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1. Find the directional derivative of f(x, y) = e−xy cos(x) at (π, 1) in the
direction u = −i + j.

Solution:

We would like to find Duf(x, y). Since u is not a unit vector we have

Duf(x, y) = ∇f(x, y).
1

||u||u.

Now

∇f(x, y) = −e−xy(y cos(x) + sin(x))i− xe−xy cos(x)j

∇f(π, 1) = −e−π(cos(π) + sin(π))i− πe−π cos(π)j = e−πi + πe−πj

1

||u||u =
1√

1 + 1
(−i + j) = −

√
2

2
i +

√
2

2
j.

Hence

Duf(π, 1) = e−π

√
2

2
(i + πj).(−i + j) = (π − 1)e−π

√
2

2
.

2. Find an equation of the tangent plane to the graph of z = 1
3
x3 + 1

3
y3 + 1

at (1, 2,−1).

Solution:

The equation of the tangent plane to the graph of z = f(x, y) at (x0, y0, z0)
is given by

−(x− x0)fx(x0, y0)− (y − y0)fy(x0, y0) + (z − z0) = 0. (1)



Here f(x, y) = 1
3
x3 + 1

3
y3 + 1 and (x0, y0, z0) = (1, 2,−1).

We have fx(x, y) = x2 and fy(x, y) = y2. In particular we have fx(1, 2) = 1
and fy(1, 2) = 4. Therefore we deduce from (1) the following equation of the
tangent plane at (1, 2,−1)

−(x− 1)− 4(y − 2) + (z + 1) = 0 ⇔ x + 4y − z = 10.

3. Show that the line integral

∮

C

(y2 + z2)dx + 2xydy + 2xzdz is independent

of the path.

Solution:

The line integral

∮

C

(y2 + z2)dx + 2xydy + 2xzdz is of the form

∫

C

Pdx + Qdy + Rdz,

with P (x, y, z) = y2 + z2, Q(x, y, z) = 2xy and R(x, y, z) = 2xz which are
continuous and have partial derivatives continuous on any domain. Moreover
we have

∂P

∂y
=

∂Q

∂x
= 2y,

∂P

∂z
=

∂R

∂x
= 2z and

∂Q

∂z
=

∂R

∂y
= 0.

Hence the line integral is independent of the path.

4. Find φ such that dφ = (y2 + z2)dx + 2xydy + 2xzdz.

Solution:

Let φ be a function such that dφ = (y2 + z2)dx + 2xydy + 2xzdz. Then we
have

∂φ

∂x
= y2 + z2 (1)

∂φ

∂y
= 2xy (2)

∂φ

∂z
= 2xz. (3)



Integrating (1), we get

φ(x, y, z) =

∫
(y2 + z2)dx = x(y2 + z2) + g(y, z). (4)

Using (2) and (4), we get

2xy+
∂g

∂y
= 2xy ⇒ ∂g

∂y
= 0 ⇒ g(y, z) = h(z) ⇒ φ(x, y, z) = x(y2+z2)+h(z).

(5)
Using (3) and (5), we get

2xz + h′(z) = 2xz ⇒ h′(z) = 0 ⇒ h(z) = C. (6)

Combining (5) and (6), we obtain

φ(x, y, z) = x(y2 + z2) + C.

5. Evaluate the line integral

∮

C

−ydx + xdy, where C is the Cardioid defined

by x = cos θ(1 + cos θ), y = sin θ(1 + cos θ), θ ∈ [0, 2π]. Then deduce the
area of the region bounded by C.

Solution:

The curve C is defined by

C :

{
x = cos θ(1 + cos θ),
y = sin θ(1 + cos θ), θ ∈ [0, 2π].

We have

∫

C

−ydx + xdy =

∫

C

−ydx +

∫

C

xdy. (1)

∫

C

−ydx =

∫ 2π

0

− sin θ(1 + cos θ)(− sin θ − 2 sin θ cos θ)dθ

=

∫ 2π

0

(sin2 θ + 3sin2θ cos θ + 2 sin2 θ cos2 θ). (2)



Note that

sin2 θ =
1

2
(1− cos(2θ)) (3)

sin2 θ cos2 θ) =
1

4
sin2(2θ) =

1

8
(1− cos(4θ)). (4)

Using (3) and (4), we get from (2)

∫

C

−ydx =

∫ 2π

0

(1

2
(1− cos(2θ)) + 3sin2θ cos θ +

1

4
(1− cos(4θ))

)

=

∫ 2π

0

(3

4
+ 3sin2θ cos θ − 1

2
cos(2θ)− 1

4
cos(4θ)

)

=
[3

4
θ + sin3θ − 1

4
sin(2θ)− 1

16
sin(4θ)

]2π

0

=
3

2
π. (5)

Now we have for the second integral in the right hand-side of (1)

∫

C

xdy =

∫ 2π

0

cos θ(1 + cos θ)(cos θ + cos2 θ − sin2 θ)dθ

=

∫ 2π

0

(cos2 θ + 2 cos3 θ + cos4 θ − sin2θ cos θ − sin2 θ cos2 θ).(6)

Note that

cos2 θ =
1

2
(cos(2θ) + 1) (7)

cos3 θ = cos θ(1− sin2 θ) = cos θ − sin2 θ cos θ (8)

cos4 θ = cos θ cos3 θ = cos2 θ − sin2 θ cos2 θ. (9)

Using (4), (7), (8) and (9), we get from (6)

∫

C

xdy =

∫ 2π

0

((cos(2θ) + 1) + 2 cos θ − 3 sin2 θ cos θ − 1

4
(1− cos(4θ))

)
dθ

=
[1

2
sin(2θ) + θ + 2 sin θ − sin3 θ − 1

4
θ +

1

16
sin(4θ)

]2π

0
=

3

2
π.(10)



Using (1), (5) and (10), we get

∮

C

−ydx + xdy =
3

2
π +

3

2
π = 3π.

Finally we obtain by applying Green’s theorem

∮

C

−ydx + xdy =

∫ ∫

R

(∂x

∂x
− ∂(−y)

∂y

)
dxdy =

∫ ∫

R

2dxdy = 2Area(R)

Hence the area of the region bounded by C is equal to

Area(R) =
1

2

∮

C

−ydx + xdy =
3π

2
.

6. Evaluate the area of that portion of the sphere x2 + y2 + z2 = a2 that is
within the planes z = b and z = c, with 0 < b < c < a.

Solution:

Let S be the portion of the sphere x2 + y2 + z2 = a2 that is within the
planes z = b and z = c (draw a figure). It is also defined by the equation
z = f(x, y) =

√
a2 − x2 − y2. Then the area of S is given by

Area(S) =

∫ ∫

R

√
1 + f 2

x + f 2
y dxdy, (1)

where R is the projection of S on the xy−plane.
Now we have

fx =
−x√

a2 − x2 − y2
, fy =

−y√
a2 − x2 − y2

√
1 + f 2

x + f 2
y =

√
1 +

x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
=

a√
a2 − x2 − y2

.

We deduce then from (1) by using the polar coordinates and denoting by rb

and rc the values of r for which we have respectively z = b and z = c i.e.



rb =
√

a2 − b2 and rc =
√

a2 − c2

Area(S) =

∫ ∫

R

a√
a2 − x2 − y2

dxdy

= a

∫ 2π

0

∫ rb

rc

rdrdθ√
a2 − r2

= a

∫ 2π

0

[−
√

a2 − r2
]rb

rc
dθ

= 2πa(c− b).

7. Evaluate the line integral

∮

C

yz2dx + xz2dy + x2ydz, where C is the trace

of the cylinder x2 + z2 = 1 in the plane z + y = 4.

Solution:

Let F = yz2i + xz2j + x2yk and let S be the portion of the plane z + y = 4
that is located inside the cylinder x2 + z2 = 1 (draw a figure). S is defined
by the equation z = f(x, y) = 4 − y. The components of the vector field
F are continuous and have partial derivatives continuous on any domain.
Therefore we have by Stokes’ theorem

∮

C

yz2dx + xz2dy + x2ydz =

∮

C

F.dr =

∫ ∫

S

curl(F).ndS, (1)

where

curlF = ∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

yz2 xz2 x2y

∣∣∣∣∣∣
= (x2 − 2xz)i− (2xy − 2yz)j + (z2 − z2)k

= (x2 − 2xz)i− 2y(x− z)j (2)

The unit normal vector to S is given by

n =
1√

1 + f 2
x + f 2

y

(− fxi− fyj + k
)

=
1√
2

(
j + k

)
. (3)



Now let R be the projection of S on the xz−plane. Then we get by using
(1), (2) and (3)

∮

C

yz2dx + xz2dy + x2ydz =

∫ ∫

S

−
√

2y(x− z)dS

=

∫ ∫

S

−
√

2(4− z)(x− z)dS

=

∫ ∫

R

−
√

2
√

2(4− z)(x− z)dxdz since S is also defined by y = 4− z

= −2

∫ ∫

R

(4x− 4z − xz + z2)dxdz. (4)

Using the polar coordinates x = r cos θ and z = r sin θ, we obtain

∫ ∫

R

(4x− 4z − xz + z2)dxdz

=

∫ 2π

0

( ∫ 1

0

(4r cos θ − 4r sin θ − r2 sin θ cos θ + r2 sin2 θ)rdr
)
dθ

=

∫ 2π

0

( ∫ 1

0

(4r2 cos θ − 4r2 sin θ − r3 sin θ cos θ + r3 sin2 θ)dr
)
dθ

=

∫ 2π

0

([4

3
r3 cos θ − 4

3
r3 sin θ − 1

4
r4 sin θ cos θ +

1

4
r4 sin2 θ

]1

0

)
dθ

=

∫ 2π

0

(4

3
cos θ − 4

3
sin θ − 1

4
sin θ cos θ +

1

4
sin2 θ

)
dθ

=

∫ 2π

0

(4

3
cos θ − 4

3
sin θ − 1

4
sin θ cos θ +

1

8
(1− cos(2θ)

)
dθ

=
[4

3
sin θ +

4

3
cos θ − 1

8
sin2 θ +

1

8
θ − 1

16
sin(2θ

]2π

0
=

π

4
. (5)

Hence we deduce from (1), (4) and (5) that

∮

C

yz2dx + xz2dy + x2ydz = −π

2
.



8. Evaluate

∫ ∫

S

F.n dS, where F = xi + yj + zk and S is the exterior

surface of the region D that is above the xy−plane and below the ellipsoid
x2

a2 + y2

b2
+ z2

c2
= 1. The volume of the region bounded by the ellipsoid is 4π

3
abc.

Solution:

The components of the vector field F are continuous and have partial deriv-
atives continuous on any domain. Therefore we have by the divergence the-
orem

∫ ∫

S

F.n dS =

∫ ∫ ∫

D

div(F)dV =

∫ ∫ ∫

D

(1 + 1 + 1)dV

=

∫ ∫ ∫

D

3dV = 3V ol(D) = 3
1

2

4π

3
abc = 2πabc.


