∪S−, where S+ (resp. S−) is the part of S located above (resp. below)
the xy−plane. By symmetry we have Area(S+) = Area(S−) and therefore
Area(S) = 2Area(S+). Moreover by shifting S 1 unit in the direction of
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the x−axis, one can assume that S is defined by the portions of the cone
z2 = 1

4
((x + 1)2 + y2) that are within the cylinder x2 + y2 = 1.

Since S+ is defined by the equation z = f(x, y) = 1
2

√
(x + 1)2 + y2, the area

of S+ is given by

Area(S+) =

∫ ∫

R

√
1 + f 2

x + f 2
y dxdy, (1)

where R is the projection of S+ on the xy−plane. Moreover we have

fx =
x + 1

2
√

(x + 1)2 + y2
, fy =

y

2
√

(x + 1)2 + y2

√
1 + f 2

x + f 2
y =

√
1 +

(x + 1)2

4((x + 1)2 + y2)
+

y2

4((x + 1)2 + y2)
=

√
5

2
.

We deduce then from (1) that

Area(S+) =

∫ ∫

R

√
5

2
dxdy =

√
5π

2
.

Hence Area(S) = 2Area(S+) =
√

5π.

26. We would like to evaluate the surface integral
∫ ∫

S
(3z2 + 4yz)dS, where

S is that portion of the plane x + 2y + 3z = 6 located in the first octant.
Considering that S is defined by the equation x = h(y, z) = 6− 2y − 3z and
denoting by R the projection of S on the yz−plane, we get
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∫ ∫

S

(3z2 + 4yz)dS =

∫ ∫

R

√
1 + h2

y + h2
z(3z

2 + 4yz)dydz

=

∫ ∫

R

√
1 + 4 + 9(3z2 + 4yz)dydz

=
√

14

∫ ∫

R

(3z2 + 4yz)dydz

=
√

14

∫ 3

0

∫ 2− 2
3
y

0

(3z2 + 4yz)dydz

=
√

14

∫ 3

0

[
z3 + 2yz2

]2− 2
3
y

0
dy

=
√

14

∫ 3

0

((
2− 2

3
y
)3

+ 2y
(
2− 2

3
y
)2)

dy

=
√

14

∫ 2

0

(
y′3 + (3(2− y′))y′2

)
dy′ where y′ = 2− 2

3
y

=
√

14

∫ 2

0

(
6y′2 − 2y′3

)
dy′

=
√

14
[
2y′3 − 1

2
y′4

]2

0
= 16− 8 = 8.

33. Let F(x, y, z) = 1
2
x2i+ 1

2
y2j+ zk and S be the portion of the paraboloid

z = 4−x2−y2 for 0 ≤ z ≤ 4. We would like to evaluate the flux
∫ ∫

S
F.n dS

of F through the surface S assuming that S is oriented upward.
S is defined by z = f(x, y) = 4− x2 − y2. So the unit normal vector to S is
given by

n =
1√

1 + f 2
x + f 2

y

(−fxi− fyj + k) =
1√

1 + f 2
x + f 2

y

(2xi + 2yj + k).

Let R be the projection of S on the xy−plane. Then we have

Flux =

∫ ∫

S

F.n dS =

∫ ∫

S

1√
1 + f 2

x + f 2
y

(x3+y3+1) dS =

∫ ∫

R

(x3+y3+1)dxdy.

(1)
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Since R is bounded by the circle centered at the origin and with radius 2, we
can use the polar coordinates. We obtain

∫ ∫

R

(x3 + y3 + 1)dxdy =

∫ 2π

0

( ∫ 2

0

(r3 cos3 θ + r3 sin3 θ + 1)rdr
)
dθ

=

∫ 2π

0

( ∫ 2

0

(r4 cos3 θ + r4 sin3 θ + r)dr
)
dθ

=

∫ 2π

0

[1

5
r5 cos3 θ +

1

5
r5 sin3 θ +

1

2
r2

]2

0
dθ

=

∫ 2π

0

(32

5
cos3 θ +

32

5
sin3 θ +

1

2

)
dθ

=

∫ 2π

0

(32

5
cos θ(1− sin2 θ) +

32

5
sin θ(1− cos2 θ) +

1

2

)
dθ

=

∫ 2π

0

(32

5
cos θ − 32

5
cos θ sin2 θ +

32

5
sin θ − 32

5
sin θ cos2 θ +

1

2

)
dθ

=
[32

5
sin θ − 32

15
sin3 θ)− 32

5
cos θ +

32

15
cos3 θ +

1

2
θ
]2π

0
= π. (2)

Hence we get the flux from (1) and (2): Flux =
∫ ∫

S
F.n dS = π.
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