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2. We would like to find the eigenfunctions and eigenvalues of the following BVP

y′′ + λy = 0 (1)

y(0) + y′(0) = 0 (2)

y(1) = 0. (3)

We shall discuss three cases.

Case 1 : λ = 0

In this case (1) becomes y′′ = 0 and its general solution is given by y(x) = c1x+c2, where
c1 and c2 are constants. Since y′(x) = c1, we get from (2) and (3) that c1 + c2 = 0.
So y(x) = c1(x − 1). Hence y(x) = x − 1 is an eigenfunction corresponding to the
eigenvalue 0 of the BVP.

Case 2 : λ = −α2 < 0, (α =
√−λ)

In this case (1) becomes y′′ = α2y and its general solution is given by y(x) = c1 cosh(αx)+
c2 sinh(αx), where c1 and c2 are constants. Since y′(x) = c1α sinh(αx) + c2α cosh(αx),
we get from 2) and (3) that

{
c1 + c2α = 0
c1 cosh(α) + c2 sinh(α) = 0.

⇔
{

c1 = −c2α
−c2(α cosh(α)− sinh(α)) = 0.

⇔
{

c1 = −c2α
c2(α− tanh(α)) = 0.

⇔ c2 = c1 = 0 or tanh(α) = α.

Given that the equation tanh(α) = α has 0 as the unique solution, we get c1 = c2 = 0.
Hence y(x) ≡ 0 and there is no negative eigenvalue of the BVP.

Case 3 : λ = α2 > 0, (α =
√

λ)

In this case (1) becomes y′′ = −α2y and its general solution is given by y(x) =
c1 cos(αx) + c2 sin(αx), where c1 and c2 are constants. Since y′(x) = −c1α sin(αx) +
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c2α cos(αx), we get from 2) and (3) that
{

c1 + c2α = 0
c1 cos(α) + c2 sin(α) = 0.

⇔
{

c1 = −c2α
−c2(α cos(α)− sin(α)) = 0.

⇔ c2 = c1 = 0 or tan(α) = α.

If c1 = 0, then c2 = c1 = 0 and y(x) ≡ 0.

If c1 6= 0, then tan(α) = α. This equation has an infinite number of positive roots,
namely, the x−coordinates of the points where the graph of y = tan(x) intersects with
the line y = x. Let αn, n = 1, 2, ... be the positive roots of this equation. Then
the eigenvalues of our BVP are given by λn = α2

n, n = 1, 2, .... The corresponding
eigenfunctions are yn(x) = αn cos(αnx)− sin(αnx), n = 1, 2, ....

Finally the eigenvalues of our BVP are given by λ0 = 0 and λn = α2
n, n = 1, 2, .... The

corresponding eigenfunctions are y0(x) = x − 1 and yn(x) = αn cos(αnx) − sin(αnx),
n = 1, 2, ....

4. We would like to find the eigenfunctions and eigenvalues of the following BVP

y′′ + λy = 0 (1)

y(−L) = y(L) (2)

y′(−L) = y′(L). (3)

We shall discuss three cases.

Case 1 : λ = 0

In this case (1) becomes y′′ = 0 and its general solution is given by y(x) = c1x + c2,
where c1 and c2 are constants. Since y′(x) = c1, we get from (2) and (3) that c1L+c2 =
−c1L + c2 ⇔ 2c1L = 0 ⇔ c1 = 0. So y(x) = c2. Hence y(x) = 1 is an eigenfunction
corresponding to the eigenvalue 0 of the BVP.

Case 2 : λ = −α2 < 0, (α =
√−λ)

In this case (1) becomes y′′ = α2y and its general solution is given by y(x) = c1 cosh(αx)+
c2 sinh(αx), where c1 and c2 are constants. Since y′(x) = c1α sinh(αx) + c2α cosh(αx),
we get from 2) and (3) that

{
c1 cosh(−αL) + c2 sinh(−αL) = c1 cosh(αL) + c2 sinh(αL)
c1α sinh(−αL) + c2α cosh(−αL) = c1α sinh(αL) + c2α cosh(αL).
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⇔
{

c1 cosh(αL)− c2 sinh(αL) = c1 cosh(αL) + c2 sinh(αL)
−c1α sinh(αL) + c2α cosh(αL) = c1α sinh(αL) + c2α cosh(αL).

⇔
{

c2 sinh(αL) = 0
c1α sinh(αL) = 0.

⇔ c2 = c1 = 0.

Hence y(x) ≡ 0 and there is no negative eigenvalue of the BVP.

Case 3 : λ = α2 > 0, (α =
√

λ)

In this case (1) becomes y′′ = −α2y and its general solution is given by y(x) =
c1 cos(αx) + c2 sin(αx), where c1 and c2 are constants. Since y′(x) = −c1α sin(αx) +
c2α cos(αx), we get from 2) and (3) that

{
c1 cos(−αL) + c2 sin(−αL) = c1 cos(αL) + c2 sin(αL)
−c1α sin(−αL) + c2α cos(−αL) = −c1α sin(αL) + c2α cos(αL).

⇔
{

c1 cos(αL)− c2 sin(αL) = c1 cos(αL) + c2 sin(αL)
c1α sin(αL) + c2α cos(αL) = −c1α sin(αL) + c2α cos(αL).

⇔
{

c2 sin(αL) = 0
c1α sin(αL) = 0.

⇔ c2 = c1 = 0 or sin(αL) = 0.

If c2 = c1 = 0 , then y(x) ≡ 0.

If c1 6= 0 or c2 6= 0, then sin(αL) = 0. This equation has an infinite number of
positive roots, namely, αn = nπ

L
, n = 1, 2, .... Then the eigenvalues of our BVP are

given by λn = α2
n = n2π2

L2 , n = 1, 2, .... Each eigenvalue determines two eigenfunctions

yn(x) = cos
(

nπ
L

x
)

and zn(x) = sin
(

nπ
L

x
)
, n = 1, 2, ....

Finally the eigenvalues of our BVP are given by λ0 = 0 and λn = n2π2

L2 , n = 1, 2, .... The

corresponding eigenfunctions are y0(x) = 1, yn(x) = cos
(

nπ
L

x
)

and zn(x) = sin
(

nπ
L

x
)
,

n = 1, 2, ....

6. We consider the BVP

y′′ + λy = 0

y(0) = 0

y(1) + y′(1) = 0.

3



It has been shown (see Example 2) that the eigenvalues of this BVP are given by
λn = α2

n, n = 1, 2, ..., where αn are the positive roots of the equation tan(α) = −α.
The corresponding eigenfunctions are yn(x) = sin(αnx), n = 1, 2, ....

Here we want to prove that ||yn||2 = 1
2
(1 + cos2(αn)).

Indeed

||yn||2 = =

∫ 1

0

sin2(αnx)dx =
1

2

∫ 1

0

(1− cos(2αnx))dx

=
1

2

[
x− 1

2αn

sin(2αnx)
]1

0

=
1

2

(
1− 1

2αn

sin(2αn)
)

=
1

2

(
1− 1

αn

sin(αn) cos(αn)
)

=
1

2

(
1− 1

αn

tan(αn) cos2(αn)
)

=
1

2
(1 + cos2(αn)).

12. We consider the parametric Bessel differential equation

x2y′′ + xy + (λx2 − 1)y = 0. (1)

subject to the boundary conditions

y is bounded at 0, y(3) = 0. (2)

a) When λ = α2, we know that the general solution of (1) is given by y(x) = c1J1(αx)+
c2Y1(αx). Since y is bounded at 0, we must have c2 = 0. Moreover y(3) = 0, leads
to J1(3α) = 0. Hence the eigenvalues of the BVP (1)-(2) are given by λn = α2

n,
where αn, n = 1, 2, .... are the roots of the equation J1(3α) = 0. The corresponding
eigenfunctions are yn(x) = J1(αnx), n = 1, 2, ....
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