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2. We would like to solve the following boundary-value problem

a2∂2u

∂x2
=

∂2u

∂t2
for all 0 < x < L, t > 0 (1)

u(0, t) = 0, t > 0 (2)

u(L, t) = 0, t > 0 (3)

u(x, 0) = 0, 0 < x < L (4)

∂u

∂t
(x, 0) = x(L− x), 0 < x < L. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4)
Indeed let u(x, y) = X(x)T (t) be such a product solution. Then we have

a2X ′′(x)T (t) = X(x)T ′′(t) for all x, t. (6)

If X(x) 6= 0 and T (t) 6= 0, we get from (6)

a2X ′′(x)

X(x)
=

T ′′(t)
T (t)

= constant k for all x, t. (7)

We deduce from (7) that

X ′′(x) =
k

a2
X(x) (8)

T ′′(t) = kT (t). (9)

The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(x) = c1x + c2 if k = 0 (10)

X(x) = c1 cosh
(√k

a
x
)

+ c2 sinh
(√k

a
x
)

if k > 0 (11)

X(x) = c1 cos
(√−k

a
x
)

+ c2 sin
(√−k

a
x
)

if k < 0. (12)
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T (t) = c3t + c4 if k = 0 (13)

T (t) = c3 cosh(
√

kt) + c4 sinh(
√

kt) if k > 0 (14)

T (t) = c3 cos(
√
−kt) + c4 sin(

√
−kt) if k < 0. (15)

We discuss three cases:

Case 1 : k = 0

In this case we have by (10) and (13) u(x, t) = X(x)T (t) = (c1x + c2)(c3t + c4). Using
(2) and (3), we get

{
c2T (t) = 0 ∀t > 0
(c1L + c2)T (t) = 0 ∀t > 0

⇒
{

c2T (t) = 0 ∀t > 0
c1T (t) = 0 ∀t > 0

⇒ u(x, t) ≡ 0.

Case 2 : k = λ2 > 0

In this case we have by (11) and (14) that

u(x, t) = X(x)T (t) =
(
c1 cosh

(λ

a
x
)

+ c2 sinh
(λ

a
x
))

(c3 cosh(λt) + c4 sinh(λt)).

Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cosh

(
λ
a
L

)
+ c2 sinh

(
λ
a
L

))
T (t) = 0 ∀t > 0

⇒
{

c1T (t) = 0 ∀t > 0
c2T (t) = 0 ∀t > 0.

Hence u(x, t) ≡ 0.

Case 3 : k = −λ2 < 0

In this case we have by (12) and (15) that

u(x, t) = X(x)T (t) =
(
c1 cos

(λ

a
x
)

+ c2 sin
(λ

a
x
))

(c3 cos(λt) + c4 sin(λt)).

Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cos

(
λ
a
L

)
+ c2 sin

(
λ
a
L

))
T (t) = 0 ∀t > 0

⇒
{

c1T (t) = 0 ∀t > 0

c2 sin
(

λ
a
L

)
T (t) = 0 ∀t > 0

If sin
(

λ
a
L

)
6= 0, then c2T (t) = 0 ∀t > 0 and then u(x, t) ≡ 0.
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If sin
(

λ
a
L

)
= 0, we obtain λ

a
L = nπ, i.e. λ = nπa

L
, n = 1, 2, ... and

u(x, t) = c2 sin
(λ

a
x
)
(c3 cos(λt) + c4 sin(λt)).

Using now the boundary condition (4), we get

u(x, 0) = c2c3 sin
(λ

a
x
)

= 0, ∀0 < x < L.

This leads to

u(x, t) = c2c4 sin
(λ

a
x
)

sin(λt).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(x, t) = Bn sin
(nπ

L
x
)

sin
(nπa

L
t
)
, n = 1, 2, ...

According to the superposition principle, we know that

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

Bn sin
(nπ

L
x
)

sin
(nπa

L
t
)

(16)

is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients Bn such that the function given in (16) is also
a solution of (5) i.e.

x(L− x) =
∞∑

n=1

Bn
nπa

L
sin

(nπ

L
x
)
, 0 < x < L. (17)

It is clear that (17) is the half-range expansion of the function x(L−x) in a sine series.
it follows that

Bn
nπa

L
=

2

L

∫ L

0

x(L− x) sin
(nπ

L
x
)
dx.

and

Bn =
2

nπa

∫ L

0

x(L− x) sin
(nπ

L
x
)
dx

=
2L

nπa

∫ L

0

x sin
(nπ

L
x
)
dx− 2

nπa

∫ L

0

x2 sin
(nπ

L
x
)
dx. (18)
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Integrating by parts, we get

∫ L

0

x sin
(nπ

L
x
)
dx =

[
− x

L

nπ
cos

(nπ

L
x
)]L

0
−

∫ L

0

− L

nπ
cos

(nπ

L
x
)
dx

= −L2

nπ
cos(nπ) + 0 +

L

nπ

∫ L

0

cos
(nπ

L
x
)
dx

=
(−1)n+1L2

nπ
+

L

nπ

[ L

nπ
sin

(nπ

L
x
)]L

0

=
(−1)n+1L2

nπ
+

L2

n2π2
(sin(nπ)− 0)

=
(−1)n+1L2

nπ
. (19)

Integrating by parts twice, we get

∫ L

0

x2 sin
(nπ

L
x
)
dx =

[
− x2 L

nπ
cos

(nπ

L
x
)]L

0
−

∫ L

0

−2x
L

nπ
cos

(nπ

L
x
)
dx

= −L3

nπ
cos(nπ) +

2L

nπ

∫ L

0

x cos
(nπ

L
x
)
dx

=
(−1)n+1L3

nπ
+

2L

nπ

([
x

L

nπ
sin

(nπ

L
x
)]L

0
−

∫ L

0

L

nπ
sin

(nπ

L
x
)
dx

)

=
(−1)n+1L3

nπ
+ 2

L2

n2π2
(L sin(nπ)− 0)− 2

L2

n2π2

∫ L

0

sin
(nπ

L
x
)
dx

=
(−1)n+1L3

nπ
+ 2

L3

n3π3

[
cos

(nπ

L
x
)]L

0

=
(−1)n+1L3

nπ
+ 2

L3

n3π3
((−1)n − 1). (20)

Taking into account (18), (19) and (20), we deduce that

Bn =
2L

nπa

(−1)n+1L2

nπ
− 2

nπa

((−1)n+1L3

nπ
+ 2

L3

n3π3
((−1)n − 1)

)

=
4L3

an4π4
(1− (−1)n). (21)

Hence we obtain from (16) and (21) the solution of our BVP
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u(x, t) =
∞∑

n=1

4L3

an4π4
(1− (−1)n) sin

(nπ

L
x
)

sin
(nπa

L
t
)

=
∞∑

n=0

8L3

a(2n + 1)4π4
sin

((2n + 1)π

L
x
)

sin
((2n + 1)πa

L
x
)
.

4. We would like to solve the following boundary-value problem

a2∂2u

∂x2
=

∂2u

∂t2
for all 0 < x < π, t > 0 (1)

u(0, t) = 0, t > 0 (2)

u(π, t) = 0, t > 0 (3)

∂u

∂t
(x, 0) = 0, 0 < x < π (4)

u(x, 0) =
1

6
x(π2 − x2), 0 < x < π. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(x, y) = X(x)T (t) be such a product solution. Then we have

a2X ′′(x)T (t) = X(x)T ′′(t) for all x, t. (6)

If X(x) 6= 0 and T (t) 6= 0, we get from (6)

a2X ′′(x)

X(x)
=

T ′′(t)
T (t)

= constant k for all x, t. (7)

We deduce from (7) that

X ′′(x) =
k

a2
X(x) (8)

T ′′(t) = kT (t). (9)
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The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(x) = c1x + c2 if k = 0 (10)

X(x) = c1 cosh
(√k

a
x
)

+ c2 sinh
(√k

a
x
)

if k > 0 (11)

X(x) = c1 cos
(√−k

a
x
)

+ c2 sin
(√−k

a
x
)

if k < 0. (12)

T (t) = c3t + c4 if k = 0 (13)

T (t) = c3 cosh(
√

kt) + c4 sinh(
√

kt) if k > 0 (14)

T (t) = c3 cos(
√
−kt) + c4 sin(

√
−kt) if k < 0. (15)

We discuss three cases:

Case 1 : k = 0

In this case we have by (10) and (13) u(x, t) = X(x)T (t) = (c1x + c2)(c3t + c4). Using
(2) and (3), we get

{
c2T (t) = 0 ∀t > 0
(c1π + c2)T (t) = 0 ∀t > 0

⇒
{

c2T (t) = 0 ∀t > 0
c1T (t) = 0 ∀t > 0

⇒ u(x, t) ≡ 0.

Case 2 : k = λ2 > 0

In this case we have by (11) and (14) that

u(x, t) = X(x)T (t) =
(
c1 cosh

(λ

a
x
)

+ c2 sinh
(λ

a
x
))

(c3 cosh(λt) + c4 sinh(λt)).

Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cosh

(
λ
a
π
)

+ c2 sinh
(

λ
a
π
))

T (t) = 0 ∀t > 0
⇒

{
c1T (t) = 0 ∀t > 0
c2T (t) = 0 ∀t > 0.

Hence u(x, t) ≡ 0.

Case 3 : k = −λ2 < 0

In this case we have by (12) and (15) that

u(x, t) = X(x)T (t) =
(
c1 cos

(λ

a
x
)

+ c2 sin
(λ

a
x
))

(c3 cos(λt) + c4 sin(λt)).
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Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cos

(
λ
a
π
)

+ c2 sin
(

λ
a
π
))

T (t) = 0 ∀t > 0
⇒

{
c1T (t) = 0 ∀t > 0

c2 sin
(

λ
a
π
)
T (t) = 0 ∀t > 0

If sin
(

λ
a
π
)
6= 0, then T (t) = 0 ∀t > 0 and then u(x, t) ≡ 0.

If sin
(

λ
a
π
)

= 0, we obtain λ
a
π = nπ, i.e. λ = na, n = 1, 2, ... and

u(x, t) = c2 sin
(λ

a
x
)
(c3 cos(λt) + c4 sin(λt)) (16)

∂u

∂t
(x, t) = c2λ sin

(λ

a
x
)
(−c3 sin(λt) + c4 cos(λt)). (17)

Using now the boundary condition (4) and (17), we get

0 = λc2c4 sin
(λ

a
x
)
, ∀0 < x < π.

This leads by (16) to

u(x, t) = c2c3 sin
(λ

a
x
)

cos(λt).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(x, t) = Bn sin(nx) cos(nat), n = 1, 2, ...

According to the superposition principle, we know that

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

Bn sin(nx) cos(nat) (18)

is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients Bn such that the function given in (18) is also
a solution of (5) i.e.

1

6
x(π2 − x2) =

∞∑
n=1

Bn sin(nx), 0 < x < π. (19)

It is clear that (19) is the half-range expansion of the function 1
6
x(π2 − x2) in a sine

series. it follows that

7



Bn =
2

π

∫ π

0

1

6
x(π2 − x2) sin(nx)dx

=
π

3

∫ π

0

x sin(nx)dx− 1

3π

∫ π

0

x3 sin(nx)dx. (20)

Integrating by parts, we get

∫ π

0

x sin(nx)dx =
[
− x

1

n
cos(nx)

]π

0
−

∫ π

0

− 1

n
cos(nx)dx

= −π

n
cos(nπ) + 0 +

1

n

∫ π

0

cos(nx)dx

=
(−1)n+1π

n
+

1

n

∫ π

0

cos(nx)dx

=
(−1)n+1π

n
+

1

n

[ 1

n
sin(nx)

]π

0

=
(−1)n+1π

n
+

1

n2
(sin(nπ)− 0)

=
(−1)n+1π

n
. (21)

Integrating by parts twice, we get∫ π

0

x3 sin(nx)dx =
[
− x3 1

n
cos(nx)

]π

0
−

∫ π

0

−3x2 1

n
cos(nx)dx

= −π3

n
cos(nπ) +

3

n

∫ π

0

x2 cos(nx)dx

=
(−1)n+1π3

n
+

3

n

([
x2 1

n
sin(nx)

]π

0
−

∫ π

0

2x
1

n
sin(nx)dx

)

=
(−1)n+1π3

n
+

3

n2
(π2 sin(nπ)− 0)− 6

n2

∫ π

0

x sin(nx)dx

=
(−1)n+1π3

n
− 6

n2

(−1)n+1π

n

=
(−1)n+1π3

n
− 6(−1)n+1π

n3
. (22)

Taking into account (20), (21) and (22), we deduce that

Bn =
π

3

(−1)n+1π

n
− 1

3π

((−1)n+1π3

n
− 6(−1)n+1π

n3

)
=

2(−1)n+1

n3
. (23)
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Hence we obtain from (18) and (23) the solution of our BVP

u(x, t) =
∞∑

n=1

2(−1)n+1

n3
sin(nx) cos(nπat).

6. We would like to solve the following boundary-value problem

a2∂2u

∂x2
=

∂2u

∂t2
for all 0 < x < 1, t > 0 (1)

u(0, t) = 0, t > 0 (2)

u(1, t) = 0, t > 0 (3)

∂u

∂t
(x, 0) = 0, 0 < x < 1 (4)

u(x, 0) = 10−2 sin(3πx), 0 < x < 1. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(x, y) = X(x)T (t) be such a product solution. Then we have

a2X ′′(x)T (t) = X(x)T ′′(t) for all x, t. (6)

If X(x) 6= 0 and T (t) 6= 0, we get from (6)

a2X ′′(x)

X(x)
=

T ′′(t)
T (t)

= constant k for all x, t. (7)

We deduce from (7) that

X ′′(x) =
k

a2
X(x) (8)

T ′′(t) = kT (t). (9)

The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(x) = c1x + c2 if k = 0 (10)

X(x) = c1 cosh
(√k

a
x
)

+ c2 sinh
(√k

a
x
)

if k > 0 (11)

X(x) = c1 cos
(√−k

a
x
)

+ c2 sin
(√−k

a
x
)

if k < 0. (12)
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T (t) = c3t + c4 if k = 0 (13)

T (t) = c3 cosh(
√

kt) + c4 sinh(
√

kt) if k > 0 (14)

T (t) = c3 cos(
√
−kt) + c4 sin(

√
−kt) if k < 0. (15)

We discuss three cases:

Case 1 : k = 0

In this case we have by (10) and (13) u(x, t) = X(x)T (t) = (c1x + c2)(c3t + c4). Using
(2) and (3), we get

{
c2T (t) = 0 ∀t > 0
(c1 + c2)T (t) = 0 ∀t > 0

⇒
{

c2T (t) = 0 ∀t > 0
c1T (t) = 0 ∀t > 0

⇒ u(x, t) ≡ 0.

Case 2 : k = λ2 > 0

In this case we have by (11) and (14) that

u(x, t) = X(x)T (t) =
(
c1 cosh

(λ

a
x
)

+ c2 sinh
(λ

a
x
))

(c3 cosh(λt) + c4 sinh(λt)).

Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cosh

(
λ
a

)
+ c2 sinh

(
λ
a

))
T (t) = 0 ∀t > 0

⇒
{

c1T (t) = 0 ∀t > 0
c2T (t) = 0 ∀t > 0.

Hence u(x, t) ≡ 0.

Case 3 : k = −λ2 < 0

In this case we have by (12) and (15) that

u(x, t) = X(x)T (t) =
(
c1 cos

(λ

a
x
)

+ c2 sin
(λ

a
x
))

(c3 cos(λt) + c4 sin(λt)).

Using (2) and (3), we get
{

c1T (t) = 0 ∀t > 0(
c1 cos

(
λ
a

)
+ c2 sin

(
λ
a

))
T (t) = 0 ∀t > 0

⇒
{

c1T (t) = 0 ∀t > 0

c2 sin
(

λ
a

)
T (t) = 0 ∀t > 0

If sin
(

λ
a

)
6= 0, then c2T (t) = 0 ∀t > 0 and then u(x, t) ≡ 0.
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If sin
(

λ
a

)
= 0, we obtain λ

a
= nπ, i.e. λ = nπa, n = 1, 2, ... and

u(x, t) = c2 sin
(λ

a
x
)
(c3 cos(λt) + c4 sin(λt)) (16)

∂u

∂t
(x, t) = c2λ sin

(λ

a
x
)
(−c3 sin(λt) + c4 cos(λt)). (17)

Using now the boundary condition (4) and (17), we get

0 = λc2c4 sin
(λ

a
x
)
, ∀0 < x < π.

This leads by (16) to

u(x, t) = c2c3 sin
(λ

a
x
)

cos(λt).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(x, t) = Bn sin(nπx) cos(nπat), n = 1, 2, ...

According to the superposition principle, we know that

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

Bn sin(nπx) cos(nπat) (18)

is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients Bn such that the function given in (18) is also
a solution of (5) i.e.

10−2 sin(3πx) =
∞∑

n=1

Bn sin(nx), 0 < x < 1. (19)

It is clear that (19) is the half-range expansion of the function 10−2 sin(3πx) in a sine
series. It follows that
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Bn =
2

1

∫ 1

0

10−2 sin(3πx) sin(nπx)dx

= 2

∫ 1

0

10−2 sin(3πx) sin(nπx)dx

= 0 if n 6= 3 (20)

= 10−2

∫ 1

0

2 sin2(3πx)dx if n = 3

= 10−2

∫ 1

0

(1− cos(6πx)dx

= 10−2
[
x− 1

6π
sin(6πx)

]1

0

= 10−2. (21)

Hence we obtain from (18), (20) and (21) the solution of our BVP

u(x, t) = 10−2 sin(3πx) cos(3πat).

8. We would like to solve the following boundary-value problem

a2∂2u

∂x2
=

∂2u

∂t2
for all 0 < x < L, t > 0 (1)

∂u

∂x
(0, t) = 0, t > 0 (2)

∂u

∂x
(L, t) = 0, t > 0 (3)

∂u

∂t
(x, 0) = 0, 0 < x < L (4)

u(x, 0) = x, 0 < x < L. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(x, y) = X(x)T (t) be such a product solution. Then we have
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a2X ′′(x)T (t) = X(x)T ′′(t) for all x, t. (6)

If X(x) 6= 0 and T (t) 6= 0, we get from (6)

a2X ′′(x)

X(x)
=

T ′′(t)
T (t)

= constant k for all x, t. (7)

We deduce from (7) that

X ′′(x) =
k

a2
X(x) (8)

T ′′(t) = kT (t). (9)

The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(x) = c1x + c2 if k = 0 (10)

X(x) = c1 cosh
(√k

a
x
)

+ c2 sinh
(√k

a
x
)

if k > 0 (11)

X(x) = c1 cos
(√−k

a
x
)

+ c2 sin
(√−k

a
x
)

if k < 0. (12)

T (t) = c3t + c4 if k = 0 (13)

T (t) = c3 cosh(
√

kt) + c4 sinh(
√

kt) if k > 0 (14)

T (t) = c3 cos(
√
−kt) + c4 sin(

√
−kt) if k < 0. (15)

We discuss three cases:

Case 1 : k = 0

In this case we have by (10) and (13) u(x, t) = X(x)T (t) = (c1x + c2)(c3t + c4), which
leads to ∂u

∂x
(x, t) = c1T (t) and ∂u

∂t
(x, t) = c3X(x) Using (2), (3) and (4), we get

{
c1(c3t + c4) = 0 ∀t > 0
c3(c1x + c2) = 0 ∀0 < x < L

⇒
{

c1c3 = c1c4 = 0
c1c3 = c2c3 = 0

⇒ u(x, t) = c2c4.

Hence u0(x, t) = A0 is a product solution to (1), (2), (3) and (4).

Case 2 : k = λ2 > 0
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In this case we have by (11) and (14) that

u(x, t) = X(x)T (t) =
(
c1 cosh

(λ

a
x
)

+ c2 sinh
(λ

a
x
))

(c3 cosh(λt) + c4 sinh(λt))

∂u

∂x
(x, t) =

λ

a

(
c1 sinh

(λ

a
x
)

+ c2 cosh
(λ

a
x
))

(c3 cosh(λt) + c4 sinh(λt))

∂u

∂t
(x, t) = λ

(
c1 cosh

(λ

a
x
)

+ c2 sinh
(λ

a
x
))

(c3 sinh(λt) + c4 cosh(λt)).

Using (2) and (3), we get

{
c2T (t) = 0 ∀t > 0(
c1 sinh

(
λ
a
L

)
+ c2 cosh

(
λ
a
L

))
T (t) = 0 ∀t > 0

⇒
{

c2T (t) = 0 ∀t > 0
c1T (t) = 0 ∀t > 0.

Hence u(x, t) ≡ 0.

Case 3 : k = −λ2 < 0

In this case we have by (12) and (15) that

u(x, t) = X(x)T (t) =
(
c1 cos

(λ

a
x
)

+ c2 sin
(λ

a
x
))

(c3 cos(λt) + c4 sin(λt))

∂u

∂x
(x, t) =

λ

a

(
− c1 sin

(λ

a
x
)

+ c2 cos
(λ

a
x
))

(c3 cos(λt) + c4 sin(λt))

∂u

∂t
(x, t) = λ

(
c1 cos

(λ

a
x
)

+ c2 sin
(λ

a
x
))

(−c3 sin(λt) + c4 cos(λt)).

Using (2) and (3), we get

{
λ
a
c2T (t) = 0 ∀t > 0

λ
a

(
− c1 sin

(
λ
a
L

)
+ c2 cos

(
λ
a
L

))
T (t) = 0 ∀t > 0

⇒
{

c2T (t) = 0 ∀t > 0

c1 sin
(

λ
a
L

)
T (t) = 0 ∀t > 0

⇒




u(x, t) = c1 cos
(

λ
a
x
)
T (t)

c1 sin
(

λ
a
L

)
T (t) = 0 ∀t > 0

If sin
(

λ
a
L

)
6= 0, then c1T (t) = 0 ∀t > 0 and then u(x, t) ≡ 0.
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If sin
(

λ
a
L

)
= 0, we obtain λ

a
L = nπ, i.e. λ = nπa

L
, n = 1, 2, ... and

u(x, t) = c1 cos
(λ

a
x
)
(c3 cos(λt) + c4 sin(λt))

∂u

∂t
(x, t) = λc1 cos

(λ

a
x
)
(−c3 sin(λt) + c4 cos(λt)).

Using now the boundary condition (4), we get

λc1c4 cos
(λ

a
x
)

= 0, ∀0 < x < L.

This leads to

u(x, t) = c1c3 cos
(λ

a
x
)

cos(λt).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(x, t) = An cos
(nπ

L
x
)

cos
(nπa

L
t
)
, n = 1, 2, ...

According to the superposition principle, we know that

u(x, t) =
∞∑

n=0

un(x, t) = A0 +
∞∑

n=1

An cos
(nπ

L
x
)

cos
(nπa

L
t
)

(16)

is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients An such that the function given in (16) is also
a solution of (5) i.e.

x = A0 +
∞∑

n=1

An cos
(nπ

L
x
)
, 0 < x < L. (17)

It is clear that (17) is the half-range expansion of the function x in a cosine series. it
follows that

A0 =
1

L

∫ L

0

xdx =
1

L

[x2

2

]L

0
=

L

2
(18)

An =
2

L

∫ L

0

x cos
(nπ

L
x
)
dx. (19)
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Integrating by parts, we get

∫ L

0

x cos
(nπ

L
x
)
dx =

[
x

L

nπ
sin

(nπ

L
x
)]L

0
−

∫ L

0

L

nπ
sin

(nπ

L
x
)
dx

= − L

nπ

∫ L

0

sin
(nπ

L
x
)
dx

= − L

nπ

[
− L

nπ
cos

(nπ

L
x
)]L

0

=
L2

n2π2
(cos(nπ)− 1)

=
L2

n2π2
((−1)n − 1). (20)

Taking into account (19) and (20), we deduce that

An =
2L

n2π2
((−1)n − 1). (21)

Hence we obtain from (16), (18) and (21) the solution of our BVP

u(x, t) =
L

2
+

∞∑
n=1

2L

n2π2
((−1)n − 1) cos

(nπ

L
x
)

cos
(nπa

L
t
)

=
L

2
−

∞∑
n=0

4L

(2n + 1)2π2
cos

((2n + 1)π

L
x
)

cos
((2n + 1)πa

L
x
)
.
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