King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Dr. A. Lyaghfouri

MATH 301/Term 062/Hw#21(13.1)/

1. We would like to find all product solutions of the following partial differential equation

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}. (1)$$

Indeed let u(x,y) = X(x)Y(y) be a product solution of (1). Then we have

$$X'(x)Y(y) = X(x)Y'(y) \text{ for all } x, y.$$
 (2)

If $X(x) \neq 0$ and $Y(y) \neq 0$, we get from (2)

$$\frac{X'(x)}{X(x)} = \frac{Y'(y)}{Y(y)} = constant \ k \ \text{ for all } x, y.$$
 (3)

We deduce from (3) that

$$X(x) = c_1 e^{kx} (4)$$

$$Y(y) = c_2 e^{ky}. (5)$$

Taking into account (4) and (5), it follows that all product solutions of (1) are given by

 $u(x,y) = Ce^{kx}e^{ky} = Ce^{k(x+y)}$, where k and C are arbitrary constants.

8. We would like to find all product solutions of the following partial differential equation

$$y\frac{\partial^2 u}{\partial x \partial y} + u = 0. ag{1}$$

Indeed let u(x,y) = X(x)Y(y) be a product solution of (1). Then we have

$$yX'(x)Y'(y) + X(x)Y(y) = 0$$
 for all x, y . (2)

If $X(x) \neq 0$ and $yY'(y) \neq 0$, we get from (2)

$$\frac{X'(x)}{X(x)} = -\frac{Y(y)}{yY'(y)} = constant \ k \ \text{ for all } x, y.$$
 (3)

We deduce from (3) that

$$X'(x) = kX(x) (4)$$

$$Y'(y) = -\frac{1}{ky}Y(y). \tag{5}$$

Solving (4) and (5), we get

$$X(x) = c_1 e^{kx} (6)$$

$$Y(y) = c_2 e^{-\int \frac{1}{ky} dy} = c_2 e^{-\frac{1}{k} \ln|y|} = c_2 |y|^{-\frac{1}{k}}.$$
 (7)

Taking into account (6) and (7), it follows that all product solutions of (1) are given by

 $u(x,y) = Ce^{kx}|y|^{-\frac{1}{k}}$, where k and C are arbitrary constants, with $k \neq 0$.

13. We would like to find all product solutions of the following partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2k \frac{\partial u}{\partial t} = 0, \quad k > 0.$$
 (1)

Indeed let u(x, y, t) = X(x)Y(y)T(t) be a product solution of (1). Then we have

$$X''(x)Y(y)T(t) + X(x)Y''(y)T(t) + 2kX(x)Y(y)T'(t) = 0 \text{ for all } x, y, t. \tag{2}$$

If $X(x) \neq 0$, $Y(y) \neq 0$ and $T(t) \neq 0$, we get from (2)

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} - 2k\frac{T'(t)}{T(t)} = constant \ a \quad \text{for all} \quad x, y, t.$$
 (3)

We deduce from (3) that

$$X''(x) = aX(x) (4)$$

$$\frac{Y''(y)}{Y(y)} = -2k\frac{T'(t)}{T(t)} - a = constant b.$$
 (5)

Then (5) leads to

$$Y''(y) = bY(y) (6)$$

$$\frac{T'(t)}{T(t)} = \frac{a+b}{2k} = c. (7)$$

The solutions of (4) and (6) depend on the signs of a and b, i.e. we have

$$X(x) = c_1 x + c_2 \text{ if } a = 0 (8)$$

$$X(x) = c_1 \cosh(\sqrt{ax}) + c_2 \sinh(\sqrt{ax}) \text{ if } a > 0$$
(9)

$$X(x) = c_1 \cos(\sqrt{-ax}) + c_2 \sin(\sqrt{-ax}) \text{ if } a < 0.$$
 (10)

$$Y(y) = c_3 y + c_4 \text{ if } a = 0 \tag{11}$$

$$Y(y) = c_3 \cosh(\sqrt{b}y) + c_4 \sinh(\sqrt{b}y) \text{ if } b > 0$$
(12)

$$Y(y) = c_3 \cos(\sqrt{-b}y) + c_4 \sin(\sqrt{-b}y) \text{ if } b < 0.$$
 (13)

The solution of (7) is given by

$$T(t) = c_5 e^{\frac{a+b}{2k}t}. (14)$$

 c_1, c_2, c_3, c_4 and c_5 are arbitrary constants.

Taking into account (8)-(14), it follows that all product solutions of (1) are given by

$$\begin{array}{lll} u(x,y,t) &=& (c_1x+c_2)(c_3y+c_4) \\ u(x,y,t) &=& (c_1x+c_2)(c_3\cosh(\sqrt{b}y)+c_4\sinh(\sqrt{b}y)e^{\frac{a}{2k}t} \ \ \text{with } a=0 \ \text{and } b>0 \\ u(x,y,t) &=& (c_1x+c_2)(c_3\cos(\sqrt{-b}y)+c_4\sin(\sqrt{-b}y))e^{\frac{a}{2k}t} \ \ \text{with } a=0 \ \text{and } b<0 \\ u(x,y,t) &=& (c_1\cosh(\sqrt{a}x)+c_2\sinh(\sqrt{a}x))(c_3y+c_4)e^{\frac{a}{2k}t} \ \ \text{with } a>0 \ \text{and } b<0 \\ u(x,y,t) &=& (c_1\cosh(\sqrt{a}x)+c_2\sinh(\sqrt{a}x))(c_3\cos(\sqrt{-b}y)+c_4\sin(\sqrt{-b}y))e^{\frac{a+b}{2k}t} \\ & \text{with } a>0 \ \text{and } b<0 \\ u(x,y,t) &=& (c_1\cosh(\sqrt{a}x)+c_2\sinh(\sqrt{a}x))(c_3\cosh(\sqrt{-b}y)+c_4\sinh(\sqrt{-b}y))e^{\frac{a+b}{2k}t} \\ & \text{with } a>0 \ \text{and } b>0 \\ u(x,y,t) &=& (c_1\cos(\sqrt{a}x)+c_2\sin(\sqrt{a}x))(c_3y+c_4)e^{\frac{a}{2k}t} \ \ \text{with } a<0 \ \text{and } b=0 \\ u(x,y,t) &=& (c_1\cos(\sqrt{a}x)+c_2\sin(\sqrt{a}x))(c_3\cos(\sqrt{-b}y)+c_4\sin(\sqrt{-b}y))e^{\frac{a+b}{2k}t} \\ & \text{with } a<0 \ \text{and } b<0 \\ u(x,y,t) &=& (c_1\cos(\sqrt{a}x)+c_2\sin(\sqrt{a}x))(c_3\cosh(\sqrt{-b}y)+c_4\sin(\sqrt{-b}y))e^{\frac{a+b}{2k}t} \end{array}$$

with a < 0 and b > 0.

16. We would like to use the method of separation of variables to find a family of solutions of the following partial differential equation

$$a^2 \frac{\partial^2 u}{\partial x^2} - g = \frac{\partial^2 u}{\partial t^2}$$
, where g is a constant. (1)

First we remark that u satisfies (1) if and only if the function $v(x,y) = u(x,y) - \frac{1}{2a^2}x^2$ satisfies

$$a^2 \frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial t^2}.$$
 (2)

Let us find all product solutions of the partial differential equation (2) Indeed let v(x, y) = X(x)T(t) be a product solution of (2). Then we have

$$a^2 X''(x)T(t) = X(x)T''(t)$$
 for all x, t . (3)

If $X(x) \neq 0$ and $T(t) \neq 0$, we get from (3)

$$a^{2}\frac{X''(x)}{X(x)} = \frac{T''(t)}{T(t)} = constant \ k \quad \text{for all} \quad x, t.$$
 (4)

We deduce from (4) that

$$X''(x) = \frac{k}{a^2}X(x) \tag{5}$$

$$T''(t) = kT(t). (6)$$

The solutions of (5) and (6) depend on the sign of k, i.e. we have

$$X(x) = c_1 x + c_2 \text{ if } k = 0 (7)$$

$$X(x) = c_1 \cosh\left(\frac{\sqrt{k}}{a}x\right) + c_2 \sinh\left(\frac{\sqrt{k}}{a}x\right) \text{ if } k > 0$$
 (8)

$$X(x) = c_1 \cos\left(\frac{\sqrt{-k}}{a}x\right) + c_2 \sin\left(\frac{\sqrt{-k}}{a}x\right) \text{ if } k < 0.$$
 (9)

$$Y(y) = c_3 y + c_4 \text{ if } k = 0 \tag{10}$$

$$Y(y) = c_3 \cosh(\sqrt{ky}) + c_4 \sinh(\sqrt{ky}) \text{ if } k > 0$$
(11)

$$Y(y) = c_3 \cos(\sqrt{-ky}) + c_4 \sin(\sqrt{-ky}) \text{ if } k < 0.$$
 (12)

Therefore all product solutions of (2) are given by

$$v(x,y) = (c_1x + c_2)(c_3y + c_4) \text{ if } k = 0$$

$$v(x,y) = \left(c_1\cosh\left(\frac{\sqrt{k}}{a}x\right) + c_2\sinh\left(\frac{\sqrt{k}}{a}x\right)\right)(c_3\cosh(\sqrt{k}y) + c_4\sinh(\sqrt{k}y)) \text{ if } k > 0$$

$$v(x,y) = \left(c_1\cos\left(\frac{\sqrt{-k}}{a}x\right) + c_2\sin\left(\frac{\sqrt{-k}}{a}x\right)\right)(c_3\cos(\sqrt{-k}y) + c_4\sin(\sqrt{-k}y)) \text{ if } k < 0.$$

Hence we obtain the solutions of (1)

$$u(x,y) = \frac{1}{2a^{2}}x^{2} + (c_{1}x + c_{2})(c_{3}y + c_{4})$$

$$u(x,y) = \frac{1}{2a^{2}}x^{2} + \left(c_{1}\cosh\left(\frac{\sqrt{k}}{a}x\right) + c_{2}\sinh\left(\frac{\sqrt{k}}{a}x\right)\right)(c_{3}\cosh(\sqrt{k}y) + c_{4}\sinh(\sqrt{k}y))$$
with $k > 0$

$$u(x,y) = \frac{1}{2a^{2}}x^{2} + \left(c_{1}\cos\left(\frac{\sqrt{-k}}{a}x\right) + c_{2}\sin\left(\frac{\sqrt{-k}}{a}x\right)\right)(c_{3}\cos(\sqrt{-k}y) + c_{4}\sin(\sqrt{-k}y))$$
with $k < 0$.

20. We consider the following partial differential equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial y} - 3 \frac{\partial^2 u}{\partial y^2} = 0. \tag{1}$$

This is a partial differential equation of the form

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = 0,$$

where $A=1,\,B=-1,\,C=-3,\,D=E=F=0.$ Since $B^2-4AC=(-1)^2-4(1)(-3)=1+12=13>0$, the partial differential equation (1) is a hyperbolic equation. \Box

26. We consider the following partial differential equation

$$k\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad k > 0. \tag{1}$$

This is a partial differential equation of the form

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial t} + C\frac{\partial^2 u}{\partial t^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial t} + Fu = 0,$$

where A = k, B = C = D = 0, E = -1, F = 0.

Since $B^2 - 4AC = 0^2 - 4k(0) = 0$, the partial differential equation (1) is a parabolic equation.

28. We consider the following partial differential equation

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0. \tag{1}$$

We would like to verify that $u(r,\theta) = (c_1 \cos(\alpha \theta) + c_2 \sin(\alpha \theta))(c_3 r^{\alpha} + c_4 r^{-\alpha})$ is a solution of (1). Indeed we have

$$\frac{\partial u}{\partial r} = \alpha (c_1 \cos(\alpha \theta) + c_2 \sin(\alpha \theta))(c_3 r^{\alpha - 1} - c_4 r^{-\alpha - 1})$$
(2)

$$\frac{\partial^2 u}{\partial r^2} = \alpha (c_1 \cos(\alpha \theta) + c_2 \sin(\alpha \theta))((\alpha - 1)c_3 r^{\alpha - 2} + (\alpha + 1)c_4 r^{-\alpha - 2})$$
(3)

$$\frac{\partial^2 u}{\partial \theta^2} = -\alpha^2 (c_1 \cos(\alpha \theta) + c_2 \sin(\alpha \theta))(c_3 r^\alpha + c_4 r^{-\alpha}). \tag{4}$$

We deduce then from (2),(3) and (4) that

$$\frac{\partial^{2} u}{\partial r^{2}} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} = \alpha (c_{1} \cos(\alpha \theta) + c_{2} \sin(\alpha \theta))((\alpha - 1)c_{3}r^{\alpha - 2} + (\alpha + 1)c_{4}r^{-\alpha - 2})
+ \alpha (c_{1} \cos(\alpha \theta) + c_{2} \sin(\alpha \theta))(c_{3}r^{\alpha - 2} - c_{4}r^{-\alpha - 2})
- \alpha^{2} (c_{1} \cos(\alpha \theta) + c_{2} \sin(\alpha \theta))(c_{3}r^{\alpha - 2} + c_{4}r^{-\alpha - 2})
= \alpha (c_{1} \cos(\alpha \theta) + c_{2} \sin(\alpha \theta)) \left((\alpha - 1)c_{3}r^{\alpha - 2} + (\alpha + 1)c_{4}r^{-\alpha - 2} + c_{3}r^{\alpha - 2} - c_{4}r^{-\alpha - 2} - \alpha c_{3}r^{\alpha - 2} - \alpha c_{4}r^{-\alpha - 2}\right)
= 0.$$