King Fahd University of Petroleum and Minerals
 Department of Mathematical Sciences
 MATH 301/Exam 1/ Term 062/ Time allowed=2 Hours

Full Name:
ID Number:

Q \#	Points
1	$/ 3$
2	$/ 8$
3	$/ 11$
4	$/ 11$
5	$/ 8$
6	$/ 9$
T	$/ 50$

1. Find the length of the curve traced by $\mathbf{r}(t)=a \cos (t) \mathbf{i}+a \sin (t) \mathbf{j}+c t \mathbf{k}, t \in$ $[0,2 \pi]$.

Solution:

The length of the curve traced by $\mathbf{r}(t)$ is given by:

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{(-a \sin (t))^{2}+(a \cos (t))^{2}+c^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)+c^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{a^{2}+c^{2}} d t=2 \pi \sqrt{a^{2}+c^{2}} .
\end{aligned}
$$

2. Show that the vector $\mathbf{F}(x, y)=\left(x^{4}+y\right) \mathbf{i}+\left(x+y^{4}\right) \mathbf{j}$ is a gradient field and find a function ϕ such that $\nabla \phi(x, y)=\mathbf{F}(x, y)$.

Solution:

Let $\mathbf{F}(x, y)=\left(x^{4}+y\right) \mathbf{i}+\left(x+y^{4}\right) \mathbf{j}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ be a vector field. Since the functions P and Q are continuous and have partial derivatives continuous on any domain and moreover we have $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=1, \mathbf{F}$ is a gradient field i.e. there exists a function ϕ such that $\nabla \phi(x, y)=\mathbf{F}(x, y)$ i.e.

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=P(x, y)=x^{4}+y \tag{1}\\
& \frac{\partial \phi}{\partial y}=Q(x, y)=x+y^{4} \tag{2}
\end{align*}
$$

Integrating (1), we get

$$
\begin{equation*}
\phi(x, y)=\int\left(x^{4}+y\right) d x=\frac{1}{5} x^{5}+x y+g(y) . \tag{3}
\end{equation*}
$$

Using (2) and (3), we get

$$
\begin{equation*}
x+g^{\prime}(y)=x+y^{4} \Rightarrow g^{\prime}(y)=y^{4} \Rightarrow g(y)=\frac{1}{5} y^{5}+C . \tag{4}
\end{equation*}
$$

Combining (3) and (4), we obtain

$$
\phi(x, y)=\frac{1}{5} x^{5}+\frac{1}{5} y^{5}+x y+C
$$

3. Use Green's theorem over a region R that does not contain the origin to evaluate the line integral $\int_{C} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}$, where C is the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=$ 1.

Solution:

Let R be the region of the $x y$-plane bounded by C and the circle C^{\prime} : $x^{2}+y^{2}=1$ of center $(0,0)$ and radius 1 .
Let $P(x, y)=\frac{-y^{3}}{\left(x^{2}+y^{2}\right)^{2}}$ and $Q(x, y)=\frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. These functions are continuous and have partial derivatives continuous on any domain not containing the origin. Moreover we have $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$:
$\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left[-y^{3}\left(x^{2}+y^{2}\right)^{-2}\right]=-3 y^{2}\left(x^{2}+y^{2}\right)^{-2}+4 y^{4}\left(x^{2}+y^{2}\right)^{-3}=\left(y^{4}-3 x^{2} y^{2}\right)\left(x^{2}+y^{2}\right)^{-3}$,
$\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left[x y^{2}\left(x^{2}+y^{2}\right)^{-2}\right]=y^{2}\left(x^{2}+y^{2}\right)^{-2}-4 x^{2} y^{2}\left(x^{2}+y^{2}\right)^{-3}=\left(y^{4}-3 x^{2} y^{2}\right)\left(x^{2}+y^{2}\right)^{-3}$.
Using Green's theorem we have

$$
\oint_{C \cup C^{\prime}} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=0 .
$$

Taking into account that orientations of C and C^{\prime} in the left hand-side of the previous formula are respectively counterclockwise and clockwise, we get:

$$
\begin{equation*}
\int_{C} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}=\int_{C^{\prime}} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

where now the orientations of C and C^{\prime} are both counterclockwise.
It is clear that it is easier to evaluate the second integral in (1) which we will do by using the parametrization of C^{\prime} :

$$
C:\left\{\begin{array}{l}
x=\cos (t), \\
y=\sin (t), \quad t \in[0,2 \pi] .
\end{array}\right.
$$

Then we have

$$
\begin{align*}
\int_{C^{\prime}} & \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}=\int_{C^{\prime}} \frac{-y^{3} d x}{\left(x^{2}+y^{2}\right)^{2}}+\int_{C^{\prime}} \frac{x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\int_{0}^{2 \pi} \sin ^{4}(t) d t+\int_{0}^{2 \pi} \sin ^{2}(t) \cos ^{2}(t) d t \\
& =\int_{0}^{2 \pi} \sin ^{4}(t) d t+\int_{0}^{2 \pi} \sin ^{2}(t) \cos ^{2}(t) d t=\int_{0}^{2 \pi} \sin ^{2}(t)\left(\sin ^{2}(t)+\cos ^{2}(t)\right) d t \\
& =\int_{0}^{2 \pi} \sin ^{2}(t) d t=\int_{0}^{2 \pi} \frac{1}{2}(1-\cos (2 t)) d t=\frac{1}{2}\left[t-\frac{1}{2} \sin (2 t)\right]_{0}^{2 \pi}=\pi \tag{2}
\end{align*}
$$

Taking into account (1) and (2), we obtain

$$
\int_{C} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}=\pi
$$

4. Evaluate the line integral $\oint_{C} z^{2} d x+x^{2} d y+y^{2} d z$, where C is the trace of the cylinder $x^{2}+z^{2}=1$ on the plane $y+z=4$.

Solution:

Let $\mathbf{F}=z^{2} \mathbf{i}+x^{2} \mathbf{j}+y^{2} \mathbf{k}$ and let S be the portion of the plane $y+z=4$ that is located inside the cylinder $x^{2}+z^{2}=1$ (draw a figure). S is defined by the equation $z=f(x, y)=4-y$. The components of the vector field \mathbf{F} are continuous and have partial derivatives continuous on any domain. Therefore we have by Stokes' theorem

$$
\begin{equation*}
\oint_{C} z^{2} d x+x^{2} d y+y^{2} d z=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{cur} l \mathbf{F} & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z^{2} & x^{2} & y^{2}
\end{array}\right| \\
& =(2 y-0) \mathbf{i}-(0-2 z) \mathbf{j}+(2 x-0) \mathbf{k} \\
& =2 y \mathbf{i}+2 z \mathbf{j}+2 x \mathbf{k} . \tag{2}
\end{align*}
$$

The unit normal vector to S is given by

$$
\begin{equation*}
\mathbf{n}=\frac{1}{\sqrt{1+f_{x}^{2}+f_{y}^{2}}}\left(-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k}\right)=\frac{1}{\sqrt{2}}(\mathbf{j}+\mathbf{k}) \tag{3}
\end{equation*}
$$

Now let R be the projection of S on the $x z$-plane. Then we get by using (1), (2) and (3)

$$
\begin{align*}
& \oint_{C} y^{2} d x+z^{2} d y+x^{2} d z=\iint_{S} \frac{2}{\sqrt{2}}(x+z) d S \\
&=\iint_{R} \sqrt{2}(x+z) \sqrt{2} d x d z \text { since } S \text { is also defined by } y=4-z \\
&=2 \iint_{R}(x+z) d x d z \tag{4}
\end{align*}
$$

Using the polar coordinates $x=r \cos \theta$ and $z=r \sin \theta$, we obtain

$$
\begin{align*}
& \iint_{R}(x+z) d x d z=\int_{0}^{2 \pi}\left(\int_{0}^{1}(r \cos \theta+r \sin \theta) r d r\right) d \theta \\
& \quad=\int_{0}^{2 \pi}\left(\int_{0}^{1}\left[\frac{1}{3} r^{3} \cos \theta+\frac{1}{3} r^{3} \sin \theta\right]_{0}^{1}\right) d \theta \\
& \quad=\int_{0}^{2 \pi}\left(\frac{1}{3} \cos \theta+\frac{1}{3} \sin \theta\right) d \theta \\
& \quad=\left[\frac{1}{3} \sin \theta-\frac{1}{3} \cos \theta\right]_{0}^{2 \pi}=0 \tag{5}
\end{align*}
$$

Hence we deduce from (1), (4) and (5) that

$$
\oint_{C} y z^{2} d x+x z^{2} d y+x^{2} y d z=0 .
$$

5. Evaluate the area of that portion of the cone $z=a-\sqrt{x^{2}+y^{2}}$ that is within the planes $z=b$ and $z=c$, with $0<b<c<a$.

Solution:

Let S be the portion of the cone $z=f(x, y)=a-\sqrt{x^{2}+y^{2}}$ that is within the planes $z=b$ and $z=c$ (draw a figure). Then the area of S is given by

$$
\begin{equation*}
\operatorname{Area}(S)=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y \tag{1}
\end{equation*}
$$

where R is the projection of S on the $x y$-plane.
Now we have

$$
\begin{aligned}
& f_{x}=\frac{-x}{\sqrt{x^{2}+y^{2}}}, \quad f_{y}=\frac{-y}{\sqrt{x^{2}+y^{2}}} \\
& \sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}}=\sqrt{2}
\end{aligned}
$$

We deduce then from (1) by using the polar coordinates and denoting by r_{b} and r_{c} the values of r for which we have respectively $z=b$ and $z=c$ i.e. $r_{b}=a-b$ and $r_{c}=a-c$

$$
\begin{aligned}
\operatorname{Area}(S) & =\iint_{R} \sqrt{2} d x d y \\
& =\int_{0}^{2 \pi} \int_{r_{c}}^{r_{b}} \sqrt{2} r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi}\left[\frac{r^{2}}{2}\right]_{r_{c}}^{r_{b}} d \theta \\
& =2 \pi \sqrt{2}\left(\frac{(a-b)^{2}}{2}-\frac{(a-c)^{2}}{2}\right) \\
& =\pi \sqrt{2}(c-b)(2 a-b-c)
\end{aligned}
$$

6. Let $\mathbf{F}(x, y, z)=x y \mathbf{i}+2 y z \mathbf{j}+x^{2} e^{3 y} \mathbf{k}$ and let D be the region that is bounded by the three coordinate planes and the plane $x+y+z=1$. Let S be the surface representing the exterior boundary of D which we orient outward (draw a figure). Use the divergence theorem to evaluate the flux $\iint_{S} \mathbf{F} . \mathbf{n} d S$.

Solution:

Note that the components of the vector field \mathbf{F} are continuous and have partial derivatives continuous everywhere. So we have by the divergence formula

$$
\begin{equation*}
\iint_{S} \mathbf{F} . \mathbf{n} d S=\iiint_{D} \operatorname{div}(\mathbf{F}) d V . \tag{1}
\end{equation*}
$$

Then we have for the right-hand side of (1)

$$
\begin{aligned}
\int & \iint_{D} d i v(\mathbf{F}) d V=\int_{0}^{1}\left(\int_{0}^{1-y}\left(\int_{0}^{1-x-y}(y+2 z) d z\right) d x\right) d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-y}\left[y z+z^{2}\right]_{0}^{1-x-y} d x\right) d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-y}\left(y(1-x-y)+(1-x-y)^{2}\right) d x\right) d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-y}\left(1-2 x-y+x y+x^{2}\right) d x\right) d y \\
& =\int_{0}^{1}\left[x-x^{2}-x y+\frac{1}{2} x^{2} y+\frac{1}{3} x^{3}\right]_{0}^{1-y} d y \\
& =\int_{0}^{1}\left(1-y-(1-y)^{2}-y(1-y)+\frac{1}{2} y(1-y)^{2}+\frac{1}{3}(1-y)^{3}\right) d y \\
& =\int_{0}^{1}\left(\frac{1}{2} y(1-y)^{2}+\frac{1}{3}(1-y)^{3}\right) d y \\
& =\int_{0}^{1}\left(\frac{1}{2}(1-y)^{2}-\frac{1}{6}(1-y)^{3}\right) d y \\
& =\int_{0}^{1}\left(\frac{1}{2} t^{2}-\frac{1}{6} t^{3}\right) d t=\left[\frac{1}{6} t^{3}-\frac{1}{24} t^{4}\right]_{0}^{1}=\frac{1}{6}-\frac{1}{24}=\frac{1}{8} \quad t=1-y
\end{aligned}
$$

