Department of Mathematical Sciences KFUPM Term 031

MATH 301-01/ Exam#2/ Duration=2 Hours

1. Evaluate
$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2-3)}\right\}$$
 and $\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+3)}\right\}$

2. Evaluate
$$\mathcal{L}^{-1}\left\{\frac{s}{(s^2+4)(s^2+9)}\right\}$$
.

3. Evaluate $\mathcal{L}{t\sin(3t)}$ and $\mathcal{L}{t^2\sin(3t)}$.

4. Consider the *IVP*: $y''(t) + k^2 y(t) = \delta_a(t)$, y(0) = 1 and y'(0) = k, where k and a are given real numbers. Show that $Y(s) = \mathcal{L}\{y(t)\} = \frac{k + s + e^{-as}}{s^2 + k^2}$ and then solve the *IVP*.

5. Show that $\sin(2x)$ and $\sin(3x)$ are orthogonal functions on $[-\pi, \pi]$ and calculate the norm of $\cos(5x)$.

6. Expand $f(x) = \pi - x$ in a half-range sine series in $[0, \pi]$ and show that $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.

7. Find the complex Fourier series of the function $f(x) = e^x$ in $[-\pi, \pi]$ and show that $\sum_{-\infty}^{\infty} \frac{(-1)^n}{n^2 + 1} = \frac{\pi}{\sinh(\pi)}.$

8. Find the eigenvalues and eigenfunctions of the *BVP*:

$$y''(x) + 5y'(x) + \lambda y(x) = 0, \quad y(0) = 0, \ y(4) = 0.$$

Department of Mathematical Sciences KFUPM Term 031

MATH 301-01/ Exam#2/ Duration=2 Hours

Name:

ID#: