King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences

Dr. A. Lyaghfouri

MATH 301/Term 062/Hw\#13(4.4)/

6. We would like to evaluate $\mathcal{L}\left(t^{2} \cos (t)\right)$. For this purpose we will use the formula

$$
\mathcal{L}\left(t^{n} f(t)\right)=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s), \text { with } n=2, f(t)=\cos (t), \text { and } F(s)=\frac{s}{s^{2}+1} .
$$

Hence we get

$$
\begin{aligned}
\mathcal{L}\left(t^{2} \cos (t)\right) & =(-1)^{2} \frac{d^{2}}{d s^{2}} \frac{s}{s^{2}+1}=\frac{d}{d s}\left(\frac{d}{d s} \frac{s}{s^{2}+1}\right) \\
& =\frac{d}{d s}\left(\frac{s^{2}+1-2 s^{2}}{\left(s^{2}+1\right)^{2}}\right)=\frac{d}{d s}\left(\frac{1-s^{2}}{\left(s^{2}+1\right)^{2}}\right) \\
& =\frac{-2 s\left(s^{2}+1\right)^{2}-4 s\left(s^{2}+1\right)\left(1-s^{2}\right)}{\left(s^{2}+1\right)^{4}} \\
& =\frac{-2 s\left(s^{2}+1\right)-4 s\left(1-s^{2}\right)}{\left(s^{2}+1\right)^{3}} \\
& =\frac{2 s\left(s^{2}-3\right)}{\left(s^{2}+1\right)^{3}}
\end{aligned}
$$

19. We have

$$
\mathcal{L}\left(1 * t^{3}\right)=\mathcal{L}(1) \cdot \mathcal{L}\left(t^{3}\right)=\frac{1}{s} \cdot \frac{3!}{s^{4}}=\frac{6}{s^{5}} .
$$

23. We have

$$
\begin{aligned}
\mathcal{L}\left(\int_{0}^{t} e^{\tau} d \tau\right) & =\frac{\mathcal{L}\left(e^{t}\right)}{s} \\
& =\frac{\frac{1}{s-1}}{s} \\
& =\frac{1}{s(s-1)}
\end{aligned}
$$

28. We have

$$
\begin{aligned}
\mathcal{L}\left(\int_{0}^{t} \sin (\tau) \cos (t-\tau) d \tau\right) & =\mathcal{L}(\sin * \cos) \\
& =\mathcal{L}(\sin (t)) \cdot \mathcal{L}(\cos (t)) \\
& =\frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1} \\
& =\frac{s}{\left(s^{2}+1\right)^{2}}
\end{aligned}
$$

34. We would like to evaluate $\mathcal{L}^{-1}\left(\frac{1}{s(s-a)^{2}}\right)$. Note that

$$
\frac{1}{s(s-a)^{2}}=\frac{G(s)}{s}, \text { where } G(s)=F(s-a) \text { and } F(s)=\frac{1}{s^{2}}=\mathcal{L}(t)
$$

Moreover we have by the formula $\mathcal{L}^{-1}(F(s-a))=e^{a t} f(t)$,

$$
g(t)=\mathcal{L}^{-1}(G(s))=\mathcal{L}^{-1}(F(s-a))=t e^{a t}
$$

Using the formula

$$
\mathcal{L}^{-1}\left(\frac{G(s)}{s}\right)=\int_{0}^{t} g(\tau) d \tau
$$

we get

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s(s-a)^{2}}\right) & =\int_{0}^{t} \tau e^{a \tau} d \tau \\
& =\left[\tau \frac{e^{a \tau}}{a}\right]_{0}^{t}-\int_{0}^{t} \frac{e^{a \tau}}{a} d \tau \\
& =t \frac{e^{a t}}{a}-\left[\frac{e^{a \tau}}{a^{2}}\right]_{0}^{t} \\
& =t \frac{e^{a t}}{a}-\frac{e^{a t}}{a^{2}}+\frac{1}{a^{2}} \\
& =\frac{(a t-1) e^{a t}+1}{a^{2}} .
\end{aligned}
$$

45. We consider the integral equation

$$
\left\{\begin{array}{l}
y^{\prime}(t)=1-\sin (t)-\int_{0}^{t} y(\tau) d \tau \\
y(0)=0
\end{array}\right.
$$

Let $Y(s)=\mathcal{L}(y(t))$. Applying the Laplace transform to the integral equation and taking into account the initial condition and the fact that $\mathcal{L}\left(\int_{0}^{t} y(\tau) d \tau\right)=\frac{Y(s)}{s}$, we get

$$
\begin{align*}
s Y(s) & -y(0)=\frac{1}{s}-\frac{1}{s^{2}+1}-\frac{Y(s)}{s} \\
& \Leftrightarrow\left(s+\frac{1}{s}\right) Y(s)=\frac{1}{s}-\frac{1}{s^{2}+1} \\
& \Leftrightarrow \frac{s^{2}+1}{s} Y(s)=\frac{1}{s}-\frac{1}{s^{2}+1} \\
& \Leftrightarrow Y(s)=\frac{1}{s^{2}+1}-\frac{s}{\left(s^{2}+1\right)^{2}} . \tag{1}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{s}{\left(s^{2}+1\right)^{2}}=\frac{1}{2} \frac{2 s}{\left(s^{2}+1\right)^{2}}=\frac{1}{2}(-1)^{1} \frac{d}{d s}\left(\frac{1}{s^{2}+1}\right)=\frac{1}{2} \mathcal{L}(t \sin (t)) . \tag{2}
\end{equation*}
$$

We deduce from (1) and (2) that

$$
y(t)=\mathcal{L}^{-1}(Y(s))=\sin (t)-\frac{1}{2} t \sin (t)=\left(1-\frac{t}{2}\right) \sin (t) .
$$

52. We would like to evaluate $\mathcal{L}(f(t))$, where $f(t)$ is the periodic function of period 2 defined on $[0,2]$ by

$$
f(t)=\left\{\begin{array}{lll}
t, & \text { if } \quad 0 \leq t \leq 1 \\
2-t, & \text { if } \quad 1 \leq t \leq 2
\end{array}\right.
$$

The Laplace transform of f is given by

$$
\begin{align*}
\mathcal{L}(f(t)) & =\frac{1}{1-e^{-2 s}} \int_{0}^{2} e^{-s t} f(t) d t \\
& =\frac{1}{1-e^{-2 s}} \int_{0}^{1} t e^{-s t} d t+\frac{1}{1-e^{-2 s}} \int_{1}^{2}(2-t) e^{-s t} d t . \tag{1}
\end{align*}
$$

Using the change of variables $\tau=2-t$, we get

$$
\begin{equation*}
\int_{1}^{2}(2-t) e^{-s t} d t=\int_{0}^{1} \tau e^{-s(2-\tau)} d \tau=e^{-2 s} \int_{0}^{1} \tau e^{s \tau} d \tau \tag{2}
\end{equation*}
$$

Integrating by parts, we get

$$
\begin{align*}
\int_{0}^{1} t e^{-s t} d t & =\left[t \frac{e^{-s t}}{-s}\right]_{0}^{1}-\int_{0}^{1} \frac{e^{-s t}}{-s} d t \\
& =-\frac{e^{-s}}{s}+\frac{1}{s} \int_{0}^{1} e^{-s t} d t \\
& =-\frac{e^{-s}}{s}+\frac{1}{s}\left[\frac{e^{-s t}}{-s}\right]_{0}^{1} \\
& =-\frac{e^{-s}}{s}+\frac{1}{s} \frac{1-e^{-s}}{s} \\
& =\frac{1-(1+s) e^{-s}}{s^{2}} . \tag{3}
\end{align*}
$$

Changing s to $-s$ in (3), we obtain

$$
\begin{equation*}
\int_{0}^{1} \tau e^{s \tau} d \tau=\frac{1-(1-s) e^{s}}{s^{2}} \tag{4}
\end{equation*}
$$

Finally we get by taking into account (1), (2), (3) and (4)

$$
\begin{aligned}
\mathcal{L}(f(t)) & =\frac{1}{1-e^{-2 s}} \frac{1-(1+s) e^{-s}}{s^{2}}+\frac{1}{1-e^{-2 s}} e^{-2 s} \frac{1-(1-s) e^{s}}{s^{2}} \\
& =\frac{1-e^{-s}-s e^{-s}+e^{-2 s}-e^{-s}+s e^{-s}}{s^{2}\left(1-e^{-2 s}\right)} \\
& =\frac{1-2 e^{-s}+e^{-2 s}}{s^{2}\left(1-e^{-2 s}\right)} \\
& =\frac{\left(1-e^{-s}\right)^{2}}{s^{2}\left(1-e^{-2 s}\right)}
\end{aligned}
$$

