
2.4 Zero Derivative, Df = 0

Theorem 115

jump function
Kolm, prob 8

=⇒
p332

has a zero derivative a.e.

Theorem 116

f ∈ AC [a, b]

Df
a.e.
= 0 in [a, b]







Kolm, p339
=⇒

Royden p110
f is constant ∀ t ∈ [a, b].

Proof.

f ∈ AC [a, b] =⇒ f(t) = IaDf(t) + c = c, ∀ t ∈ [a, b].

Theorem 117

f ∈ C [a, b]

Df
n.e.
= 0 in [a, b]






=⇒ f is constant on [a, b].

Proof.

f ∈ C [a, b] & Df ∈ L1(a, b) exists n.e. in [a, b] =⇒
thm 90

f ∈ AC [a, b].

Theorem 118

Df(t) = 0 ∀t ∈ (a, b) =⇒







f(t) = c, ∀t ∈ (a, b).

f(a+) := limt→a+ f(t) = c exists

Proof. The result follows from MVT, Theorem 73 or from Lemma 86 since Df ∈
CL1(a, b).

Remark 14

Df
a.e.
= 0 in [a, b] 6=⇒ f is constant on [a, b],

since Cantor function is monotone on [0, 1] with Df = 0 a.e. on [0, 1].

f ∈ C [a, b]

Df
a.e.
= 0 in [a, b]






6=⇒ f is constant on [a, b],

since Cantor function is continuous and non constant on [0, 1] with Df
a.e.
= 0 but not

n.e.
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2.5 Zero nth Derivative, Dnf = 0

Lemma 119

f ∈ ACn[a, b]

Dnf
a.e.
= 0 in [a, b]






=⇒ f(t) =

n−1∑

k=0

ck (t− a)k, ∀ t ∈ [a, b].

where ck are arbitraries.

Proof.

f ∈ ACn[a, b] =⇒ f(t) = In
aD

nf(t) + T n−1
a (t) = T n−1

a (t), ∀ t ∈ [a, b].

Lemma 120

f ∈ Cn−1[a, b]

Dnf
n.e.
= 0 in [a, b]






=⇒ f(t) =

n−1∑

k=0

ck (t− a)k, ∀t ∈ [a, b].

Proof.

Dn−1f ∈ C [a, b] & Dnf = DDn−1f ∈ L1(a, b) exists n.e. in [a, b] =⇒
thm 90

Dn−1f ∈ AC [a, b] =⇒ f ∈ ACn[a, b] =⇒
lem 119

result.

Lemma 121

Dnf = 0 ∀t ∈ (a, b) =⇒







f(t) =
∑n−1

k=0 ck (t− a)k, ∀t ∈ (a, b),

f(a+) := limt→a+ f(t) = c0.

Consequently,

Dnf = 0 ∀t ∈ [a, b] =⇒ f(t) =
n−1∑

k=0

ck (t− a)k, ∀t ∈ [a, b].

Proof.
By Lemma 86, for t ∈ (a, b),

Dn−1f(t) = IaD
nf(t) + cn−1.

Dn−2f(t) = IaD
n−1f(t) + cn−2 = cn−1(t− a) + cn−2.

The result follows by induction.
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12.3 Zero Fractional Derivative

12.3.1 Introduction

Warning 295

The solution of Dα
a f = 0 depends on two conditions:

where this holds and for what class of functions.

Notation 296

Dn−α
a T n−1

a In−α
a f(t) =

n−1∑

k=0

DkIn−α
a f(a)

Γ(α − n+ 1 + k)
(t− a)α−n+k

Or with change of indices

Dn−α
a T n−1

a In−α
a f(t) =

n∑

j=1

Dα−j
a f(a)

Γ(α − j + 1)
(t− a)α−j

Corollary 297 (Kilbas [10], Cor 2.1, p. 72)

Dα
a f(t) = 0 ⇐⇒ f(t) = Dn−α

a T n−1
a (t) =

n∑

j=1

cj(t− a)α−j,

where cj ∈ R are arbitrary constants.

Proof. In Kilbas [10] it is mentioned that this lemma follows from the properties of the
power functions. This is clear for the ⇐= statement.

However for the =⇒ statement, we can use Lemma 121.

Remark 36 In the above lemma we need to assume that f ∈ C(a, b). Otherwise, we
can take f(t)

a.e.
= tα−1, 0 < α < 1. For this function I1−α

a f = const. on (0, 1) and thus
Dαf = 0 for all t ∈ (a, b).
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12.3.2 Sufficient Conditions

Lemma 298
Dα

a (t− a)α−k = 0, k = 1, 2, , n = [α] + 1.

Proof. Follows from the compositon on power functions or alternatively,

Dα
a (t− a)α−k = ckD

α
aD

k(t− a)α = ckD
kDα

a (t− a)α = Dk(const.) = 0, k = 1, 2, , n.

Lemma 299

f(t) = Dn−α
a T n−1

a (t) =

n∑

k=1

ck(t− a)α−k =⇒ Dα
a f(t) = 0, ∀t.

Proof. Follows form Lemma 298. Alternatively it follows from compositions on polyno-
mials,

Dα
aD

n−α
a T n−1

a (t) = DnT n−1
a (t) = 0.

Corollary 300

Dα
aD

n−α
a T n−1

a g(t) = 0, ∀t.
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12.3.3 Necessary Condition: Dα
a
f = 0 a.e

Lemma 301

f ∈ L1(a, b)

In−α
a f ∈ ACn[a, b]

Dα
a f(t)

a.e.
= 0 in [a, b]







=⇒ f(t)
a.e.
= Dn−α

a T n−1
a (t), on [a, b].

Equality holds if in addition f ∈ CL1(a, b).

Proof.

Dα
a f := DnIn−α

a f
a.e.
= 0 =⇒

lem 119
In−α
a f = T n−1

a (t) on [a, b].

lem 132
=⇒ f

a.e.
= Dn−α

a In−α
a f = result.

For f ∈ CL1(a, b), f = Dα
a I

α
a f , t ∈ (a, b).

Remark 37 This Lemma is not true if In−α
a f /∈ ACn[a, b] since there is a monotone

continuous function with a zero derivative a.e.
This can not happen if the derivative is zero everywhere on (a, b).
Next we consider this case.
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12.3.4 Necessary Condition: Dα
a
f = 0 on (a, b)

Lemma 302

f ∈ L1(a, b)

Dα
a f(t) = 0 on (a, b)

α > 0







=⇒
⇐=







f(t)
a.e.
= Dn−α

a T n−1
a (t), on (a, b)

T n−1
a = T n−1

a+ f if exists

Equality holds if in addition f ∈ CL1(a, b).

Proof.

Dαf(t) := DnIn−αf(t) = 0 =⇒
lem 121

In−αf(t) = T n−1
a (t), t ∈ (a, b).

Now
f(t)

a.e.
= Dn−α

a In−α
a f(t) = result on (a, b).

Equality holds since
f(t) = Dn−α

a In−α
a f(t), ∀ t ∈ (a, b).

Now if T n−1
a+ f exists then,

In−αf(t) = T n−1
a (t) = c0 + c1(t− a) + · · · + cn−1(t− a)n−1 =⇒
Dk−n+α

a f(a+) = DkIn−α
a f(a+) = ck.

The ⇐= is clear.

Remark 38 f ∈ CL1(a, b], then the fractional differential equation Dα
a f = 0, 0 < α < 1,

has f = c(t− a)α−1, c ∈ R as unique solutions.
However, if f ∈ L1(a, b), then f(t)

a.e.
= c (t− a)α−1.

Lemma 303

f ∈ C [a, b]

Dα
a f(t) = 0 on (a, b)

α > 0







=⇒







In−αf(a) = 0 and thus

f(t) =
∑n−1

k=1 ck (t− a)α−n+k on [a, b]

w
�

0 < α < 1 =⇒ f ≡ 0 on [a, b].

Proof. From Lemma 302 we have

f(t) = Dn−α
a T n−1

a (t) =
n∑

k=1

ck(t− a)α−k, t ∈ [a, b] =⇒ cn = 0, since α− n < 0.

When 0 < α < 1, n = 1 and the summation vanishes.

132



12.4 Necessary conditions of Dα
a
f existence

Lemma 304

Dα
a f defined and bounded on [a, b] =⇒ In−α

a f ∈ ACn[a, b], n = [α] + 1.

Proof.

Dα
a f = DnIn−α

a f = DDn−1In−α
a f

cor 62
=⇒ In−α

a f ∈ ACn[a, b].

Lemma 305

Dα
a f ∈ C [a, b] =⇒ In−α

a f ∈ ACn[a, b], n = [α] + 1.

Proof.

Dα
a f = DnIn−α

a f ∈ C [a, b]
cor 85
=⇒ In−α

a f ∈ Cn[a, b] ⊂ ACn[a, b].

Lemma 306

Dα
a f := DnIn−α

a f exists everywhere on [a, b]







=⇒ In−α
a f ∈ Cn−1[a, b],

6=⇒ In−α
a f ∈ ACn[a, b].

Proof. Apply Lemma 105 to In−α
a f . The second part is because there is an f such that

Df exists everywhere but Df 6∈ L1(a, b).

Lemma 307

Dα
a f exists at every t ∈ [a, b]

Dα
a f ∈ L1(a, b)






=⇒ In−α

a f ∈ ACn[a, b].

Proof. From Corollary 106.

Corollary 308

In−α
a f ∈ Cn−1[a, b]

Dα
a f exists n.e. in [a, b]

Dα
a f ∈ L1(a, b)







=⇒ In−α
a f ∈ ACn[a, b].

Proof. From Corollary 91.
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Lemma 309

Let n = −[−α].

Dα
a f ∈ CL1(a, b) =⇒







Dk−n+α
a f := DkIn−α

a f ∈ C(a, b) and bounded in (a, b),

with Dk−n+α
a f(a+) exists, k = 0, . . . , n− 1. Also

In−α
a f(t) = In

aD
α
a f(t) + T n−1

a+ In−α
a f(t), t ∈ (a, b),

w
�

f(t)
a.e.
= Iα

aD
α
a f(t) +Dn−α

a T n−1
a+ In−α

a f(t), t ∈ (a, b).

equality holds if f ∈ CL1(a, b).

where

T n−1
a+ In−αf(t) =

n−1∑

k=0

Dk−n+αf(a+)

k!
(t− a)k =

n∑

j=1

Dα−jf(a+)

(n − j)!
(t− a)n−j .

Proof.
For α ∈ N the result reduces to the result in Lemma 108.
Let α 6∈ N. Then the formual for In−α

a f follows by applying Lemma 108 to In−α
a f .

Also from that lemma DkIn−α
a f exists and in C(a, b). Since [k − n + α] + 1 = k, we can

write

DkIn−α
a f = D[k−n+α]+1

a I [k−n+α]+1−(k−n+α)
a f

def
= Dk−n+αf

(shown again in Lemma 325). By change of indices we obtain the formula for T n−1
a In−α

a f .
For the representation of f recall that In

a f := In−αIα
a f and thus we can write

In−α
a f(t) = In−αIα

aD
α
a f(t) + T n−1

a+ In−α
a f(t), t ∈ (a, b).

By applying Dn−α
a to both side we obtain

f(t)
a.e.
= Dn−α

a In−α
a f(t) = Iα

aD
α
a f(t) +Dn−α

a T n−1
a+ In−α

a f(t), t ∈ (a, b).

Proof (Using zero derivative property).

Dα
a f ∈ CL1(a, b)







=⇒
lem 227

Iα
aD

α
a f ∈ CL1(a, b)

=⇒
lem 132

Dα
a f = Dα

a I
α
aD

α
a f, on (a, b).

=⇒ Dα
a [f − Iα

aD
α
a f ] = 0 on (a, b) =⇒

lem 302
f(t)

a.e
= Iα

aD
α
a f(t) +Dn−α

a T n−1
a+ In−α

a f(t).

=⇒ I1−α
a f(t)

a.e
= I1−α

a

[
Iα
aD

α
a f + c (t− a)α−1

]
= IaD

α
a f(t) + c Γ(α)
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=⇒ I1−α
a f(a+) = c Γ(α).

See also [5], proposition 2.4.

Corollary 310

In−αf ∈ Cn−1[a, b]

Dα
a f ∈ CL1(a, b)






=⇒ In−αf ∈ ACn[a, b].

Proof. Follows from Corollary 109.

Remark 39

In−αf ∈ Cn−1[a, b]

Dα
a f ∈ L1(a, b)






6=⇒ In−αf ∈ ACn[a, b].

For example if I1−α
0 f(t) = Cn(t) ∈ C [0, 1], the Cantor function, then

Dα
0 f = DI1−α

0 f = DCn(t)
a.e.
= 0 ∈ L1(0, 1).

However Cn(t) 6∈ AC [0, 1].
On the other hand it is not clear that

f(t) = D1−α
0 Cn(t) = DIα

0 Cn(t).

exists ????
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