
7 Stability by Linearization

• One way to study the stability of the equilibrium solutions and periodic solutions
is by analyzing the system, linearized in a neighborhood of these special solutions.

• Justification of linearization methods has been started by Poincaré and Lyapunov
since 1900.

• A more recent result is the ”stable and unstable manifold theorem” 3.3. This theo-
rem is concerned with autonomous equations of the form

ẋ = Ax+ g(x),

with A a constant n× n matrix of which all eigenvalues have nonzero real part.

• Theorem 3.3 establishes that the stable and unstable manifold Es and Eu of the
linearized equation can be continued on adding the nonlinearity g(x); the manifolds
of the nonlinear equation Ws and Wu emanating from the origin are tangent to Es

and Eu.

• Theorem 3.3 discusses only the existence of invariant manifolds and not very explic-
itly the behavior with time of individual solutions.

• Thus the theorem does not characterize the stability of the trivial solution.

• In this chapter we

– add the quantitative element to the theory.

– obtain more general results

– consider the stability of the trivial solution for nonautonomous equations.
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7.1 Asymptotic stability of the trivial solution

Note. (Fundamental matrix of linear equation with constant coefficient)

For the equation ẋ = Ax, the matrix eAt is a fundamental matrix. Thus any funda-
mental matrix Φ(t) can be written as

Φ(t) = eAtC =⇒ Φ(t) = eA(t−t0)Φ(t0)

In particular, any fundamental matrix Φ(t) with Φ(t0) = I satisfies

Φ(t) = eA(t−t0),

and
Φ(t)Φ−1(τ ) = eA(t−t0)e−A(τ−t0) = eA(t−τ) = Φ(t− τ + t0).

Lemma. Consider the equation in Rn

ẋ = Ax+B(t)x+ f(t, x), x(t0) = x0, t ∈ R.

with B(t) and f(t, x) are continuous for t ≥ t0. Let Φ(t) be a fundamental matrix of
ẏ = Ay with Φ(t0) = I. Then the initial value problem is equivalent to the integral
equation

x(t) = Φ(t)x0 +

∫ t

t0

Φ(t− s+ t0) [B(s)x(s) + f(s, x(s)) ] ds.

Proof. From the note above Φ(t) = eA(t−t0). Let x = Φ(t)z, then z(t0) = x0. Substitute
into the equation to obtain

˙Φ(t)z + Φ(t)ż = AΦ(t) z +B(t)Φ(t) z + f(t,Φ(t)z).

Since Φ̇ = AΦ, we have
Φ(t)ż = B(t)Φ(t) z + f(t,Φ(t)z)

or
ż = Φ−1(t) [B(t)x(t) + f(t, x(t)) ].

Integration produces

z(t) − z(t0) =

∫ t

t0

Φ−1(s) [B(s)x(s) + f(s, x(s) ] ds

or

z(t) = x(t0) +

∫ t

t0

Φ−1(s) [B(s)x(s) + f(s, x(s) ] ds

Multiplication by Φ(t) and using the expression of Φ(t)Φ−1(τ ) yields the required result.
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Theorem. (Poincaré-Lyapunov) Consider the equation in Rn

ẋ = Ax+B(t)x+ f(t, x), x(t0) = x0, t ∈ R. (4)

• A is a constant n× n matrix with eigenvalues which all have negative real parts;

• B(t) is a continuous n × n matrix with the property

lim
t→∞

‖B(t)‖ = 0.

• f(t, x) is continuous in t and x and Lipschitz continuous in x in a neighborhood of
x = 0; moreover,

lim
‖x‖→0

‖f(t, x)‖
‖x‖ = 0 uniformly in t.

This condition implies that x = 0 is a solution.

Then there exist positive constants C, t0, δ, µ such that

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ C‖x0‖ e−µ(t−t0), t ≥ t0.

The solution x = 0 is asymptotically stable and the attraction is exponential in a δ-
neighborhood of x = 0.

Proof.
Estimates. From theorem 6.1, since all the eigenvalues of A have negative real part,
there exist positive constants C and λ such that

‖Φ(t)‖ ≤ C e−λ(t−t0), t ≥ t0.

From the assumption on f , for δ0 > 0 sufficiently small there exists a constant b(δ0) such
that

‖x‖ ≤ δ0 =⇒ ‖f(t, x)‖ ≤ b(δ0)‖x‖, t ≥ t0.

From the assumption on B, for t0 sufficiently large

‖B(t)‖ ≤ b(δ0), t ≥ t0.

Existence & Uniqueness. The existence and uniqueness theorem yields that in a
neighborhood of x = 0, the solution of the initial value problem (4) exists for t0 ≤ t ≤ t1.
From the above theorem, if Φ(t) is a fundamental set with Φ(t0) = I, then

‖x(t)‖ ≤ ‖Φ(t)‖‖x0‖ +

∫ t

t0

‖Φ(t− s+ t0)‖ [‖B(s)‖‖x(s)‖+ ‖f(s, x(s))‖ ] ds.

Let t0 ≤ t2 ≤ t1 be determined by the condition ‖x‖ ≤ δ0. Using the estimates for Φ, B,
and f we have for t0 ≤ t ≤ t2

‖x(t)‖ ≤ C e−λ(t−t0)‖x0‖ +

∫ t

t0

C e−λ(t−s)2b‖x(s)‖ ds
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so that

eλ(t−t0)‖x(t)‖ ≤ C ‖x0‖ +

∫ t

t0

2bC eλ(s−t0)‖x(s)‖ ds.

We use Gronwal’s inequality we obtain

eλ(t−t0)‖x(t)‖ ≤ C ‖x0‖ e2Cb(t−t0),

or
‖x(t)‖ ≤ C ‖x0‖ e(2Cb−λ)(t−t0). (5)

If δ and consequently b are small enough, the quantity µ = λ − 2Cb is positive and we
have the required estimate for t0 ≤ t ≤ t2.

Now we choose ‖x0‖ such that ‖x0‖ ≤ δ0, then ‖x(t)‖ decreases and the estimate can be
repeated on a longer time interval. So the estimate (5) holds for t ≥ t0 if δ = min(δ0, δ0/C).

Example. (Oscillator with damping)
Consider the equation

ẍ+ µẋ+ sin x = 0, µ > 0. (6)

The equivalent system can be written as

(
ẋ1

ẋ2

)
=

(
0 1
−1 −µ

)(
x1

x2

)
+

(
0

x1 − sin x1

)
= A

(
x1

x2

)
+ f(x1, x2)

The eigenvalues of the linearized system are

λ1,2 =
−µ±

√
µ2 − 4

2
.

so Reλ1,2 < 0. System (6) satisfies the requirements of the Poincaré-Lyapunov theorem,
so the equilibrium solution (0, 0) is asymptotically stable.
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In the case that the linear part of the equation has periodic coefficients we can apply
the theory of Floquet.

Theorem. Consider the equation in Rn

ẋ = A(t)x+ f(t, x), (7)

with

• A(t) a T -periodic continuous matrix,

• f(t, x) is continuous in t and x and Lipschitz continuous in x for t ∈ R, x in a
neighborhood of x = 0. Moreover,

lim
‖x‖→0

‖f(t, x)‖
‖x‖ = 0, uniformly in t

If the real parts of the characteristic exponents of the linear periodic equation

ẏ = A(t) y

are negative, the solution x = 0 of (7) is asymptotically stable. Also the attraction is
exponential in a δ-neighborhood of x = 0.

Proof. From Floquet theorem, any fundamental matrix Φ(t) of ẏ = A(t)y can be written
as Φ(t) = P (t)eBt, P is T -periodic. Consider the transformation

x = P (t)z.

Substitution in (7) yields
P ż + Ṗ z = APz + f(t, P z).

Then
P ż = (AP − Ṗ ) z + f(t, P z).

But
Ṗ = Φ̇ e−Bt + Φ e−Bt(−B) = AP − PB

and thus
P ż = PB z + f(t, P z).

Thus the transformed equation is

ż = B z + P−1(t) f(t, P (t)z). (8)

By assumption, the constant matrix B has only eigenvalues with negative real parts. The
solution z = 0 of (8) satisfies the requirements of the Poincaré-Lyapunov theorem from
which follows the result.
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Remark. Recall Theorem 3.1:
Consider the equation ẋ = Ax+ g(x); if x = 0 is a positive (negative) attractor for the

linearized equation ẏ = Ay then x = 0 is a positive (negative) attractor for the nonlinear
equation ẋ = Ax+ g(x)

In other wards,
If x = 0 is a positive (negative) attractor for the linear equation ẋ = Ax then x = 0 is a

positive (negative) attractor for the nonlinear equation ẋ = Ax+g(x) if lim‖x‖→0
‖g(x)‖
‖x‖ = 0.

Then clearly that theorem is a special case of Poincaré-Lyapunov theorem.

Remark. Example 5.3 show that

positive attraction by a critical point fo nonlinear equation 6=⇒ stability

Since some orbits leaves initially then go back to the point.

Poincaré-Lyapunov theorem tells that under the stated conditions

linear approximation has a positive attractor

=⇒ the solution of the nonlinear problem is asymptotically stable.

Remark.

y = 0 is a positive attractor of the linear equation ẏ = Ay +B(t)y

6=⇒ 0 is a asymptotically stable if we add a smooth nonlinear term.

The condition
lim
t→∞

‖B(t)‖ = 0

is essential.

Example. Consider for t ≥ 1 the system

ẋ1 = −ax1,

ẋ2 = [−2a+ sin(ln t) + cos(ln t)]x2 + x2
1, a >

1

2
.

Note that limt→∞B(t) 6= 0 for this system and thus this conditions of Poincaré-
Lyapunov theorem is not satisfied. In a neighborhood of 0 the linearized system ẋ =
Ax+B(t)x is

ẏ1 = −ay1,

ẏ1 = [−2a+ sin(ln t) + cos(ln t)]y2.

with independent solutions

y1(t) = e−at, y2(t) = et sin(ln t)−2at.
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This solutions tend to zero as t→ ∞.
Substitution of the solution x1(t) = c1e

−at into the second equation yields a linear
inhomogeneous equation. Using the variation of parameters method we obtain

x2(t) = et sin(ln t)−2at

(
c2 + c21

∫ t

0

e−τ sin(ln τ) dτ

)
.

The solutions are not bounded as t→ ∞ unless c1 = 0.
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7.2 Instability of the trivial solution

Recall Theorem 3.2:
Consider the equation ẋ = Ax+ g(x); if A has an eigenvalue with positive real part,

then the critical point x = 0 is not a positive attractor for the nonlinear equation ẋ =
Ax+ g(x).

In other wards,
If x = 0 is unstable for the linear equation ẋ = Ax then x = 0 is unstable for the

nonlinear equation ẋ = Ax+ g(x).
The following theorem is a more general version of this result.

Theorem. Consider the equation in Rn

ẋ = Ax+B(t)x+ f(t, x), t ≥ t0 (9)

with

• A is a constant n×n matrix with eigenvalues of which at least one has positive real
part.

• B(t) is a continuous n × n matrix with the property

lim
t→∞

‖B(t)‖ = 0.

• f(t, x) is continuous in t and x, Lipschitz continuous in x in a neighborhood of x = 0
and

lim
‖x‖→0

‖f(t, x)

‖x‖
= 0, uniformly in t.

Then the trivial solution of (9) is unstable.

Proof. See the textbook.

Example: competing species

Read the textbook.
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7.3 Stability of periodic solutions of autonomous equations

In section 5.4, linearization of the autonomous equation ẋ = f(x) in a neighborhood of a
periodic solution φ(t) yields the equation

ẏ =
df

dx
(φ(t)) y

This linear equation always has the nontrivial T -periodic solution φ̇(t). This implies that
at least one of the real parts of the characteristic exponents is zero, thus the above theorem
does not apply. Instead we have the following result.

Definition.

• Recall. Let M ⊂ Rn. The set

Uη(M) = {x ∈ Rn : dist(x,M) < η}

is call the η-neighborhood of M .

• An invariant set M of ẋ = f(x) is said to be stable if for any ε > 0 there exist δ > 0
such that

x0 ∈ Uδ(M) =⇒ x(t, x0) ⊂ Uε(M), ∀ t ≥ 0.

M is asymptotically stable if it is stable and if there Ub(M) for some b > 0 such
that x0 ∈ Ub(M) implies that the solution x(t, x0) approaches M as t→ ∞.

• If φ(t) is a nonconstant periodic solution of ẋ = f(x) is orbitally stable, asymptotically
orbitally stable if the corresponding invariant closed curve Γ generated by φ(t) is sta-
ble, asymptotically stable, respectively.

• A periodic solution is said to be asymptotically orbitally stable with asymptotic phase
θ0 if it is asymptotically orbitally stable and there is a δ such that

dist(x0,Γ) < δ =⇒ ∃ θ0 = θ(x0) 3 lim
t→∞

‖x(t, x0) − φ(t+ θ0)‖ = 0.

Theorem. Consider the equation ẋ = f(x) which has a T -periodic solution φ(t); f(x)
is continuously differentiable in a domain in Rn, n > 1, containing φ(t). Suppose that
linearization of ẋ = f(x) in a neighborhood of φ(t) yields the equation

ẏ =
df

dx
(φ(t)) y

with characteristic exponents of which one has real part zero (characteristic multiplier one
is simple) and n−1 exponents have real parts negative (all other characteristic multipliers
have modulus < 1). Then the periodic solution φ(t) is asymptotically orbitally stable with
asymptotic phase.
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Example. (generalized Liénard equation)
Consider the equation

ẍ+ f(x) ẋ+ g(x) = 0.

Suppose this equation has a periodic solution x = φ(t).

As in chapter 6, the linearized equation is ẏ = A(t)z with

A(t) =

(
0 1
. . . −f(φ(t))

)
.

The trace of the linearized equation is trA(t) = −f(φ(t)) and thus the characteristic
exponents

λ1 = 0, λ2 = − 1

T

∫ T

0

f(φ(s)) ds

(
mod

2πi

T

)

and thus the periodic solution in the linear approximation is stable if λ2 ≤ 0.
Now, using this calculation and the above theorem we conclude that the periodic

solution of the nonlinear equation ẍ+ f(x) ẋ+ g(x) = 0 is asymptotically orbitally stable

solution if
∫ T

0
f(φ(s)) ds > 0.

Example. Consider the two dimensional system

ẋ = f(x, y), ẏ = g(x, y)

with T -periodic solution x = φ(t), y = ψ(t).

By linearizing in a neighborhood of this periodic solution using

x = φ(t) + u, y = ψ(t) + v

we obtain

u̇ = fx(φ(t), ψ(t))u+ fy(φ(t), ψ(t)) v+ . . .

v̇ = gx(φ(t), ψ(t))u+ gy(φ(t), ψ(t)) v+ . . .

Using theorem 6.6 and the above theorem, asymptotically orbitally stable solution if

∫ T

0

[fx(φ(t), ψ(t)) + gy(φ(t), ψ(t)] dt < 0.
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