1. A particle moves along the curve $x y+y^{2}=35$. As it reaches the point $(2,5)$ the x-coordinate is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is the y-coordinate changing at that instant?
a) $-\frac{5}{6} \mathrm{~cm} / \mathrm{sec}$.
b) $-3 \mathrm{~cm} / \mathrm{sec}$.
c) $-\frac{7}{6} \mathrm{~cm} / \mathrm{sec}$.
d) $3 \mathrm{~cm} / \mathrm{sec}$.
e) $\frac{1}{6} \mathrm{~cm} / \mathrm{sec}$.
2. The slope of the tangent line to the graph of $y=\left(1+4 x^{2}\right) \tan ^{-1}(2 x)$ at $x=\frac{1}{2}$ is
a) $2+\pi$
b) $4+\pi$
c) $8+2 \pi$
d) $2-\pi$
e) $1+2 \pi$
3. If $y=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} \quad$, then $y^{\prime \prime}=$
a) $2 x^{-3}$
b) $2 \sqrt{x^{3}}$
c) $-3 x^{-2}$
d) $-2 \sqrt{x^{3}}$
e) $4 x^{-3}$
4. If $y=\frac{\tan x}{1+x \tan x} \quad$, then $y^{\prime}=\frac{g(x)}{(1+x \tan x)^{2}}$ where $g(x)=$
a) 1
b) $\sec x \tan x$
c) $\sec x$
d) $\tan x$
e) -2
5. The limit $\lim _{x \rightarrow 2} \frac{\tan (x-2)}{4 x^{2}-8 x}$
a) is equal to $\frac{1}{8}$
b) is ∞
c) is $-\infty$
d) is equal to $\frac{1}{4}$
e) is equal to 1
6. If $y=\sqrt{\sin (\csc \pi x)}$, then the product $2 y y^{\prime}$ is equal to
a) $-\pi \cos (\csc \pi x) \cdot \csc \pi x \cdot \cot \pi x$
b) π
c) $-\pi$
d) $2 \sin \pi x \cdot \cos \pi x$
e) $\cos (\csc \pi x \cdot \cot \pi x)$
7. If $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{2 x}\left(e^{2 h}-1\right)}{3 h}$, then a possible expression for the function f is
a) $f(x)=\frac{1}{3} e^{2 x}$
b) $f(x)=\frac{1}{3}\left(e^{x}+1\right)^{2}$
c) $f(x)=3 e^{2 x}$
d) $f(x)=3\left(e^{2 x}-1\right)$
e) $f(x)=e^{2 x}+\frac{1}{3}$
8. If $(0, \alpha)$ are the coordinates of the y-intercept of the tangent line to the graph of $y=\sin ^{-1}(2 x)$ at $x=\frac{\sqrt{2}}{4}$, then $\alpha=$
a) $\frac{\pi}{4}-1$
b) $\frac{\pi}{4}-\sqrt{2}$
c) $\frac{\pi}{4}-\frac{1}{4}$
d) $\frac{\pi}{4}+\sqrt{2}$
e) $\pi \sqrt{2}$
9. If a particle is moving according to a law of motion $S(t)=3 \cos \left(\frac{\pi}{2} t\right)$ where t is measured in seconds and S in meters, then the total distance traveled by the particle during the time interval $[0,5]$ is
a) 15 meters
b) 6 meters
c) 12 meters
d) 18 meters
e) 9 meters
10. If $y=\ln \left[\frac{2}{3}\left(x+\sqrt{x^{2}-1}\right)\right]$, then $\frac{d y}{d x}=$
a) $\frac{1}{\sqrt{x^{2}-1}}$
b) $\frac{2}{3 \sqrt{x^{2}-1}}$
c) $\frac{3}{2 \sqrt{x^{2}-1}}$
d) $\frac{2}{3}\left(1+x \sqrt{x^{2}-1}\right)$
e) $\frac{1}{x+\sqrt{x^{2}-1}}$
11. The volume of a sphere is changing at the rate of $4 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the diameter of the sphere changing when its volume is $\frac{32 \pi}{3} \mathrm{~cm}^{3}$?
$\left[\right.$ Volume of a sphere $\left.=\frac{4 \pi}{3}(\text { radius })^{3}\right]$.
a) $\frac{1}{2} \mathrm{~cm} / \mathrm{sec}$.
b) $\frac{3}{2} \mathrm{~cm} / \mathrm{sec}$.
c) $\frac{3}{8} \mathrm{~cm} / \mathrm{sec}$.
d) $\frac{3}{4} \mathrm{~cm} / \mathrm{sec}$.
e) $\frac{9}{8} \mathrm{~cm} / \mathrm{sec}$.
12. The slope of the normal line to the curve $e^{\frac{y}{x}}=x-y$ at the point $(1,0)$ is
a) -2
b) 1
c) -1
d) $\frac{1}{3}$
e) -3
13. If $f(x)=x^{\ln x}$, then $f^{\prime}\left(e^{2}\right)=$
a) $4 e^{2}$
b) $2 e^{2}$
c) e^{2}
d) $\frac{1}{2} e^{2}$
e) $\frac{1}{4} e^{2}$
14. If $f(x)=2^{x} \cdot x^{2}$, then $f^{\prime}(2)=$
a) $16(1+\ln 2)$
b) $8(2+\ln 2)$
c) $16(\ln 2-1)$
d) $\ln 16+\ln 2$
e) $4(1+\ln 2)$
15. $\lim _{x \rightarrow 0} \frac{5 x^{2}}{2 x-2 x \cos x+2 \sin ^{2} 3 x}$
a) is equal to $\frac{5}{18}$
b) does not exist
c) is equal to 0
d) is equal to $\frac{5}{3}$
e) is equal to 5
16. If $f(x)=x e^{-x}$, then $f^{(100)}(x)=(A x+B) e^{-x}$, where A and B are constants and $A+B=$
a) -99
b) 99
c) -2
d) 101
e) -100
17. If the tangent line to the graph of $y=x^{2}-4 x+19$ at the point $P(\alpha, \beta)$, where $\alpha<0$, passes through the point $(3,0)$, then $\beta=$
a) 24
b) 18
c) 30
d) 28
e) 36
18. Which one of the following statements is TRUE about the function $f(x)=\sqrt[3]{x}$?
a) The graph of f has vertical tangent at $x=0$
b) $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=-\infty$
c) The graph of f has a vertical asymptote at $x=0$
d) f is differentiable at $x=0$
e) The graph of f^{\prime} lies below the x-axis on $(-\infty, 0)$
19. Given the function $f(x)=\left\{\begin{array}{ll}x+3 & \text { if } x<-2 \\ |x+1| & \text { if }-2 \leq x \leq 8 . \\ (x-6)^{2} & \text { if } x>8\end{array}\right.$.

The sum of all values of x for which the function f is not differentiable is
a) 5
b) 6
c) 0
d) 3
e) 4
20. Which one of the following statements is TRUE?
a) If f^{\prime} is differentiable at a, then $f^{\prime \prime}(a)$ exists
(b) If $\lim _{x \rightarrow a} f^{\prime}(x)$ exists, then f^{\prime} is continuous at a
(c) If f is continuous at a, then f is differentiable at a
(d) If $f(a)=0$ and $f^{\prime}(a)=0$, then $f^{\prime \prime}(a)=0$.
(e) If $f^{\prime}(a)$ does not exist, then f is discontinuous at a.

