7 Stability by Linearization

- One way to study the stability of the equilibrium solutions and periodic solutions is by analyzing the system, linearized in a neighborhood of these special solutions.
- Justification of linearization methods has been started by Poincaré and Lyapunov since 1900.
- A more recent result is the "stable and unstable manifold theorem" 3.3. This theorem is concerned with autonomous equations of the form

$$\dot{x} = Ax + g(x),$$

with A a constant $n \times n$ matrix of which all eigenvalues have nonzero real part.

- Theorem 3.3 establishes that the stable and unstable manifold E_s and E_u of the linearized equation can be continued on adding the nonlinearity g(x); the manifolds of the nonlinear equation W_s and W_u emanating from the origin are tangent to E_s and E_u .
- Theorem 3.3 discusses only the existence of invariant manifolds and not very explicitly the behavior with time of individual solutions.
- Thus the theorem does not characterize the stability of the trivial solution.
- In this chapter we
 - add the quantitative element to the theory.
 - obtain more general results
 - consider the stability of the trivial solution for nonautonomous equations.

7.1 Asymptotic stability of the trivial solution

Note. (Fundamental matrix of linear equation with constant coefficient)

For the equation $\dot{x} = Ax$, the matrix e^{At} is a fundamental matrix. Thus any fundamental matrix $\Phi(t)$ can be written as

$$\Phi(t) = e^{At}C \quad \Longrightarrow \quad \Phi(t) = e^{A(t-t_0)}\Phi(t_0)$$

In particular, any fundamental matrix $\Phi(t)$ with $\Phi(t_0) = I$ satisfies

$$\Phi(t) = e^{A(t-t_0)}$$

and

$$\Phi(t) \Phi^{-1}(\tau) = e^{A(t-t_0)} e^{-A(\tau-t_0)} = e^{A(t-\tau)} = \Phi(t-\tau+t_0).$$

Lemma. Consider the equation in \mathbb{R}^n

$$\dot{x} = Ax + B(t)x + f(t, x), \qquad x(t_0) = x_0, \quad t \in \mathbb{R}.$$

with B(t) and f(t,x) are continuous for $t \ge t_0$. Let $\Phi(t)$ be a fundamental matrix of $\dot{y} = Ay$ with $\Phi(t_0) = I$. Then the initial value problem is equivalent to the integral equation

$$x(t) = \Phi(t)x_0 + \int_{t_0}^t \Phi(t - s + t_0) \left[B(s)x(s) + f(s, x(s)) \right] ds.$$

Proof. From the note above $\Phi(t) = e^{A(t-t_0)}$. Let $x = \Phi(t)z$, then $z(t_0) = x_0$. Substitute into the equation to obtain

$$\dot{\Phi(t)}z + \Phi(t)\dot{z} = A\Phi(t)z + B(t)\Phi(t)z + f(t,\Phi(t)z).$$

Since $\dot{\Phi} = A\Phi$, we have

$$\Phi(t)\dot{z} = B(t)\,\Phi(t)\,z + f(t,\Phi(t)z)$$

or

$$\dot{z} = \Phi^{-1}(t) [B(t) x(t) + f(t, x(t))].$$

Integration produces

$$z(t) - z(t_0) = \int_{t_0}^t \Phi^{-1}(s) \left[B(s) x(s) + f(s, x(s)) \right] ds$$

or

$$z(t) = x(t_0) + \int_{t_0}^t \Phi^{-1}(s) \left[B(s) x(s) + f(s, x(s)) \right] ds$$

Multiplication by $\Phi(t)$ and using the expression of $\Phi(t)\Phi^{-1}(\tau)$ yields the required result.

Theorem. (Poincaré-Lyapunov) Consider the equation in \mathbb{R}^n

$$\dot{x} = Ax + B(t)x + f(t, x), \qquad x(t_0) = x_0, \quad t \in \mathbb{R}.$$
 (4)

- A is a constant $n \times n$ matrix with eigenvalues which all have negative real parts;
- B(t) is a continuous $n \times n$ matrix with the property

$$\lim_{t \to \infty} \|B(t)\| = 0.$$

• f(t, x) is continuous in t and x and Lipschitz continuous in x in a neighborhood of x = 0; moreover,

$$\lim_{\|x\|\to 0} \frac{\|f(t,x)\|}{\|x\|} = 0 \quad uniformly \ in \ t.$$

This condition implies that x = 0 is a solution.

Then there exist positive constants C, t_0 , δ , μ such that

$$||x_0|| \le \delta \implies ||x(t)|| \le C ||x_0|| e^{-\mu(t-t_0)}, \quad t \ge t_0$$

The solution x = 0 is asymptotically stable and the attraction is exponential in a δ -neighborhood of x = 0.

Proof.

Estimates. From theorem 6.1, since all the eigenvalues of A have negative real part, there exist positive constants C and λ such that

$$\|\Phi(t)\| \le C e^{-\lambda(t-t_0)}, \quad t \ge t_0.$$

From the assumption on f, for $\delta_0 > 0$ sufficiently small there exists a constant $b(\delta_0)$ such that

$$||x|| \le \delta_0 \implies ||f(t,x)|| \le b(\delta_0) ||x||, \qquad t \ge t_0.$$

From the assumption on B, for t_0 sufficiently large

$$||B(t)|| \le b(\delta_0), \qquad t \ge t_0.$$

Existence & Uniqueness. The existence and uniqueness theorem yields that in a neighborhood of x = 0, the solution of the initial value problem (4) exists for $t_0 \le t \le t_1$. From the above theorem, if $\Phi(t)$ is a fundamental set with $\Phi(t_0) = I$, then

$$||x(t)|| \le ||\Phi(t)|| ||x_0|| + \int_{t_0}^t ||\Phi(t-s+t_0)|| [||B(s)|| ||x(s)|| + ||f(s,x(s))||] ds.$$

Let $t_0 \leq t_2 \leq t_1$ be determined by the condition $||x|| \leq \delta_0$. Using the estimates for Φ , B, and f we have for $t_0 \leq t \leq t_2$

$$||x(t)|| \le C e^{-\lambda(t-t_0)} ||x_0|| + \int_{t_0}^t C e^{-\lambda(t-s)} 2b ||x(s)|| \, ds$$

so that

$$e^{\lambda(t-t_0)} \|x(t)\| \le C \|x_0\| + \int_{t_0}^t 2bC \ e^{\lambda(s-t_0)} \|x(s)\| \ ds.$$

We use Gronwal's inequality we obtain

$$e^{\lambda(t-t_0)} \|x(t)\| \le C \|x_0\| e^{2Cb(t-t_0)},$$

or

$$\|x(t)\| \le C \|x_0\| \ e^{(2Cb-\lambda)(t-t_0)}.$$
(5)

If δ and consequently b are small enough, the quantity $\mu = \lambda - 2Cb$ is positive and we have the required estimate for $t_0 \leq t \leq t_2$.

Now we choose $||x_0||$ such that $||x_0|| \le \delta_0$, then ||x(t)|| decreases and the estimate can be repeated on a longer time interval. So the estimate (5) holds for $t \ge t_0$ if $\delta = \min(\delta_0, \delta_0/C)$.

Example. (Oscillator with damping)

Consider the equation

$$\ddot{x} + \mu \dot{x} + \sin x = 0, \qquad \mu > 0.$$
 (6)

The equivalent system can be written as

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -\mu \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ x_1 - \sin x_1 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + f(x_1, x_2)$$

The eigenvalues of the linearized system are

$$\lambda_{1,2} = \frac{-\mu \pm \sqrt{\mu^2 - 4}}{2}.$$

so $\operatorname{Re} \lambda_{1,2} < 0$. System (6) satisfies the requirements of the Poincaré-Lyapunov theorem, so the equilibrium solution (0,0) is asymptotically stable.

In the case that the linear part of the equation has periodic coefficients we can apply the theory of Floquet.

Theorem. Consider the equation in \mathbb{R}^n

$$\dot{x} = A(t)x + f(t, x),\tag{7}$$

with

- A(t) a T-periodic continuous matrix,
- f(t,x) is continuous in t and x and Lipschitz continuous in x for $t \in \mathbb{R}$, x in a neighborhood of x = 0. Moreover,

$$\lim_{\|x\| \to 0} \frac{\|f(t,x)\|}{\|x\|} = 0, \quad uniformly \ in \ t$$

If the real parts of the characteristic exponents of the linear periodic equation

$$\dot{y} = A(t) y$$

are negative, the solution x = 0 of (7) is asymptotically stable. Also the attraction is exponential in a δ -neighborhood of x = 0.

Proof. From Floquet theorem, any fundamental matrix $\Phi(t)$ of $\dot{y} = A(t)y$ can be written as $\Phi(t) = P(t)e^{Bt}$, P is T-periodic. Consider the transformation

$$x = P(t)z.$$

Substitution in (7) yields

$$P\dot{z} + \dot{P}z = APz + f(t, Pz).$$

Then

$$P\dot{z} = (AP - \dot{P})z + f(t, Pz).$$

But

$$\dot{P} = \dot{\Phi} e^{-Bt} + \Phi e^{-Bt}(-B) = AP - PB$$

and thus

$$P\dot{z} = PB\,z + f(t, Pz).$$

Thus the transformed equation is

$$\dot{z} = B z + P^{-1}(t) f(t, P(t)z).$$
 (8)

By assumption, the constant matrix B has only eigenvalues with negative real parts. The solution z = 0 of (8) satisfies the requirements of the Poincaré-Lyapunov theorem from which follows the result.

Remark. Recall Theorem 3.1:

Consider the equation $\dot{x} = Ax + g(x)$; if x = 0 is a positive (negative) attractor for the linearized equation $\dot{y} = Ay$ then x = 0 is a positive (negative) attractor for the nonlinear equation $\dot{x} = Ax + g(x)$

In other wards,

If x = 0 is a positive (negative) attractor for the linear equation $\dot{x} = Ax$ then x = 0 is a positive (negative) attractor for the nonlinear equation $\dot{x} = Ax + g(x)$ if $\lim_{\|x\| \to 0} \frac{\|g(x)\|}{\|x\|} = 0$. Then clearly that theorem is a special case of Poincaré-Lyapunov theorem.

Remark. Example 5.3 show that

positive attraction by a critical point fo nonlinear equation $\neq \Rightarrow$ stability

Since some orbits leaves initially then go back to the point.

Poincaré-Lyapunov theorem tells that under the stated conditions

linear approximation has a positive attractor

 \implies the solution of the nonlinear problem is asymptotically stable.

Remark.

y = 0 is a positive attractor of the linear equation $\dot{y} = Ay + B(t)y$ $\neq \Rightarrow \quad 0$ is a asymptotically stable if we add a smooth nonlinear term.

The condition

$$\lim_{t\to\infty}\|B(t)\|=0$$

is essential.

Example. Consider for $t \ge 1$ the system

$$\dot{x}_1 = -ax_1,$$

 $\dot{x}_2 = [-2a + \sin(\ln t) + \cos(\ln t)]x_2 + x_1^2,$ $a > \frac{1}{2}.$

Note that $\lim_{t\to\infty} B(t) \neq 0$ for this system and thus this conditions of Poincaré-Lyapunov theorem is not satisfied. In a neighborhood of 0 the linearized system $\dot{x} = Ax + B(t)x$ is

$$\dot{y}_1 = -ay_1,$$

 $\dot{y}_1 = [-2a + \sin(\ln t) + \cos(\ln t)]y_2.$

with independent solutions

$$y_1(t) = e^{-at}, \qquad y_2(t) = e^{t \sin(\ln t) - 2at}.$$

This solutions tend to zero as $t \to \infty$.

Substitution of the solution $x_1(t) = c_1 e^{-at}$ into the second equation yields a linear inhomogeneous equation. Using the variation of parameters method we obtain

$$x_2(t) = e^{t \sin(\ln t) - 2at} \left(c_2 + c_1^2 \int_0^t e^{-\tau \sin(\ln \tau)} d\tau \right).$$

The solutions are not bounded as $t \to \infty$ unless $c_1 = 0$.

7.2 Instability of the trivial solution

Recall Theorem 3.2:

Consider the equation $\dot{x} = Ax + g(x)$; if A has an eigenvalue with positive real part, then the critical point x = 0 is not a positive attractor for the nonlinear equation $\dot{x} = Ax + g(x)$.

In other wards,

If x = 0 is unstable for the linear equation $\dot{x} = Ax$ then x = 0 is unstable for the nonlinear equation $\dot{x} = Ax + g(x)$.

The following theorem is a more general version of this result.

Theorem. Consider the equation in \mathbb{R}^n

$$\dot{x} = Ax + B(t)x + f(t, x), \qquad t \ge t_0 \tag{9}$$

with

- A is a constant $n \times n$ matrix with eigenvalues of which at least one has positive real part.
- B(t) is a continuous $n \times n$ matrix with the property

$$\lim_{t \to \infty} \|B(t)\| = 0.$$

• f(t, x) is continuous in t and x, Lipschitz continuous in x in a neighborhood of x = 0and

$$\lim_{\|x\| \to 0} \frac{\|f(t,x)\|}{\|x\|} = 0, \qquad uniformly \ in \ t.$$

Then the trivial solution of (9) is unstable.

Proof. See the textbook.

Example: competing species

Read the textbook.

7.3 Stability of periodic solutions of autonomous equations

In section 5.4, linearization of the autonomous equation $\dot{x} = f(x)$ in a neighborhood of a periodic solution $\phi(t)$ yields the equation

$$\dot{y} = \frac{df}{dx}(\phi(t)) y$$

This linear equation always has the nontrivial T-periodic solution $\phi(t)$. This implies that at least one of the real parts of the characteristic exponents is zero, thus the above theorem does not apply. Instead we have the following result.

Definition.

• Recall. Let $M \subset \mathbb{R}^n$. The set

$$U_{\eta}(M) = \{ x \in \mathbb{R}^n : dist(x, M) < \eta \}$$

is call the η -neighborhood of M.

• An invariant set M of $\dot{x} = f(x)$ is said to be <u>stable</u> if for any $\epsilon > 0$ there exist $\delta > 0$ such that

 $x_0 \in U_{\delta}(M) \implies x(t, x_0) \subset U_{\epsilon}(M), \ \forall t \ge 0.$

M is asymptotically stable if it is stable and if there $U_b(M)$ for some b > 0 such that $x_0 \in U_b(M)$ implies that the solution $x(t, x_0)$ approaches *M* as $t \to \infty$.

- If $\phi(t)$ is a nonconstant periodic solution of $\dot{x} = f(x)$ is <u>orbitally stable</u>, <u>asymptotically</u> <u>orbitally stable</u> if the corresponding invariant closed curve Γ generated by $\phi(t)$ is sta-<u>ble</u>, asymptotically stable, respectively.
- A periodic solution is said to be asymptotically orbitally stable with asymptotic phase θ_0 if it is asymptotically orbitally stable and there is a δ such that

 $dist(x_0, \Gamma) < \delta \implies \exists \theta_0 = \theta(x_0) \ \ni \lim_{t \to \infty} \|x(t, x_0) - \phi(t + \theta_0)\| = 0.$

Theorem. Consider the equation $\dot{x} = f(x)$ which has a *T*-periodic solution $\phi(t)$; f(x) is continuously differentiable in a domain in \mathbb{R}^n , n > 1, containing $\phi(t)$. Suppose that linearization of $\dot{x} = f(x)$ in a neighborhood of $\phi(t)$ yields the equation

$$\dot{y} = \frac{df}{dx}(\phi(t)) y$$

with characteristic exponents of which one has real part zero (characteristic multiplier one is simple) and n-1 exponents have real parts negative (all other characteristic multipliers have modulus < 1). Then the periodic solution $\phi(t)$ is asymptotically orbitally stable with asymptotic phase. Example. (generalized Liénard equation)

Consider the equation

$$\ddot{x} + f(x)\,\dot{x} + g(x) = 0.$$

Suppose this equation has a periodic solution $x = \phi(t)$.

As in chapter 6, the linearized equation is $\dot{y} = A(t)z$ with

$$A(t) = \begin{pmatrix} 0 & 1 \\ \dots & -f(\phi(t)) \end{pmatrix}$$

The trace of the linearized equation is $\operatorname{tr} A(t) = -f(\phi(t))$ and thus the characteristic exponents

$$\lambda_1 = 0, \qquad \lambda_2 = -\frac{1}{T} \int_0^T f(\phi(s)) \, ds\left(\operatorname{mod} \frac{2\pi i}{T} \right)$$

and thus the periodic solution in the linear approximation is stable if $\lambda_2 \leq 0$.

Now, using this calculation and the above theorem we conclude that the periodic solution of the nonlinear equation $\ddot{x} + f(x)\dot{x} + g(x) = 0$ is asymptotically orbitally stable solution if $\int_0^T f(\phi(s)) ds > 0$.

Example. Consider the two dimensional system

$$\dot{x} = f(x, y), \qquad \dot{y} = g(x, y)$$

with T-periodic solution $x = \phi(t), y = \psi(t)$.

By linearizing in a neighborhood of this periodic solution using

$$x = \phi(t) + u, \qquad y = \psi(t) + v$$

we obtain

$$\dot{u} = f_x(\phi(t), \psi(t)) u + f_y(\phi(t), \psi(t)) v + \dots \dot{v} = g_x(\phi(t), \psi(t)) u + g_y(\phi(t), \psi(t)) v + \dots$$

Using theorem 6.6 and the above theorem, asymptotically orbitally stable solution if

$$\int_0^T [f_x(\phi(t), \psi(t)) + g_y(\phi(t), \psi(t))] \, dt < 0.$$