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1. 1. Find the total length of the curve traced by r(t) = f(t)i+g(t)j+h(t)k =

cos ti + sin tj + 2
3
t

3
2k, 0 ≤ t ≤ 3.

Solution:

The total length of the curve is given by

L =

∫ 3

0

√
f ′2(t) + g′2(t) + h′2(t)dt

=

∫ 3

0

√
sin2(t) + cos2(t) + (t1/2)2dt

=

∫ 3

0

√
1 + tdt =

[2

3
(1 + t)3/2

]3

0
=

2

3

[
43/2 − 1

]
=

14

3
.

2. Show that (x2 + ln(y2 + z2))dx +
(
y2 +

2xy

y2 + z2

)
dy +

(
z2 +

2xz

y2 + z2

)
dz

is an exact differential.

Calculate

∫ (1,1,1)

(0,0,1)

(x2 + ln(y2 + z2))dx +
(
y2 +

2xy

y2 + z2

)
dy +

(
z2 +

2xz

y2 + z2

)
dz.

Solution:

a) Let P (x, y, z) = x2+ln(y2+z2, Q(x, y, z) = y2+ 2xy
y2+z2 and R(x, y, z) = z2+

2xz
y2+z2 . These functions are continuous and have partial derivatives continuous
on any domain which does not contain the x-axis. Moreover we have

∂P

∂y
=

∂Q

∂x
=

2y

y2 + z2
,

∂P

∂z
=

∂R

∂x
=

2z

y2 + z2
and

∂Q

∂z
=

∂R

∂y
=

−4xyz

(y2 + z2)2
.
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Hence (x2 + ln(y2 + z2))dx +
(
y2 +

2xy

y2 + z2

)
dy +

(
z2 +

2xz

y2 + z2

)
dz is an ex-

act differential.

b) It follows from a) that there exists a function φ such that

dφ = (x2 + ln(y2 + z2))dx +
(
y2 +

2xy

y2 + z2

)
dy +

(
z2 +

2xz

y2 + z2

)
dz.

Then we have

∂φ

∂x
= x2 + ln(y2 + z2) (1)

∂φ

∂y
= y2 +

2xy

y2 + z2
(2)

∂φ

∂z
= z2 +

2xz

y2 + z2
. (3)

Integrating (1), we get

φ(x, y, z) =

∫
(x2 + ln(y2 + z2))dx =

1

3
x3 + x ln(y2 + z2) + g(y, z). (4)

Using (2) and (4), we get

2xy

y2 + z2
+

∂g

∂y
= y2 +

2xy

y2 + z2
⇒ ∂g

∂y
= y2 ⇒ g(y, z) =

1

3
y3 + h(z)

⇒ φ(x, y, z) =
1

3
x3 +

1

3
y3 + x ln(y2 + z2) + h(z). (5)

Using (3) and (5), we get

2xz

y2 + z2
+ h′(z) = z2 +

2xz

y2 + z2
⇒ h′(z) = z2 ⇒ h(z) =

1

3
z3 + C. (6)

Combining (5) and (6), we obtain

φ(x, y, z) =
1

3
x3 +

1

3
y3 +

1

3
z3 + x ln(y2 + z2) + C.

Since the line integral is independent of the path, we obtain
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∫ (1,1,1)

(0,0,1)

(x2 + ln(y2 + z2))dx +
(
y2 +

2xy

y2 + z2

)
dy +

(
z2 +

2xz

y2 + z2

)
dz

= φ(1, 1, 1)− φ(0, 0, 1) =
1

3
+

1

3
+

1

3
+ ln(2)− 1

3
− ln(1) =

2

3
+ ln(2).

3. Let C be the triangle with vertices (0, 0), (2, 0) and (2, 1). Verify the
Green theorem for 2eydx + xeydy.

Solution:

Let P (x, y) = 2ey, Q(x, y) = xey and R be the region of the xy−plane
bounded by the triangle C with vertices (0, 0), (2, 0) and (2, 1) (draw a figure).
We would like to verify the following Green’s formula

∮

C

Pdx + Qdy =

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy. (1)

First note that P (x, y) and Q(x, y) are continuous and have partial deriva-

tives continuous on any domain. Moreover we have
∂P

∂y
= 2ey and

∂Q

∂x
= ey

Next we have for the right-hand side of (1)

∫ ∫

R

(∂Q

∂x
− ∂P

∂y

)
dxdy =

∫ ∫

R

−eydxdy = −
∫ 2

0

( ∫ x/2

0

eydy
)
dx

= −
∫ 2

0

[
ey

]x/2

0
dx = −

∫ 2

0

(ex/2 − 1)dx

= −[
2ex/2 − x

]2

0
= −(2e− 2− 2) = 4− 2e. (2)

Now we evaluate the left-hand side of (1). Note that C = C1 ∪ C2 ∪ C3,
where C1 is the horizontal line segment joining the points (0, 0) and (2, 0),
C2 is the vertical line segment joining the points (2, 0) and (2, 1), and where
C3 is line segment joining the points (2, 1) and (0, 0). C1, C2 and C3 have
the parameterizations

C1 :

{
x = t,
y = 0, t ∈ [0, 2],

C2 :

{
x = 2,
y = t, t ∈ [0, 1],

C3 :

{
x = t,
y = t/2, t ∈ [0, 2].
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Then we have

∮

C

2eydx+xeydy =

∫

C1

2eydx+xeydy+

∫

C2

2eydx+xeydy+

∫

C3

2eydx+xeydy.

(3)

∫

C1

2eydx + xeydy =

∫

C1

2eydx +

∫

C1

xeydy

=

∫ 2

0

2e0dt +

∫ 2

0

te0(0)dt

= [2t]20 = 4. (4)

∫

C2

2eydx + xeydy =

∫

C2

2eydx +

∫

C2

xeydy

=

∫ 1

0

2et(0)dt +

∫ 1

0

2etdt

= [2et]10 = 2e− 2. (5)

∫

C3

2eydx + xeydy =

∫

C3

2eydx +

∫

C3

xeydy

= −
∫ 2

0

2et/2dt−
∫ 2

0

tet/2(1/2)dt

= −[4et/2]20 − [tet/2 − 2et/2]20
= −[4e− 4]− [2e− 2e + 2] = −4e + 2. (6)

Using (3), (4), (5) and (6), we get

∫

C

2eydx + xeydy = 4 + 2e− 2− 4e + 2 = 4− 2e. (7)

Comparing (2) and (7), we conclude that (1) is satisfied.
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4. Evaluate the area of that portion of the sphere x2 + y2 + z2 = a2 that is
within the cylinders x2 + y2 = b2 and x2 + y2 = c2, with 0 < b < c < a.

Solution:

Let S be the portion of the sphere x2 + y2 + z2 = a2 that is within the
cylinders x2 + y2 = b2 and x2 + y2 = c2 (draw a figure). We have S =
S+ ∪ S−, where S+ (resp. S−) is the part of S located above (resp. below)
the xy−plane. By symmetry we have Area(S+) = Area(S−) and therefore
Area(S) = 2Area(S+).
Since S+ is defined by the equation z = f(x, y) =

√
a2 − x2 − y2, the area

of S+ is given by

Area(S+) =

∫ ∫

R

√
1 + f 2

x + f 2
y dxdy, (1)

where R is the projection of S+ on the xy−plane. Moreover we have

fx =
−x√

a2 − x2 − y2
, fy =

−y√
a2 − x2 − y2

√
1 + f 2

x + f 2
y =

√
1 +

x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
=

a√
a2 − x2 − y2

.

We deduce then from (1) by using the polar coordinates

Area(S+) =

∫ ∫

R

a√
a2 − x2 − y2

dxdy

= a

∫ 2π

0

∫ c

b

rdrdθ√
a2 − r2

= a

∫ 2π

0

[−
√

a2 − r2
]c

b
dθ

= 2πa(
√

a2 − b2 −
√

a2 − c2).

Hence Area(S) = 2Area(S+) = 4πa(
√

a2 − b2 −√a2 − c2).
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5. Evaluate the line integral

∮

C

y2dx + z2dy + x2dz, where C is the trace of

the cylinder y2 + z2 = 1 on the plane x + z = 6.

Solution:

Let F = y2i + z2j + x2k and let S be the portion of the plane x + z = 6 that
is located inside the cylinder y2 + z2 = 1 (draw a figure). S is defined by
the equation z = f(x, y) = 6− x. The components of the vector field F are
continuous and have partial derivatives continuous on any domain. Therefore
we have by Stokes’ theorem

∮

C

y2dx + z2dy + x2dz =

∮

C

F.dr =

∫ ∫

S

curl(F).ndS, (1)

where

curlF = ∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

y2 z2 x2

∣∣∣∣∣∣
= (0− 2z)i− (2x− 0)j + (0− 2y)k

= −2zi− 2xj− 2yk. (2)

The unit normal vector to S is given by

n =
1√

1 + f 2
x + f 2

y

(− fxi− fyj + k
)

=
1√
2

(
i + k

)
. (3)

Now let R be the projection of S on the xz−plane. Then we get by using
(1), (2) and (3)

∮

C

y2dx + z2dy + x2dz =

∫ ∫

S

− 2√
2
(y + z)dS

=

∫ ∫

R

−
√

2(y + z)
√

2dydz since S is also defined by x = 6− z

= −2

∫ ∫

R

(y + z)dydz. (4)

Using the polar coordinates y = r cos θ and z = r sin θ, we obtain
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∫ ∫

R

(y + z)dydz =

∫ 2π

0

( ∫ 1

0

(r cos θ + r sin θ)rdr
)
dθ

=

∫ 2π

0

( ∫ 1

0

[1

2
r2 cos θ +

1

2
r2 sin θ

]1

0

)
dθ

=

∫ 2π

0

(1

2
cos θ +

1

2
sin θ

)
dθ

=
[1

2
sin θ − 1

2
cos θ

]2π

0
= 0. (5)

Hence we deduce from (1), (4) and (5) that

∮

C

yz2dx + xz2dy + x2ydz = 0.

6. Let S be the exterior boundary of the region D that is above the xy−plane,
and bounded by the cylinder x2 + z2 = 1 and the planes y = 1, y = 5. Verify
the divergence theorem for the vector field F = xi + yj + zk.

Solution:

The components of the vector field F are continuous and have partial deriv-
atives continuous on any domain. We would like to verify the divergence
formula i.e.

∫ ∫

S

F.n dS =

∫ ∫ ∫

D

div(F)dV. (1)

First we have for the right-hand side of (1)

∫ ∫ ∫

D

div(F)dV =

∫ ∫ ∫

D

3dV = 3V ol(D) = 3
1

2
(π12)(5− 1) = 6π. (2)

Next we have for the left-hand side of (1)
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∫ ∫

S

F.n dS =

∫ ∫

S1

F.n dS +

∫ ∫

S2

F.n dS

+

∫ ∫

S3

F.n dS +

∫ ∫

S4

F.n dS (3)

S1 is defined by y = 1 and the unit normal vector to S1 is given by n = −j.
So we have

∫ ∫

S1

F.n dS =

∫ ∫

S1

−y dS = −
∫ ∫

S1

dS = −Area(S1) = −π/2. (4)

S2 is defined by y = 5 and the unit normal vector to S2 is given by n = j.
So we have

∫ ∫

S2

F.n dS =

∫ ∫

S2

y dS = 5

∫ ∫

S2

dS = 5Area(S2) = 5π/2. (5)

S3 is defined by z = 0 and the unit normal vector to S3 is given by n = −k.
So we have

∫ ∫

S3

F.n dS =

∫ ∫

S3

−z dS =

∫ ∫

S3

0dS = 0. (6)

S4 is defined by g(x, y, z) = 0, where g(x, y, z) = x2 + z2 − 1. So the unit
normal vector to S4 is given by

n =
1

||∇g||∇g =
1√

4x2 + 4z2
(2xi+2zk) =

1√
x2 + z2

(xi+zk) = xi+zk. (7)

Then we have

∫ ∫

S4

F.n dS =

∫ ∫

S4

dS = Area(S4) =
1

2
2π(1)(5− 1) = 4π. (8)

Taking into account (3)-(8), we get
∫ ∫

S

F.n dS = −π/2 + 5π/2 + 0 + 4π = 6π. (9)

Comparing (2) and (9), we conclude that (1) is satisfied.
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