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1. Find the length of the curve traced by r(t) = a cos(t)i+a sin(t)j+ctk, t ∈
[0, 2π].

Solution:
The length of the curve traced by r(t) is given by:

L =

∫ 2π

0

√
(−a sin(t))2 + (a cos(t))2 + c2dt

=

∫ 2π

0

√
a2 sin2(t) + a2 cos2(t) + c2dt

=

∫ 2π

0

√
a2 + c2dt = 2π

√
a2 + c2.



2. Show that the vector F(x, y) = (x4 + y)i+(x+ y4)j is a gradient field and
find a function φ such that ∇φ(x, y) = F(x, y).

Solution:
Let F(x, y) = (x4 + y)i + (x + y4)j = P (x, y)i + Q(x, y)j be a vector field.
Since the functions P and Q are continuous and have partial derivatives

continuous on any domain and moreover we have
∂P

∂y
=

∂Q

∂x
= 1, F is a

gradient field i.e. there exists a function φ such that ∇φ(x, y) = F(x, y) i.e.

∂φ

∂x
= P (x, y) = x4 + y (1)

∂φ

∂y
= Q(x, y) = x + y4. (2)

Integrating (1), we get

φ(x, y) =

∫
(x4 + y)dx =

1

5
x5 + xy + g(y). (3)

Using (2) and (3), we get

x + g′(y) = x + y4 ⇒ g′(y) = y4 ⇒ g(y) =
1

5
y5 + C. (4)

Combining (3) and (4), we obtain

φ(x, y) =
1

5
x5 +

1

5
y5 + xy + C.



3. Use Green’s theorem over a region R that does not contain the origin to

evaluate the line integral

∫

C

−y3dx + xy2dy

(x2 + y2)2
, where C is the ellipse x2

4
+ y2

9
=

1.

Solution:
Let R be the region of the xy−plane bounded by C and the circle C ′ :
x2 + y2 = 1 of center (0, 0) and radius 1.

Let P (x, y) = −y3

(x2+y2)2
and Q(x, y) = xy2

(x2+y2)2
. These functions are continuous

and have partial derivatives continuous on any domain not containing the

origin. Moreover we have
∂P

∂y
=

∂Q

∂x
:

∂P

∂y
=

∂

∂y
[−y3(x2+y2)−2] = −3y2(x2+y2)−2+4y4(x2+y2)−3 = (y4−3x2y2)(x2+y2)−3,

∂Q

∂x
=

∂

∂x
[xy2(x2+y2)−2] = y2(x2+y2)−2−4x2y2(x2+y2)−3 = (y4−3x2y2)(x2+y2)−3.

Using Green’s theorem we have

∮

C∪C′
Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy = 0.

Taking into account that orientations of C and C ′ in the left hand-side of the
previous formula are respectively counterclockwise and clockwise, we get:

∫

C

−y3dx + xy2dy

(x2 + y2)2
=

∫

C′

−y3dx + xy2dy

(x2 + y2)2
, (1)

where now the orientations of C and C ′ are both counterclockwise.
It is clear that it is easier to evaluate the second integral in (1) which we will
do by using the parametrization of C ′:

C :

{
x = cos(t),
y = sin(t), t ∈ [0, 2π].

Then we have



∫

C′

−y3dx + xy2dy

(x2 + y2)2
=

∫

C′

−y3dx

(x2 + y2)2
+

∫

C′

xy2dy

(x2 + y2)2

=

∫ 2π

0

sin4(t)dt +

∫ 2π

0

sin2(t) cos2(t)dt

=

∫ 2π

0

sin4(t)dt +

∫ 2π

0

sin2(t) cos2(t)dt =

∫ 2π

0

sin2(t)(sin2(t) + cos2(t))dt

=

∫ 2π

0

sin2(t)dt =

∫ 2π

0

1

2
(1− cos(2t))dt =

1

2

[
t− 1

2
sin(2t)

]2π

0
= π. (2)

Taking into account (1) and (2), we obtain

∫

C

−y3dx + xy2dy

(x2 + y2)2
= π.



4. Evaluate the line integral

∮

C

z2dx + x2dy + y2dz, where C is the trace of

the cylinder x2 + z2 = 1 on the plane y + z = 4.

Solution:

Let F = z2i + x2j + y2k and let S be the portion of the plane y + z = 4 that
is located inside the cylinder x2 + z2 = 1 (draw a figure). S is defined by
the equation z = f(x, y) = 4− y. The components of the vector field F are
continuous and have partial derivatives continuous on any domain. Therefore
we have by Stokes’ theorem

∮

C

z2dx + x2dy + y2dz =

∮

C

F.dr =

∫ ∫

S

curl(F).ndS, (1)

where

curlF = ∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

z2 x2 y2

∣∣∣∣∣∣
= (2y − 0)i− (0− 2z)j + (2x− 0)k

= 2yi + 2zj + 2xk. (2)

The unit normal vector to S is given by

n =
1√

1 + f 2
x + f 2

y

(− fxi− fyj + k
)

=
1√
2

(
j + k

)
. (3)

Now let R be the projection of S on the xz−plane. Then we get by using
(1), (2) and (3)

∮

C

y2dx + z2dy + x2dz =

∫ ∫

S

2√
2
(x + z)dS

=

∫ ∫

R

√
2(x + z)

√
2dxdz since S is also defined by y = 4− z

= 2

∫ ∫

R

(x + z)dxdz. (4)

Using the polar coordinates x = r cos θ and z = r sin θ, we obtain



∫ ∫

R

(x + z)dxdz =

∫ 2π

0

( ∫ 1

0

(r cos θ + r sin θ)rdr
)
dθ

=

∫ 2π

0

( ∫ 1

0

[1

3
r3 cos θ +

1

3
r3 sin θ

]1

0

)
dθ

=

∫ 2π

0

(1

3
cos θ +

1

3
sin θ

)
dθ

=
[1

3
sin θ − 1

3
cos θ

]2π

0
= 0. (5)

Hence we deduce from (1), (4) and (5) that

∮

C

yz2dx + xz2dy + x2ydz = 0.



5. Evaluate the area of that portion of the cone z = a −
√

x2 + y2 that is
within the planes z = b and z = c, with 0 < b < c < a.

Solution:

Let S be the portion of the cone z = f(x, y) = a−
√

x2 + y2 that is within
the planes z = b and z = c (draw a figure). Then the area of S is given by

Area(S) =

∫ ∫

R

√
1 + f 2

x + f 2
y dxdy, (1)

where R is the projection of S on the xy−plane.
Now we have

fx =
−x√

x2 + y2
, fy =

−y√
x2 + y2

√
1 + f 2

x + f 2
y =

√
1 +

x2

x2 + y2
+

y2

x2 + y2
=
√

2.

We deduce then from (1) by using the polar coordinates and denoting by rb

and rc the values of r for which we have respectively z = b and z = c i.e.
rb = a− b and rc = a− c

Area(S) =

∫ ∫

R

√
2dxdy

=

∫ 2π

0

∫ rb

rc

√
2rdrdθ

=
√

2

∫ 2π

0

[r2

2

]rb

rc

dθ

= 2π
√

2
((a− b)2

2
− (a− c)2

2

)

= π
√

2(c− b)(2a− b− c).



6. Let F(x, y, z) = xyi + 2yzj + x2e3yk and let D be the region that is
bounded by the three coordinate planes and the plane x + y + z = 1. Let
S be the surface representing the exterior boundary of D which we orient
outward (draw a figure). Use the divergence theorem to evaluate the flux∫ ∫

S

F.n dS.

Solution:
Note that the components of the vector field F are continuous and have
partial derivatives continuous everywhere. So we have by the divergence
formula

∫ ∫

S

F.n dS =

∫ ∫ ∫

D

div(F)dV. (1)

Then we have for the right-hand side of (1)

∫ ∫ ∫

D

div(F)dV =

∫ 1

0

( ∫ 1−y

0

( ∫ 1−x−y

0

(y + 2z)dz
)
dx

)
dy

=

∫ 1

0

( ∫ 1−y

0

[
yz + z2

]1−x−y

0
dx

)
dy

=

∫ 1

0

( ∫ 1−y

0

(y(1− x− y) + (1− x− y)2)dx
)
dy

=

∫ 1

0

( ∫ 1−y

0

(1− 2x− y + xy + x2)dx
)
dy

=

∫ 1

0

[
x− x2 − xy +

1

2
x2y +

1

3
x3

]1−y

0
dy

=

∫ 1

0

(1− y − (1− y)2 − y(1− y) +
1

2
y(1− y)2 +

1

3
(1− y)3)dy

=

∫ 1

0

(
1

2
y(1− y)2 +

1

3
(1− y)3)dy

=

∫ 1

0

(
1

2
(1− y)2 − 1

6
(1− y)3)dy

=

∫ 1

0

(
1

2
t2 − 1

6
t3)dt =

[1

6
t3 − 1

24
t4

]1

0
=

1

6
− 1

24
=

1

8
t = 1− y.


