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3. We would like to verify Green’s theorem in the following situation:
P (x, y) = −y2, Q(x, y) = x2 and R is the region of the xy−plane bounded
by the circle C of center (0, 0) and radius 3 i.e.

∮

C

Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy

or ∮

C

−y2dx + x2dy =

∫ ∫

R

(2x + 2y)dxdy. (1)

First note that P (x, y) and Q(x, y) are continuous and have partial deriva-

tives continuous on any domain. Moreover we have
∂P

∂y
= −2y and

∂Q

∂x
= 2x

Next the circle C has the parametrization

C :

{
x = 3 cos(t),
y = 3 sin(t), t ∈ [0, 2π].

Then we have

∫

C

−y2dx + x2dy =

∫

C

−y2dx +

∫

C

x2dy

=

∫ 2π

0

−9 sin2(t)(−3) sin(t)dt +

∫ 2π

0

9 cos2(t)3 cos(t)dt

=

∫ 2π

0

27(1− cos2(t)) sin(t)dt +

∫ 2π

0

27(1− sin2(t)) cos(t)dt

=

∫ 2π

0

(27 sin(t)− 27 cos2(t) sin(t))dt +

∫ 2π

0

(27 cos(t)− 27 sin2(t) cos(t)dt

= [−27 cos(t) + 9 cos3(t)]2π
0 + [27 sin(t)− 9 sin3(t)]2π

0 = 0. (2)

Using the polar coordinates x = r cos(θ) and y = r sin(θ), we get
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∫ ∫

R

(2x + 2y)dxdy =

∫ 3

0

∫ 2π

0

2r2(cos(θ) + sin(θ))drdθ

=

∫ 3

0

2r2
( ∫ 2π

0

(cos(θ) + sin(θ))dθ
)
dr

=

∫ 3

0

2r2
[
− sin(θ) + cos(θ)

]2π

0
dr

=

∫ 3

0

2r2(0)dr = 0. (3)

Using (2) and (3), we conclude that (1) is true.

6. We would like to evaluate the line integral

∮

C

(x + y2)dx + (2x2 − y)dy,

where C is the boundary of the region determined by the graphs of y = x2

and y = 4 (draw a figure). Let P (x, y) = x + y2 and Q(x, y) = 2x2 − y. The
functions P and Q are continuous and have partial derivatives continuous on

any domain and moreover we have
∂P

∂y
= 2y and

∂Q

∂x
= 4x. Using Green’s

theorem we have

∮

C

Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy

or ∮

C

(x + y2)dx + (2x2 − y)dy =

∫ ∫

R

(4x− 2y)dxdy. (1)

We will evaluate the second integral in (1).
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∫ ∫

R

(4x− 2y)dxdy =

∫ 2

−2

( ∫ 4

x2

(4x− 2y)dy
)
dx

=

∫ 2

−2

[
4xy − y2

]4

x2
dx

=

∫ 2

−2

[
(16x− 16)− (4x3 − x4)

]
dx

=

∫ 2

−2

(x4 − 4x3 + 16x− 16)dx =
[1

5
x5 − x4 + 8x2 − 16x

]2

−2

=
2

5
25 − 64 = 64(

1

5
− 1) = −256

5
. (2)

Using (1) and (2), we obtain

∮

C

(x + y2)dx + (2x2 − y)dy = −256

5
.

18. We would like to prove the following result:

1

2

∮

C

−ydx + xdy = area(R), (1)

where R is the region of the xy−plane bounded by a piecewise smooth simple
closed curve C.
Let P (x, y) = −y and Q(x, y) = x. Note that P (x, y) and Q(x, y) are
continuous and have partial derivatives continuous on any domain. Moreover

we have
∂P

∂y
= −1 and

∂Q

∂x
= 1. Using Green’s theorem we have

∮

C

Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy

or ∮

C

−ydx + xdy =

∫ ∫

R

2dxdy = 2

∫ ∫

R

dxdy = 2area(R), (2)

which leads to (1) after division by 2.

3



25. We would like to evaluate the line integral

∫

C

−y3dx + xy2dy

(x2 + y2)2
, where C

is the ellipse x2 + 4y2 = 4. We will use Green’s theorem.
Let R be the region of the xy−plane bounded by C and the circle C ′ :
4x2 + 4y2 = 1 of center (0, 0) and radius 1/2.

Let P (x, y) = −y3

(x2+y2)2
and Q(x, y) = xy2

(x2+y2)2
. Thsese functions are contin-

uous and have partial derivatives continuous on any domain not containing

the origin. Moreover we have
∂P

∂y
=

∂Q

∂x
:

∂P

∂y
=

∂

∂y
[−y3(x2+y2)−2] = −3y2(x2+y2)−2+4y4(x2+y2)−3 = (y4−3x2y2)(x2+y2)−3,

∂Q

∂x
=

∂

∂x
[xy2(x2+y2)−2] = y2(x2+y2)−2−4x2y2(x2+y2)−3 = (y4−3x2y2)(x2+y2)−3.

Using Green’s theorem we have

∮

C∪C′
Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy = 0.

Taking into account that orientations of C and C ′ in the left hand-side of the
previous formula are respectively counterclockwise and clockwise, we get:

∫

C

−y3dx + xy2dy

(x2 + y2)2
=

∫

C′

−y3dx + xy2dy

(x2 + y2)2
, (1)

where now the orientations of C and C ′ are both counterclockwise.
It is clear that it is easier to evaluate the second integral in (1) which we will
do by using the parametrization of C ′:

C :

{
x = 1

2
cos(t),

y = 1
2
sin(t), t ∈ [0, 2π].

Then we have
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∫

C′

−y3dx + xy2dy

(x2 + y2)2
=

∫

C′

−y3dx

(x2 + y2)2
+

∫

C′

xy2dy

(x2 + y2)2

=

∫ 2π

0

1
16

sin4(t)
1
16

dt +

∫ 2π

0

1
16

sin2(t) cos2(t)
1
16

dt

=

∫ 2π

0

sin4(t)dt +

∫ 2π

0

sin2(t) cos2(t)dt =

∫ 2π

0

sin2(t)(sin2(t) + cos2(t))dt

=

∫ 2π

0

sin2(t)dt =

∫ 2π

0

1

2
(1− cos(2t))dt =

1

2

[
t− 1

2
sin(2t)

]2π

0
= π. (2)

Taking into account (1) and (2), we obtain

∫

C

−y3dx + xy2dy

(x2 + y2)2
= π.
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