King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Dr. A. Lyaghfouri

MATH 301/Term 062/Hw#19(12.5)/

2. We would like to find the eigenfunctions and eigenvalues of the following BVP

$$y'' + \lambda y = 0 \tag{1}$$

$$y(0) + y'(0) = 0 \tag{2}$$

$$y(1) = 0. \tag{3}$$

We shall discuss three cases.

<u>Case 1 : $\lambda = 0$ </u>

In this case (1) becomes y'' = 0 and its general solution is given by $y(x) = c_1 x + c_2$, where c_1 and c_2 are constants. Since $y'(x) = c_1$, we get from (2) and (3) that $c_1 + c_2 = 0$. So $y(x) = c_1(x - 1)$. Hence y(x) = x - 1 is an eigenfunction corresponding to the eigenvalue 0 of the BVP.

 $Case \ \mathcal{2} \ : \ \lambda = -\alpha^2 < 0, (\alpha = \sqrt{-\lambda})$

In this case (1) becomes $y'' = \alpha^2 y$ and its general solution is given by $y(x) = c_1 \cosh(\alpha x) + c_2 \sinh(\alpha x)$, where c_1 and c_2 are constants. Since $y'(x) = c_1 \alpha \sinh(\alpha x) + c_2 \alpha \cosh(\alpha x)$, we get from 2) and (3) that

$$\begin{cases} c_1 + c_2 \alpha = 0\\ c_1 \cosh(\alpha) + c_2 \sinh(\alpha) = 0. \end{cases} \Leftrightarrow \begin{cases} c_1 = -c_2 \alpha\\ -c_2 (\alpha \cosh(\alpha) - \sinh(\alpha)) = 0. \end{cases}$$
$$\Leftrightarrow \quad \begin{cases} c_1 = -c_2 \alpha\\ c_2 (\alpha - \tanh(\alpha)) = 0. \end{cases} \Leftrightarrow \quad c_2 = c_1 = 0 \text{ or } \tanh(\alpha) = \alpha. \end{cases}$$

Given that the equation $tanh(\alpha) = \alpha$ has 0 as the unique solution, we get $c_1 = c_2 = 0$. Hence $y(x) \equiv 0$ and there is no negative eigenvalue of the BVP.

Case 3 : $\lambda = \alpha^2 > 0, (\alpha = \sqrt{\lambda})$

In this case (1) becomes $y'' = -\alpha^2 y$ and its general solution is given by $y(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$, where c_1 and c_2 are constants. Since $y'(x) = -c_1 \alpha \sin(\alpha x) + c_2 \sin(\alpha x)$

 $c_2 \alpha \cos(\alpha x)$, we get from 2) and (3) that

$$\begin{cases} c_1 + c_2 \alpha = 0\\ c_1 \cos(\alpha) + c_2 \sin(\alpha) = 0. \end{cases} \Leftrightarrow \begin{cases} c_1 = -c_2 \alpha\\ -c_2(\alpha \cos(\alpha) - \sin(\alpha)) = 0. \end{cases}$$
$$\Leftrightarrow \quad c_2 = c_1 = 0 \text{ or } \tan(\alpha) = \alpha. \end{cases}$$

If $c_1 = 0$, then $c_2 = c_1 = 0$ and $y(x) \equiv 0$.

If $c_1 \neq 0$, then $\tan(\alpha) = \alpha$. This equation has an infinite number of positive roots, namely, the x-coordinates of the points where the graph of $y = \tan(x)$ intersects with the line y = x. Let α_n , n = 1, 2, ... be the positive roots of this equation. Then the eigenvalues of our BVP are given by $\lambda_n = \alpha_n^2$, n = 1, 2, ... The corresponding eigenfunctions are $y_n(x) = \alpha_n \cos(\alpha_n x) - \sin(\alpha_n x), n = 1, 2, \dots$

Finally the eigenvalues of our BVP are given by $\lambda_0 = 0$ and $\lambda_n = \alpha_n^2$, $n = 1, 2, \dots$ The corresponding eigenfunctions are $y_0(x) = x - 1$ and $y_n(x) = \alpha_n \cos(\alpha_n x) - \sin(\alpha_n x)$, $n = 1, 2, \dots$

4. We would like to find the eigenfunctions and eigenvalues of the following BVP

$$y'' + \lambda y = 0 \tag{1}$$

$$y'' + \lambda y = 0 \tag{1}$$
$$y(-L) = y(L) \tag{2}$$

$$y'(-L) = y'(L).$$
 (3)

We shall discuss three cases.

Case 1 : $\lambda = 0$

In this case (1) becomes y'' = 0 and its general solution is given by $y(x) = c_1 x + c_2$, where c_1 and c_2 are constants. Since $y'(x) = c_1$, we get from (2) and (3) that $c_1L + c_2 =$ $-c_1L + c_2 \Leftrightarrow 2c_1L = 0 \Leftrightarrow c_1 = 0$. So $y(x) = c_2$. Hence y(x) = 1 is an eigenfunction corresponding to the eigenvalue 0 of the BVP.

Case 2 : $\lambda = -\alpha^2 < 0, (\alpha = \sqrt{-\lambda})$

In this case (1) becomes $y'' = \alpha^2 y$ and its general solution is given by $y(x) = c_1 \cosh(\alpha x) +$ $c_2 \sinh(\alpha x)$, where c_1 and c_2 are constants. Since $y'(x) = c_1 \alpha \sinh(\alpha x) + c_2 \alpha \cosh(\alpha x)$, we get from 2) and (3) that

$$\begin{cases} c_1 \cosh(-\alpha L) + c_2 \sinh(-\alpha L) = c_1 \cosh(\alpha L) + c_2 \sinh(\alpha L) \\ c_1 \alpha \sinh(-\alpha L) + c_2 \alpha \cosh(-\alpha L) = c_1 \alpha \sinh(\alpha L) + c_2 \alpha \cosh(\alpha L). \end{cases}$$

$$\Leftrightarrow \begin{cases} c_1 \cosh(\alpha L) - c_2 \sinh(\alpha L) = c_1 \cosh(\alpha L) + c_2 \sinh(\alpha L) \\ -c_1 \alpha \sinh(\alpha L) + c_2 \alpha \cosh(\alpha L) = c_1 \alpha \sinh(\alpha L) + c_2 \alpha \cosh(\alpha L). \\ \Leftrightarrow \begin{cases} c_2 \sinh(\alpha L) = 0 \\ c_1 \alpha \sinh(\alpha L) = 0. \end{cases} \Leftrightarrow c_2 = c_1 = 0. \end{cases}$$

Hence $y(x) \equiv 0$ and there is no negative eigenvalue of the BVP.

Case 3 :
$$\lambda = \alpha^2 > 0, (\alpha = \sqrt{\lambda})$$

In this case (1) becomes $y'' = -\alpha^2 y$ and its general solution is given by $y(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$, where c_1 and c_2 are constants. Since $y'(x) = -c_1 \alpha \sin(\alpha x) + c_2 \alpha \cos(\alpha x)$, we get from 2) and (3) that

$$\begin{cases} c_1 \cos(-\alpha L) + c_2 \sin(-\alpha L) = c_1 \cos(\alpha L) + c_2 \sin(\alpha L) \\ -c_1 \alpha \sin(-\alpha L) + c_2 \alpha \cos(-\alpha L) = -c_1 \alpha \sin(\alpha L) + c_2 \alpha \cos(\alpha L). \end{cases}$$
$$\Leftrightarrow \quad \begin{cases} c_1 \cos(\alpha L) - c_2 \sin(\alpha L) = c_1 \cos(\alpha L) + c_2 \sin(\alpha L) \\ c_1 \alpha \sin(\alpha L) + c_2 \alpha \cos(\alpha L) = -c_1 \alpha \sin(\alpha L) + c_2 \alpha \cos(\alpha L). \end{cases}$$
$$\Leftrightarrow \quad \begin{cases} c_2 \sin(\alpha L) = 0 \\ c_1 \alpha \sin(\alpha L) = 0. \end{cases} \Leftrightarrow \quad c_2 = c_1 = 0 \text{ or } \sin(\alpha L) = 0. \end{cases}$$

If $c_2 = c_1 = 0$, then $y(x) \equiv 0$.

If $c_1 \neq 0$ or $c_2 \neq 0$, then $\sin(\alpha L) = 0$. This equation has an infinite number of positive roots, namely, $\alpha_n = \frac{n\pi}{L}$, n = 1, 2, ... Then the eigenvalues of our BVP are given by $\lambda_n = \alpha_n^2 = \frac{n^2 \pi^2}{L^2}$, n = 1, 2, ... Each eigenvalue determines two eigenfunctions $y_n(x) = \cos\left(\frac{n\pi}{L}x\right)$ and $z_n(x) = \sin\left(\frac{n\pi}{L}x\right)$, n = 1, 2, ...

Finally the eigenvalues of our BVP are given by $\lambda_0 = 0$ and $\lambda_n = \frac{n^2 \pi^2}{L^2}$, n = 1, 2, ... The corresponding eigenfunctions are $y_0(x) = 1$, $y_n(x) = \cos\left(\frac{n\pi}{L}x\right)$ and $z_n(x) = \sin\left(\frac{n\pi}{L}x\right)$, n = 1, 2, ...

6. We consider the BVP

$$y'' + \lambda y = 0$$

$$y(0) = 0$$

$$y(1) + y'(1) = 0$$

It has been shown (see Example 2) that the eigenvalues of this BVP are given by $\lambda_n = \alpha_n^2$, n = 1, 2, ..., where α_n are the positive roots of the equation $\tan(\alpha) = -\alpha$. The corresponding eigenfunctions are $y_n(x) = \sin(\alpha_n x)$, n = 1, 2, ...

Here we want to prove that $||y_n||^2 = \frac{1}{2}(1 + \cos^2(\alpha_n))$. Indeed

$$||y_n||^2 = \int_0^1 \sin^2(\alpha_n x) dx = \frac{1}{2} \int_0^1 (1 - \cos(2\alpha_n x)) dx$$

= $\frac{1}{2} \Big[x - \frac{1}{2\alpha_n} \sin(2\alpha_n x) \Big]_0^1$
= $\frac{1}{2} \Big(1 - \frac{1}{2\alpha_n} \sin(2\alpha_n) \Big)$
= $\frac{1}{2} \Big(1 - \frac{1}{\alpha_n} \sin(\alpha_n) \cos(\alpha_n) \Big)$
= $\frac{1}{2} \Big(1 - \frac{1}{\alpha_n} \tan(\alpha_n) \cos^2(\alpha_n) \Big)$
= $\frac{1}{2} \Big(1 + \cos^2(\alpha_n) \Big).$

ſ		

12. We consider the parametric Bessel differential equation

$$x^{2}y'' + xy + (\lambda x^{2} - 1)y = 0.$$
⁽¹⁾

subject to the boundary conditions

$$y$$
 is bounded at 0, $y(3) = 0.$ (2)

a) When $\lambda = \alpha^2$, we know that the general solution of (1) is given by $y(x) = c_1 J_1(\alpha x) + c_2 Y_1(\alpha x)$. Since y is bounded at 0, we must have $c_2 = 0$. Moreover y(3) = 0, leads to $J_1(3\alpha) = 0$. Hence the eigenvalues of the BVP (1)-(2) are given by $\lambda_n = \alpha_n^2$, where α_n , n = 1, 2, ... are the roots of the equation $J_1(3\alpha) = 0$. The corresponding eigenfunctions are $y_n(x) = J_1(\alpha_n x)$, n = 1, 2, ...