
8 Stability analysis by the direct method

8.1 Introduction

• So far we used the method of linearization to study the stability of a solution.

• Linearization starts with small perturbations of the equilibrium or periodic solution
and then study the local effects of these local perturbations.

• In this chapter we introduce direct methods for characterizing the solutions in a way
with respect to stability which is not necessarily local.

Example. Consider the system

ẋ = ax− y + kx(x2 + y2)

ẏ = x− ay + ky(x2 + y2), a > 0, k constant.

Where we are interested in the stability of the trivial solution.

Linearization in a neighborhood of (0, 0) yields

A =

(
a −1
1 −a

)
, λ1,2 = ±

√
a2 − 1

So in the linear approximation we find for the critical point (0, 0)

a2 > 1 saddle
a2 = 1 degenerate case
0 < a2 < 1 center

For the nonlinear problem, the instability theorem (theorem 7.3) implies that for
a2 > 1 the trivial solution is unstable.

If 0 < a2 ≤ 1 the method of linearization of chapter 7 is not conclusive.

Alternative approach for 0 < a2 ≤ 1 . Consider a one-parameter family of ellipses

around (0, 0):
x2 − 2axy + y2 = c.

Let ψ be the intersection angle of an orbit and an ellipse defined by the angle between
the tangent vector of the orbit and the outward directed normal vector in the point of
intersection.

If π/2 < ψ < 3π/2, cosψ < 0, the orbit enters the interior of this particular ellipse.
Thus, if cosψ < 0 for all solutions and all ellipses in a neighborhood of (0, 0) the trivial
solution is asymptotically stable.
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Computation of ψ. Let
V = x2 − 2axy + y2 = c.

Then the normal vector field is

∇V = (Vx, vy) = 2(x − ay,−ax+ y)

The tangent vector ~τ of the orbit is given by ~τ = (ẋ, ẏ). Thus

cosψ =
∇V · ~τ

‖∇V ‖ ‖~τ‖

The sign of cosψ is determined by the numerator

∇V · ~τ = (Vx, Vy) · (ẋ, ẏ) = Vxẋ+ Vy ẏ = LtV.

which is the orbital derivative of the function V . From the system

LtV = (2x− 2ay) ẋ+ (−2ax+ 2y) ẏ = 2k(x2 + y2)(x2 + y2 − 2axy).

So

cosψ

{
< 0, k < 0,
> 0, k > 0.

The result holds for all ellipses and all orbits in a neighborhood of (0, 0) so we conclude
that the trivial solution is asymptotically stable if k < 0, unstable if k > 0.

Actually, since the result holds for all orbits, for k < 0 and 0 < a2 < 1 we have global
stability of (0, 0).
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8.2 Lyapunov functions and applications

Consider the equation

ẋ = f(t, x), t ≥ t0, x ∈ D ⊂ Rn.

Assume x = 0 is a solution, so f(t, 0) = 0, t ≥ t0, 0 ∈ D.

Definition. V (t, x) is a scalar function defined and continuously differentiable in [t0,∞)×
D, 0 ∈ D ⊂ Rn, and

V (t, 0) = 0.

We write V (x) if V is independent of t.

Definition. The function V (x) (with V (0) = 0) is called positively (negatively) definite
in D if V (x) > 0 (< 0) for x ∈ D, x 6= 0.

Definition. The function V (x) (with V (0) = 0) is called positively (negatively) semidefi-
nite in D if V (x) ≥ 0 (≤ 0) for x ∈ D.

Definition. The function V (t, x) is called positively (negatively) definite in D if there
exists a function W (x) with the following properties:

• W (x) is defined and continuous in D.

• W (0) = 0,

• 0 < W (x) ≤ V (t, x), (V (t, x) ≤W (x) < 0) for x 6= 0, t ≥ t0.

To define semidefinite functions V (t, x) we replace < by ≤.

Example. Quadratic functions with positive coefficient are definite functions which are
used very often.

Consider in R3 the subset D = {(x, y, z) : x2 + y2 + z2 ≤ 1} and for t ≥ 0 the function

x2 + 2y2 + 3z2 + z3 positive definite
x2 + z2 positive semidefinite
x2 + y2 + cos3 tz2 not sign definite

Extension of the concept of orbital derivative.
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Definition. The orbital derivative Lt of the function V (t, x) in the direction of the vector
field f(t, x), where x is a solution of ẋ = f(t, x) is

LtV = Vt + Vxẋ = Vt + Vxf(t, x)

= Vt + Vx1f1(t, x) + · · · + Vxnfn(t, x).

with x = (x1, . . . , xn) and f = (f1, . . . , fn).

Theorem. Consider the equation ẋ = f(t, x) with f(t, 0) = 0, x ∈ D ⊂ Rn, t ≥ t0.
If a function V (t, x) can be found, defined in a neighborhood of x = 0 such that in this
neighborhood

• V (t, x) positively definite for t ≥ t0

• LtV is negatively semidefinite.

Then the solution x = 0 is stable in the sense of Lyapunov.

Proof. By assumption, in a neighborhood of x = 0 we have for some R > 0 and ‖x‖ ≤ R,

V (t, x) ≥W (x) > 0, x 6= 0, t > t0,

and
LtV ≤ 0.

Consider the ball
B = {x : 0 < r ≤ ‖x‖ ≤ R}.

Let
m = min

x∈B
W (x).

Consider the neighborhood of x = 0,

S = {x : V (t, x) < m}
S exist since V (t, x) is continuous and positively definite while V (t, 0) = 0.

Starting a solution in S at t = t0, we have

V (t, x(t))− V (t0, x(t0)) =

∫ t

t0

LtV (τ, x(τ )) dτ ≤ 0, t ≥ t0.

Thus the function V (t, x(t)) can not increase along a solution and this would be necessary
to enter B as initially V (t0, x(t0)) < m. Therefor, the solution can never enter B. Since
R is arbitrary (→ 0), the result follows.

Remark.

• The scalar function V (t, x) is called a Lyapunov function.

• For each class of problems, the construction of the function varies and there is not
general method.

• In the previous theorem we have assumed that the orbital derivative LtV is semidef-
inite negative. This includes the case that LtV = 0, t ≥ t0, x ∈ D. This means that
V (t, x) is a first integral of the equation.
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Next, the orbital derivative is used to obtain a strong form of stability.

Theorem. Consider the equation

ẋ = f(t, x), f(t, 0) = 0, x ∈ D ⊂ Rn, t ≥ t0.

If a function V (t, x) can be found, defined in a neighborhood of x = 0, such that in this
neighborhood

• V (t, x) is positively definite t ≥ t0.

• LtV is negative definite.

Then the solution x = 0 is asymptotically stable.

Proof. From the previous theorem, x = 0 is stable. If x = 0 is not asymptotically stable
then there is a solution x(t) and a constant a such that

‖x(t)‖ ≥ a, for t ≥ t0,

when starting arbitrarily close to zero. Let

B = {x : 0 < a ≤ ‖x(t)‖ ≤ R}, t ≥ t0.

By assumption we have LtV (t, x) ≤ W (x) < 0, x 6= 0. So we have in B

LtV ≤ −µ, µ > 0,

so that

V (t, x(t))− V (t0, x(t0)) =

∫ t

t0

LtV (τ, x(τ )) dτ ≤ −µ(t− t0).

or
V (t, x) ≤ V (t0, x(t0)) − µ(t− t0)

Thus for sufficiently large time, V (t, x) becomes negative. This contradicts the assumption
that V (t, x) is positively definite.

Example. Consider the equation ẋ = Ax+ f(x) with

lim
‖x‖→0

‖f(x)‖
‖x‖ = 0.

A = diag(λ1, . . . , λn), λk < 0. i.e. ẋi = λixi + fi(x).
By Poincaré-Lyapunov theorem, x = 0 is asymptotically stable. Alternatively, consider

the Lyapunov function

V (x) =
n∑

i=1

x2
i .

Then

LtV = 2
n∑

i=1

xiẋi = 2
n∑

i=1

λix
2
i + 2

n∑

i=1

xifi(x).

As λi < 0, i = 1, . . . , n, and from the limit of f , LtV is negatively definite in a neigh-
borhood of x = 0. V (x) is a Lyapunov function and by previous theorem x = 0 is
asymptotically stable.
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Definition. Consider the equation ẋ = f(x) and suppose that x = 0 is an asymptotically
stable solution. A set of point x0 with the property that for the solution of

ẋ = f(x), x(0) = x0

we have x(t) → 0 for t→ ∞, is called a domain of attraction of x = 0.

The following corollary to the previous theorem shows how to use Lyapunov function
to characterize the domain of attraction.

Corollary. Consider the equation

ẋ = f(x), f(0) = 0.

Suppose the following

• The Lyapunov function V (x) is positively definite for ‖x‖ ≤ R.

• S is a closed n−1-dimensional manifold which encloses x = 0 and which is contained
in the ball with radius R.

Suppose

• LtV < 0, x in the interior of S.

• LtV = 0, x ∈ ∂S.

• LtV > 0, x outside S.

• The (n− 1)-dimensional manifold V (x) = c, positive constant, is entirely contained
in the interior of S.

Then the set defined by V (x) ≤ c in the ball ‖x‖ ≤ R is a domain of attraction of x = 0

Using a Lyapunov function one can also establish the instability of a solution.

Theorem. Consider equation

ẋ = f(t, x), f(0) = 0, x ∈ D ⊂ Rn, t ≥ t0.

If there exists a function V (t, x) in a neighborhood of x = 0 such that

a. V (t, x) → 0 for ‖x‖ → 0, uniformly in t;

b. LtV is positively definite in a neighborhood of x = 0;

c. from a certain value t = t1 ≥ t0, V (t, x) takes positive values in each sufficiently small
neighborhood of x = 0;

then the trivial solution is unstable.

Proof. By contradiction. Suppose x = 0 is stable and shows that V becomes arbitrarily
large in the neighborhood of zero.
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Example. Consider the system

ẋ = a(t) y + b(t) x(x2 + y2)

ẏ = −a(t)x+ b(t) y (x2 + y2)

The functions a(t) and b(t) are continuous for t ≥ t0. Consider the Lyapunov function

V (x, y) = x2 + y2.

Then V is positively definite and

LtV = 2b(t) (x2 + y2)2.

Thus, from the first theorem of this section the trivial solution (0, 0) is stable if b(t) ≤ 0.
By the previous theorem, (0, 0) is unstable if b(t) > 0 for t ≥ t0.

Example. Consider the nonlinear oscillator with linear damping equation

ẍ+ µẋ+ x+ ax2 + bx3 = 0, µ > 0.

As in example 7.1, it follows from Poincaré-Lyapunov theorem that the trivial solution is
asymptotically stable.

Alternatively, we introduce the energy of the nonlinear oscillator without damping

V (x, ẋ) =
1

2
ẋ2 +

1

2
x2 +

1

3
ax3 +

1

4
bx4.

We can find a neighborhood D of (0, 0), dependent in size on a and b, in which V is
positive definite. Furthermore,

LtV = ẋẍ+ xẋ+ ax2ẋ+ bx3ẋ = −µẋ2.

and thus LtV ≤ 0 in D. So we can conclude that (0, 0) is stable but we can not obtain
asymptotically stable.

Note that LtV = 0 =⇒ ẋ = 0. However, if x 6= 0, ẋ = 0 is a transversal of the
phase-flow so we conclude that D is a domain of attraction of the trivial solution.
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8.3 Hamiltonian systems and systems with first integrals

• Hamilton’s equations provide a new and equivalent way of looking at classical me-
chanics.

• Generally, these equations do not provide a more convenient way of solving a partic-
ular problem. Rather, they provide deeper insights into both the general structure of
classical mechanics and its connection to quantum mechanics as understood through
Hamiltonian mechanics, as well as its connection to other areas of science.

• The value of the Hamiltonian is the total energy of the system being described. For
a closed system, it is the sum of the kinetic and potential energy in the system.
There is a set of differential equations known as the Hamilton equations which give
the time evolution of the system.

• Hamiltonians can be used to describe such simple systems as a bouncing ball, a
pendulum or an oscillating spring in which energy changes from kinetic to potential
and back again over time.

• Hamiltonians can also be employed to model the energy of other more complex
dynamic systems such as planetary orbits in celestial mechanics and also in quantum
mechanics.

Hamilton’s equations are written as

ṗ = −∂H
∂qi

, q̇ =
∂H

∂pi
, i = 1, . . . n,

where H = H(p, q) : R2n → R is a twice continuously differentiable function. Note that

LtH = 0

and thus H is a first integral of the equations.

Theorem. Consider Hamilton’s equations. We assume that they admit the trivial solu-
tion. If H(p, q) − H(0, 0) is sign definite in a neighborhood of (p, q) = (0, 0), then the
trivial solution is stable in the sense of Lyapunov ( since LtH ≤ 0).

Proof. Let V (p, q) = H(p, q) − H(0, 0). Then V is sign definite, LtV = LtH ≤ 0 and
V (0, 0) = 0. Thus (0, 0) is stable.
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Hamiltonian systems

Mechanical systems in which the force field can be derived from a potential φ(q) are
characterized in many cases by the Hamiltonian

H(p, q) =
1

2

n∑

i=1

p2
i + φ(q).

Theorem. Consider the Hamilton function

H(p, q) =
1

2

n∑

i=1

p2
i + φ(q), (p, q) ∈ R2n,

with potential φ(q) which can be expanded in a Taylor series in a neighborhood of each
critical point. An isolated minimum of the potential corresponds with a stable equilibrium
solution, an isolated maximum corresponds with an unstable equilibrium solution.

Proof.
The Hamilton’s equations for this mechanical system

ṗi = − ∂φ

∂qi
, q̇i = pi.

Equilibrium solutions corresponding with the critical points determined by

pi = 0,
∂φ

∂qi
= 0, i = 1, . . . n.

If the equilibrium point corresponds with an isolated minimum of φ(q), then H(p, q)−
H(CritPoint) > 0, and thus by theorem 8.4 this equilibrium solution is stable.

If the equilibrium point corresponds with an isolated maximum of φ(q) then we can
introduce the Lyapunov function

V (p, q) =
n∑

i=1

piqi.

Then we can show that in neighborhoods of this critical point V is positive and LtV is
positive definite. Thus the critical point is unstable. Proof.

Remark. The equation of motion of the Hamiltonian system is

q̈ = − ∂φ

∂qi
, i = 1, . . . n.
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Example. Consider the equation of motion

ẍ+ f(x) = 0

Let (p, q) = (ẋ, x) then
ṗ = ẍ = −f(q), q̇ = p

and we obtain the Hamilton function

H(p, q) =
1

2
p2 +

∫ q

f(τ ) dτ.

In this case φ(q) =
∫ q
f(τ ) dτ

According to the previous theorem, The isolated minima correspond with stable equi-
librium solutions and isolated maxima correspond with unstable equilibrium solutions.
See figure 8.3.

Example. Consider the Hamilton function

H(p, q) =
1

2
(p2

1 + p2
2) +

1

2
(q2

1 + q2
2) + q2

1q2 −
1

3
q3
2

︸ ︷︷ ︸
φ(q1,q2)

.

The function φ(q) has the following critical points:

φq1 = q1 + 2q1q2 = q1(1 + 2q2), φq2 = q2 + q2
1 − q2

2

(0, 0), isolated minimum

(0, 1), (±
√

3/2,−1/2), no maximum or minimum is assumed

By previous theorem (0, 0, 0, 0) is a stable equilibrium solution.
For the other critical points, (0, 0, 0, 1) and (0, 0,±

√
3/2,−1/2) we can perform lin-

earization then apply theorem 7.3 for the system ẋ = Ax+ f(x) to conclude instability.
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