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4. We would like to expand the function f(z) = 1, 0 < z < 2, in a Fourier-Bessel

series using Bessel functions of order zero that satisfy Jjj(2«) = 0. Here we have b = 2,
n =0 and h = 0. The Fourier-Bessel series is given by
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Taking into account (1), (2) and (3), it follows that the Fourier-Bessel series of f on
the interval [0, 2] is given by



6. We would like to expand the function f(x) = 1, 0 < 2 < 2, in a Fourier-Bessel
series using Bessel functions of order zero that satisfy Jo(2a) + aJ)(2a) = 0. Here we
have b =2, n =0 and h = 1. The Fourier-Bessel series is given by
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Taking into account (1) and (2), it follows that the Fourier-Bessel series of f on the
interval [0, 2] is given by

> 4oy J1 (20)
; To? + 1).2 (207 L)

8. We would like to expand the function f(z) = z?, 0 < x < 1, in a Fourier-Bessel
series using Bessel functions of order 2 that satisfy Jo(a) = 0. Here we have b = 1,



n = 2 and h = 0. The Fourier-Bessel series is given by

ZCiJ2<aim>7 (1)
i=1
where
2 ! 2 L
T Ja(ay dr = Jo(oy d
c 12J§(a1)/0 xJo(aux) f(x)dx Jg?(ai)/o x°Jo(ax)dx

1vY3
2
= 3 I35
afjg( z)[ ‘]3( )]0
_ 2 3
— agljg(al>az Jg(OéZ)
2
S 2
CYiJ3(Oéi) ( )

Taking into account (1) and (2), it follows that the Fourier-Bessel series of f on the
interval [0, 1] is given by
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15. Let f be the function defined by
0, if —1<z<0
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The Fourier-Legendre expansion of f on the interval [—1,1] is given by
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We would like to find the
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first five nonzero terms in (1). We recall that Py(z) = 1,
Pi(z) = z, Py(z) = 5(32% — 1), P3(x) = £(52% — 3z), Py(z) = £(352* — 302% + 3),
P5(x) = §(632° —702° 4+ 15z) and Ps(z) = 35(6932° — 9452* + 3152% — 15). So we have
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Taking into account (1), (2), (3),... and (9), it follows that the first five nonzero terms
in (1) are given by
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20. Let f be an odd function on [—1,1]. The Fourier-Legendre expansion of f on the
interval [—1, 1] is given by

chpn(x) (1)

where



2n+1 (!
=3 /1 f(x)P,(x)dz. (2)

We know (see 5.3) that P,(x) is an even or odd function according to whether n is
even or odd. It follows that f(z)Pa,(z) is an odd function and f(x)Py,41(x) is an even
function. Therefore we get from (2)
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Taking into account (1), (3) and (4), the Fourier-Legendre expansion of f on the interval
[—1,1] is given by

[e.9]

Z C2n+1P2n+1(I).

n=0



