Math 101-T091(Exam II) Page 1 of 10

MASTER

1. A particle moves along the curve $xy + y^2 = 35$. As it reaches the point (2,5) the x-coordinate is increasing at a rate of 2 cm/sec. How fast is the y-coordinate changing at that instant?

a)
$$-\frac{5}{6} cm/sec.$$

b) $-3 cm/sec.$
c) $-\frac{7}{6} cm/sec.$
d) $3 cm/sec.$
e) $\frac{1}{6} cm/sec.$

2. The slope of the tangent line to the graph of $y = (1 + 4x^2)tan^{-1}(2x)$ at $x = \frac{1}{2}$ is

a) $2 + \pi$ b) $4 + \pi$ c) $8 + 2\pi$ d) $2 - \pi$ e) $1 + 2\pi$

3. If
$$y = (\sqrt{x} - \frac{1}{\sqrt{x}})^2$$
, then $y'' =$
a) $2x^{-3}$
b) $2\sqrt{x^3}$
c) $-3x^{-2}$

d)
$$-2\sqrt{x^3}$$

e)
$$4x^{-3}$$

4. If
$$y = \frac{\tan x}{1 + x \tan x}$$
, then $y' = \frac{g(x)}{(1 + x \tan x)^2}$ where $g(x) =$

- a) 1
- b) $\sec x \tan x$
- c) sec x
- d) tan x
- e) -2

5. The limit $\lim_{x \to 2} \frac{\tan(x-2)}{4x^2 - 8x}$

a) is equal to
$$\frac{1}{8}$$

b) is ∞
c) is $-\infty$
d) is equal to $\frac{1}{4}$

e) is equal to 1

6. If $y = \sqrt{\sin(\csc \pi x)}$, then the product 2yy' is equal to

- a) $-\pi \cos(\csc \pi x) \cdot \csc \pi x \cdot \cot \pi x$
- b) π
- c) $-\pi$
- d) $2\sin \pi x \cdot \cos \pi x$
- e) $\cos(\csc \pi x . \cot \pi x)$

Math 101-T091(Exam II)

MASTER

7. If $f'(x) = \lim_{h \to 0} \frac{e^{2x} \left(e^{2h} - 1\right)}{3h}$, then a possible expression for the function f is

a)
$$f(x) = \frac{1}{3}e^{2x}$$

b) $f(x) = \frac{1}{3}(e^x + 1)^2$
c) $f(x) = 3e^{2x}$
d) $f(x) = 3(e^{2x} - 1)$
e) $f(x) = e^{2x} + \frac{1}{3}$

- 8. If $(0, \alpha)$ are the coordinates of the *y*-intercept of the tangent line to the graph of $y = \sin^{-1}(2x)$ at $x = \frac{\sqrt{2}}{4}$, then $\alpha =$
 - a) $\frac{\pi}{4} 1$ b) $\frac{\pi}{4} - \sqrt{2}$ c) $\frac{\pi}{4} - \frac{1}{4}$ d) $\frac{\pi}{4} + \sqrt{2}$ e) $\pi\sqrt{2}$

- 9. If a particle is moving according to a law of motion $S(t) = 3\cos\left(\frac{\pi}{2}t\right)$ where t is measured in seconds and S in meters, then the total distance traveled by the particle during the time interval [0, 5] is
 - a) 15 meters
 - b) 6 meters
 - c) 12 meters
 - d) 18 meters
 - e) 9 meters

10. If
$$y = \ln \left[\frac{2}{3}\left(x + \sqrt{x^2 - 1}\right)\right]$$
, then $\frac{dy}{dx} =$

a)
$$\frac{1}{\sqrt{x^2 - 1}}$$

b) $\frac{2}{3\sqrt{x^2 - 1}}$
c) $\frac{3}{2\sqrt{x^2 - 1}}$
d) $\frac{2}{3}\left(1 + x\sqrt{x^2 - 1}\right)$
e) $\frac{1}{x + \sqrt{x^2 - 1}}$

Math 101-T091(Exam II)

MASTER

11. The volume of a sphere is changing at the rate of $4\pi cm^3/sec$. How fast is the diameter of the sphere changing when its volume is $\frac{32\pi}{3} cm^3$?

[Volume of a sphere $=\frac{4\pi}{3}(radius)^3$].

a)
$$\frac{1}{2}$$
 cm/sec.
b) $\frac{3}{2}$ cm/sec.
c) $\frac{3}{8}$ cm/sec.
d) $\frac{3}{4}$ cm/sec.
e) $\frac{9}{8}$ cm/sec.

12. The slope of the normal line to the curve $e^{\frac{y}{x}} = x - y$ at the point (1,0) is

a)
$$-2$$

b) 1
c) -1
d) $\frac{1}{3}$
e) -3

13. If
$$f(x) = x^{\ln x}$$
, then $f'(e^2) =$

a)
$$4e^2$$

b) $2e^2$
c) e^2
d) $\frac{1}{2}e^2$
e) $\frac{1}{4}e^2$

14. If
$$f(x) = 2^x \cdot x^2$$
, then $f'(2) =$

- a) $16(1 + \ln 2)$
- b) $8(2 + \ln 2)$
- c) $16(\ln 2 1)$
- d) $\ln 16 + ln2$
- e) $4(1 + \ln 2)$

15.
$$\lim_{x \to 0} \frac{5x^2}{2x - 2x \cos x + 2 \sin^2 3x}$$

a) is equal to $\frac{5}{18}$
b) does not exist
c) is equal to 0
d) is equal to $\frac{5}{3}$
e) is equal to 5

- 16. If $f(x) = xe^{-x}$, then $f^{(100)}(x) = (Ax + B)e^{-x}$, where A and B are constants and A + B =
 - a) -99
 - b) 99
 - c) -2
 - d) 101
 - e) -100

Math 101-T091(Exam II) Page 9 of 10

- 17. If the tangent line to the graph of $y = x^2 4x + 19$ at the point $P(\alpha, \beta)$, where $\alpha < 0$, passes through the point (3,0), then $\beta =$
 - a) 24
 - b) 18
 - c) 30
 - d) 28
 - e) 36
- 18. Which one of the following statements is TRUE about the function $f(x) = \sqrt[3]{x}$?
 - a) The graph of f has vertical tangent at x = 0
 - b) $\lim_{x \to 0^{-}} f'(x) = -\infty$
 - c) The graph of f has a vertical asymptote at x = 0
 - d) f is differentiable at x = 0
 - e) The graph of f' lies below the x-axis on $(-\infty, 0)$

19. Given the function $f(x) = \begin{cases} x+3 & \text{if } x < -2 \\ |x+1| & \text{if } -2 \le x \le 8. \\ (x-6)^2 & \text{if } x > 8 \end{cases}$ The sum of all values of x for which the function f is not differentiable is

- a) 5
- b) 6
- c) 0
- d) 3
- e) 4

20. Which one of the following statements is TRUE?

- a) If f' is differentiable at a, then f''(a) exists
- (b) If $\lim_{x\to a} f'(x)$ exists, then f' is continuous at a
- (c) If f is continuous at a, then f is differentiable at a
- (d) If f(a) = 0 and f'(a) = 0, then f''(a) = 0.
- (e) If f'(a) does not exist, then f is discontinuous at a.