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2. We would like to solve the following boundary-value problem

,0%u  O%u

aﬁzwforall[)<x<L,t>O (1)
w(0,¢) =0, t >0 (2)
u(L,t)=0,t>0 (3)
u(z,0) =0, 0<zx <L (4)
%(.CE,O):QS(L—QT), O0<z<L. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4)
Indeed let u(z,y) = X (x)T(t) be such a product solution. Then we have

a?X"(2)T(t) = X (2)T"(t) for all z,t. (6)
If X(x)# 0 and T'(t) # 0, we get from (6)
2)2/(%) = 7;/(55? = constant k for all x,t. (7)

We deduce from (7) that

X'() = SX() ®)

T'(t) = KT(t). (9)

The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(z) = ar+cifk=0 (10)
X(x) = ¢cosh (§$> + cosinh (?m) ifk>0 (11)
X(x) = c¢icos (V;_kx) + cosin < ; m) if k < 0. (12)
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T(t) = cst+cif k=0 (13)
T(t) = cscosh(VEt) 4+ ¢ysinh(Vt) if k> 0 (14)
T(t) = c3zcos(V—kt)+ cysin(v—kt) if k < 0. (15)
We discuss three cases:
Case 1: k=0

In this case we have by (10) and (13) u(z,t) = X (2)T(t) = (c1x + ¢2)(cst + ¢4). Using
(2) and (3), we get

{ T (t) =0 vVt >0 { () =0 Vt>0 = u(z,t) = 0.

(ClL + CQ)T(t) =0 Vt>0 01T<t) =0 Vt>0

Case 2: k=)*>0
In this case we have by (11) and (14) that

u(z,t) = X(x)T(t) = <cl cosh (21’) + co sinh (21’)) (e cosh(At) + ¢4 sinh(At)).
Using (2) and (3), we get

aT(t)=0 Vt>0 aT(t) =0 Vt>0
<01 cosh (%L) + ¢y sinh (gL)>T(t) —0 Vt>0 &T(1) =0 Vi > 0.
Hence u(z,t) = 0.
Case 3: k=—-)\> <0
In this case we have by (12) and (15) that

u(z,t) = X(x)T(t) = <01 cos (29&) + co8in (29&)) (c3 cos(At) + cqsin(At)).

Using (2) and (3), we get

9 sin (%L)T(t) =0 Vt>0
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If sin (%L) = 0, we obtain %L =nm, e A="% n=12 . and

A
u(z,t) = cosin <—x> (c3 cos(At) + cqsin(At)).
a
Using now the boundary condition (4), we get
A
u(z,0) = cocz sin (—a:) =0, V0O<z<L.
a

This leads to \
u(z,t) = cacy8in (aw> sin(At).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

up(z,t) = B, sm(nlir )sin(?t), n=12,..

According to the superposition principle, we know that

= = nm nra
t) = Zun(:c,t) = Z By sin ( —uz ) sin ( —t (16)
> Busin () sin (F77)
is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients B,, such that the function given in (16) is also
a solution of (5) i.e.

ZB sm( x), 0<z<L. (17)

It is clear that (17) is the half—range expansion of the function z(L — z) in a sine series.
it follows that

and

B, = — | z(L—x)sin (—x) dx
nma Jo
2L [* 2 [*
= — [ zsin (Ex> dr — —— [ a*sin (Ex> dx. (18)
nra J, L nwa J, L



Integrating by parts, we get

L nn L nmw L Lo nmw
T sin (—x) de = [ — x— COS (—xﬂ — —— COS (—x) dz
0 L nmw L 0 0 N7 L

2

L L "
= ——cos(nm)+0+ —/ cos (n—ﬂx> dx
nm nm Jo L

(=)™1'L2 L[ L . /nr \1t
L (7))
nm

nm nm
_1 n+1L2 L2
= (=1 + (sin(nm) — 0)

0

nm n2m?
_1 n+1L2
= —( ) : (19)
nm
Integrating by parts twice, we get
L L
L L L
/ 22 sin <n—7ra7> dr = [ — 22— cos (n—ﬂxﬂ — / —2x— cos (nlx>dx
0 L nm L 0 0 nm L
L3 ( )+2L/L <n7r )d
= ——cos(nmw)+ — xcos | —x )dx
nmw nm J, L
(=13 N 2L<[ L . (mr )]L L. (mr >d >
= ————— 4+ —||z—sin|—=x — —sin (| —x )dz
nmw nm nm L 0 0 nm L
(—1)"+H L3 L? , Y Y
= — + 2n27r2 (Lsin(nm) —0) — 2n27r2 i sin (Tx) dx
(—=1)n L3 L3 nw L
- nm * 2n37r3 [COS (Txﬂo
(_1)n+1L3 L3 .
= — + 2n37r3 (=)™ —=1). (20)
Taking into account (18), (19) and (20), we deduce that
2L, (—1 n+1L2 2 -1 n+1L3 L3
B, = LB 2 (CTE L, By )
nmwa nm nmwa nm n3m3
413
= (1 (=1)"). (21)
antm

Hence we obtain from (16) and (21) the solution of our BVP



m@w::fi4ﬁ(1—pnwm(%%%m(%?g

— antmt
i 8L3 ((2n + )7 ) ((Qn + 1)ma )
= sin
= a(2n + 1)*m? L L
O
4. We would like to solve the following boundary-value problem
0? o?
aQa—;;:a—gforall()<x<7r,t>O (1)
w(0,¢) =0, t >0 (2)
u(m,t) =0, t>0 (3)
0
a—?(x,0)20,0<x<7r (4)
1
u(z,0) = ~x(r? —2%), 0 <z < 7. (5)
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Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(x,y) = X (x)T(t) be such a product solution. Then we have

a?X"(x)T(t) = X (x)T"(t) for all z,t. (6)
If X(x)#0and T'(t) # 0, we get from (6)

:X(z) T _ constan or all x
X - T tant k for all z,t. (7)
We deduce from (7) that
X'(@) = SX() ®)
T'(t) = KT(t). 9)



The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(x) = cx+ciftk=0 (10)
X(x) = ¢cosh (@x) + co sinh (%a:) ifk>0 (11)
X(x) = cicos <\/__k:r) + o 8in < — x) if £ <0. (12)
T(t) = cscosh(VEt) + cqsinh(VEt) if k>0 (14)
T(t) = ecycos(vV—kt) + cysin(v/—kt) if k < 0. (15)

We discuss three cases:

Case 1: k=0

In this case we have by (10) and (13) u(z,t) = X (2)T(t) = (c12 + ¢2)(cst + ¢4). Using
(2) and (3), we get

& T(t) =0 vt >0 eT(t) =0 V>0
(aam+e)T(t) =0 Vt>0 aTl(t)=0 Vt>0

= u(z,t) = 0.

Case 2: k=)*>>0
In this case we have by (11) and (14) that

u(z,t) = X(x)T(t) = <cl cosh (21’) + co sinh (21’)) (e cosh(At) + ¢4 sinh(At)).
Using (2) and (3), we get

{ aT(t)=0 Vt>0 N { aT(t) =

(crcosh (3m) + casinh (37) )T(0) =0 vt >0 e T(t) = Ve

0
0 vt>0.
Hence u(x,t) = 0.

Case 3: k=—-)*<0

In this case we have by (12) and (15) that

u(z, t) = X(x)T(t) = (61 cos (21}) + co8in (295)) (c3 cos(At) + cqsin(At)).
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Using (2) and (3), we get
aT(t) =0 ¥t >0 aT(t)=0 Vt>0
(cl coS (%ﬂ') + ¢ sin <%7r>>T(t) =0 Vi>0 = '

If sin <§7T> # 0, then T'(t) = 0 V¢t > 0 and then u(x,t) = 0.

If sin <%7T> = 0, we obtain %71 =nm, ie. A=na,n=12,.. and

u(x,t) = cysin (235) (c5cos(At) + cysin(At)) (16)
%(z, t) = coAsin (21’) (—cgsin(At) + ¢4 cos(At)). (17)

Using now the boundary condition (4) and (17), we get
/A
0 = Acgey sin (—x), V0 <z <.
a

This leads by (16) to
A
u(z,t) = cycgsin (E:U) cos(At).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(z,t) = By sin(nz) cos(nat), n=1,2,...

According to the superposition principle, we know that

u(z,t) = Z up(z,t) = Z B,, sin(nz) cos(nat) (18)
is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients B,, such that the function given in (18) is also
a solution of (5) i.e.

1 oo
6x(7r2 — %) = ; B, sin(nz), 0<z <. (19)

It is clear that (19) is the half-range expansion of the function tz(7? — 2?) in a sine

6
series. it follows that



2 [T1
B, = —/ i (7 — %) sin(nz)dx
T Jo
= g/ xsin(nz)dr — —/ 2% sin(nz)dz. (20)
0
Integrating by parts, we get
s 1 T s 1
/ rsin(nz)dr = [— x— cos(n:v)} —/ ——cos(nz)dx
0 n o Jo n
1 ™
= = cos(mr) +0+ —/ cos(nx)dx
nJo
1 n+1 ™
= (s ) —|— — [ cos(nz)dx
n Jo
—1 ”'H 111 ™
— (=) + = [— sin(n:v)}
n 0
-1 n+1
= ( )n 4 (sin(nm) — 0)
( 1)n+1ﬂ.
= : 21
! 1)
Integrating by parts twice, we get
™ 1 x [T 1
/ dsin(nr)de = | — a:3—cos(n:v)} —/ 322~ cos(nx)dx
0 n o Jo n
3 3 ™
- T cos(nm) + — / 2? cos(nx)dx
n n Jo
_1\n+1._3 T ™
= (D—W + 3 IQl sin(nz)| — 2xl sin(nz)dz
n n n 0 n
0
Hrtigs 3 6 [T
- ( )n + —(n*sin(nm) — 0) — —2/0 xsin(nx)dx
_(=pmtier 6 (1)
B n w2 on
— ( 1)n+1 3 6(_1>n+1ﬂ- (22)
B n a n3
Taking into account (20), (21) and (22), we deduce that
71'(—1)”+17T 1 (_1)n+1ﬂ.3 6(_1)n+1ﬂ. 2( 1)n+1
ang—__< _ A >: / (23)
n 3T n n n



Hence we obtain from (18) and (23) the solution of our BVP

2=t
u(z,t) = Z_; — sin(nx) cos(nmat).
[
6. We would like to solve the following boundary-value problem
Pu
2 —
a@—wforall()<x<l,t>0 (1)
w(0,8) =0, t >0 2)
u(l,t)=0,t>0 (3)
%(w,O)—0,0<x<1 (4)
u(z,0) = 10~ ?sin(37z), 0 <z < 1. (5)
Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(z,y) = X (x)T(t) be such a product solution. Then we have
a?X"(x)T(t) = X (x)T"(t) for all z,t. (6)
If X(z)# 0 and T'(t) # 0, we get from (6)
X// T// t
2 X((j)) = T(<t)> = constant k for all x,t. (7)
We deduce from (7) that
k
X'(@) = ©X(@) 0
T'(t) = KkT(¢). 9)
The solutions of (8) and (9) depend on the sign of k, i.e. we have
X(z) = ar+cifk=0 (10)
Vk o VE Y
X(x) = ¢cosh (7x> + cosinh (7x> ifk>0 (11)
V—k : - :
X(x) = clcos< - x)—l—czsm( - x) if k < 0. (12)
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T(t) = cst+cif k=0 (13)
T(t) = cscosh(VEt) 4+ ¢ysinh(Vt) if k> 0 (14)
T(t) = cgcos(vV—kt) + cysin(v/—kt) if k < 0. (15)
We discuss three cases:
Case 1: k=0
In this case we have by (10) and (13) u(z,t) = X (2)T(t) = (c1x + ¢2)(cst + ¢4). Using
(2) and (3), we get

(Cl + C2)T<t> =0 Vt>0 ClT(t) =0 Vt>0 ’

=0.

Case 2: k=)\*>0
In this case we have by (11) and (14) that

u(z,t) = X(x)T(t) = <cl cosh (21’) + co sinh (21’)) (e cosh(At) + ¢4 sinh(At)).
Using (2) and (3), we get

aT(t)=0 vt>0 aT(t) =0 Vt>0
(01 cosh (é) + ¢y sinh (g))T(t) —0 Vt>0 (1) =0 Vi > 0.
Hence u(z,t) = 0.
Case 3: k=—-)\> <0
In this case we have by (12) and (15) that

u(z,t) = X(x)T(t) = <01 oS (29@) + ¢y sin (29&)) (c3 cos(At) + ¢4 sin(At)).
Using (2) and (3), we get

aT(t) =0 ¥t >0 aT() =0 V>0
{ (cl coS (%) + ¢y sin <§)>T(t) =0 Vt>0 = { Co Sin (%)T(t) =0 Vi>0

If sin (%) # 0, then ¢xT'(t) = 0 V¢ > 0 and then u(z,t) = 0.
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If sin (%) =0, we obtain 2 = nr, i.e. A\=nmwa, n=1,2,... and

a_

u(z, t) = ¢ 8in (2:@) (c3 cos(At) + cg sin(At)) (16)
%(x, £) = co)sin (%) (—essin(At) + eq cos(At)). (17)

Using now the boundary condition (4) and (17), we get
(A
0 = Aeoey sin (—x), VO <z <.
a

This leads by (16) to
A
u(z,t) = cycgsin (—:r;) cos(At).
a
Therefore all product solutions of (1), (2), (3) and (4) are given in this case by
up(z,t) = By sin(nmz) cos(nmwat), n=1,2, ..
According to the superposition principle, we know that

u(z,t) = Z up(z,t) = Z B, sin(nmz) cos(nmat) (18)

n=1

is also a solution of (1), (2), (3) and (4).

Now it is enough to find the coefficients B,, such that the function given in (18) is also
a solution of (5) i.e.

107 sin(372) = Y Bysin(nz), 0<z<1. (19)
n=1

It is clear that (19) is the half-range expansion of the function 1072 sin(37z) in a sine
series. It follows that
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9 1
B, = I/ 102 sin(37z) sin(nma)dx
0

1
= 2/ 10~ sin(37 ) sin(nmx)d
0
— 0ifn#3 (20)
1
= 1072 / 2sin*(3rx)dz if n = 3
0

1
= 10_2/ (1 — cos(6mx)dx
0

1 1
= 1072 [a: ~ sin(67x) ,

= 1072 (21)

Hence we obtain from (18), (20) and (21) the solution of our BVP

u(z,t) = 10~ sin(37x) cos(3mat).

O
8. We would like to solve the following boundary-value problem
?u  O%u
2 _

a@—wforall()<x<L,t>O (1)
ou
—(0,t)=0,t>0 2
L0, =0, 1> )
ou
—(L,t) =0, t 3
L =0, 150 0
0
a—?(m,O)z0,0<x<L (4)
u(z,0) =z, 0 <z < L. (5)

Let us find all product solutions of the boundary-value problem (1), (2), (3) and (4).
Indeed let u(x,y) = X (x)T'(t) be such a product solution. Then we have
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a?X"(x)T(t) = X (x)T"(t) for all z,t. (6)
If X(x)# 0and T'(t) # 0, we get from (6)
X'@) T

X T = constant k for all x,t. (7)

We deduce from (7) that
X'(@) = SX() )
T'(t) = kT(t). (9)

The solutions of (8) and (9) depend on the sign of k, i.e. we have

X(xr) = aqr+cifk=0 (10)
X(x) = ¢ cosh (gyg) + co sinh (@x) if k>0 (11)
X(zx) = clcos< ; :v)—{—czsin( — [l?) if £ <0. (12)
T(t) = Cgt + ¢y ifk=0 (13)
T(t) = ecscosh(VEt) + cysinh(VEt) if k> 0 (14)
T(t) = czcos(vV—kt)+ cysin(v/—kt) if k < 0. (15)

We discuss three cases:
Case 1: k=0

In this case we have by (10) and (13) u(x,t) = X (2)T'(t) = (12 + ¢2)(cst + ¢4), which
leads to 2%(z,t) = ¢;T(t) and 2%(x,t) = c3X () Using (2), (3) and (4), we get

{ Cl(Cgt -+ 04) =0 Vt>0 N { cic3 =c1cq4 =0

cs(cix+c) =0 YO<z <L c103 = coc3 =0 = u(z,t) = cocy.

Hence ug(z,t) = Ap is a product solution to (1), (2), (3) and (4).
Case 2: k=)\*>0
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In this case we have by (11) and (14) that

u(z,t) = X(x)T'(t) = <61 cosh (235) + co sinh (235)) (c3 cosh(At) + ¢4 sinh(At))

00 = o (L) () s

?;Z(g; t) = A(cl cosh (2 > + cosinh (2:1:)) (c3sinh(At) 4 c4 cosh(At)).

Using (2) and (3), we get
cT(t)=0 Vt>0 cT(t)=0 Vt>0
(c1 sinh (QL) + ¢y cosh (gL»T(t) =0 Vt>0 aT(t) =0 V> 0.

Hence u(zx,t) = 0.
Case 3: k=—-)\> <0
In this case we have by (12) and (15) that

u(z,t) = X(x)T(t) = (01 cos <2x> + ¢y sin <2x>> (c3cos(At) + ¢y sin(At))

2= 22
ou

ot = (1) = )\<61 cos <2 ) + cosin <2x>> (—cssin(At) 4 ¢4 cos(At)).

Using (2) and (3), we get

2e,T(t) =0 Vt >0
{4\<—clsm< >+C2COS<§ >> )=0 Vt>0
T (t)=0 Vt>0
= {018111(%) T(t)

N { u(z,t) —clcos<§ )

clsln< L)T() 0 Vt>0

Ifsm( >7é0 then ¢;T'(t) = 0 V¢t > 0 and then u(z,t) = 0.

0 Vt>0
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If sin (%L) = 0, we obtain %L =nm, e A="% n=12 . and
A .
u(z,t) = ¢ cos (—x) (c3 cos(At) + ¢4 8in(At))
a

0 A :
8—1tjd(x7 t) = Aey cos (Ex) (—cssin(At) 4 ¢4 cos(At)).

Using now the boundary condition (4), we get

AC1Cq COS (éx> =0, VO<z < L.
a

This leads to )
u(z,t) = c1c3 cos (ax> cos(At).

Therefore all product solutions of (1), (2), (3) and (4) are given in this case by

un(x,t) = A, cos (%x) cos (n—zat>, n=1,2,..

According to the superposition principle, we know that

u(x,t) = Zun(x,t) = Ao+ ZAn cos (%x) cos <$t>
n=0 n=1

is also a solution of (1), (2), (3) and (4).

(16)

Now it is enough to find the coefficients A,, such that the function given in (16) is also

a solution of (5) i.e.

a::AQ—I—ZAncos <n%x>, 0<x< L.
n=1

(17)

It is clear that (17) is the half-range expansion of the function z in a cosine series. it

follows that

1 [r Lra?1l L
0 L/Oxx APEII
2 L
AH:E/O Z COS (%m)dz

(18)

(19)



Integrating by parts, we get

L
/ T COS <Ex) dz
0 L

[xi sin (Tx)} : — ’ £ sin <T$> dx

nm L 0 0 NT L
L L

- sin (n—ﬂx>daj
nm J, L
e ()],

——| — —cos | —=x
nmw nmw L 0
2

53 (cos(nm) — 1)

L? "

W((_l) —1).

Taking into account (19) and (20), we deduce that

2L

n = (=D)"=1).

n2m?

Hence we obtain from (16), (18) and (21) the solution of our BVP

L o
u(z,t) = 5—1—2

L

2

4L

(=)™ = 1) cos (%x) cos (@t)

L

L

16

PTEa cos ((2n JZ: 1)7rx> cos <(2n + 1)7Tax>.

(21)



