7 Stability by Linearization

- One way to study the stability of the equilibrium solutions and periodic solutions is by analyzing the system, linearized in a neighborhood of these special solutions.
- \bullet Justification of linearization methods has been started by Poincaré and Lyapunov since 1900.
- A more recent result is the "stable and unstable manifold theorem" 3.3. This theorem is concerned with autonomous equations of the form

$$
\dot{x} = Ax + g(x),
$$

with *A* a constant $n \times n$ matrix of which all eigenvalues have nonzero real part.

- Theorem 3.3 establishes that the stable and unstable manifold *E^s* and *E^u* of the linearized equation can be continued on adding the nonlinearity $g(x)$; the manifolds of the nonlinear equation W_s and W_u emanating from the origin are tangent to E_s and E_u .
- Theorem 3.3 discusses only the existence of invariant manifolds and not very explicitly the behavior with time of individual solutions.
- Thus the theorem does not characterize the stability of the trivial solution.
- In this chapter we
	- **–** add the quantitative element to the theory.
	- **–** obtain more general results
	- **–** consider the stability of the trivial solution for nonautonomous equations.

7.1 Asymptotic stability of the trivial solution

Note. (Fundamental matrix of linear equation with constant coefficient)

For the equation $\dot{x} = Ax$, the matrix e^{At} is a fundamental matrix. Thus any funda*mental matrix* Φ(*t*) *can be written as*

$$
\Phi(t) = e^{At}C \implies \Phi(t) = e^{A(t-t_0)}\Phi(t_0)
$$

In particular, any fundamental matrix $\Phi(t)$ *with* $\Phi(t_0) = I$ *satisfies*

 $\Phi(t) = e^{A(t-t_0)},$

and

$$
\Phi(t)\,\Phi^{-1}(\tau) = e^{A(t-t_0)}e^{-A(\tau-t_0)} = e^{A(t-\tau)} = \Phi(t-\tau+t_0).
$$

Lemma. *Consider the equation in* \mathbb{R}^n

$$
\dot{x} = Ax + B(t)x + f(t, x), \qquad x(t_0) = x_0, \quad t \in \mathbb{R}.
$$

with $B(t)$ *and* $f(t, x)$ *are continuous for* $t \geq t_0$ *. Let* $\Phi(t)$ *be a fundamental matrix of* $\dot{y} = Ay$ *with* $\Phi(t_0) = I$ *. Then the initial value problem is equivalent to the integral equation*

$$
x(t) = \Phi(t)x_0 + \int_{t_0}^t \Phi(t - s + t_0) [B(s)x(s) + f(s, x(s))] ds.
$$

Proof. From the note above $\Phi(t) = e^{A(t-t_0)}$. Let $x = \Phi(t)z$, then $z(t_0) = x_0$. Substitute into the equation to obtain

$$
\dot{\Phi(t)z} + \Phi(t)\dot{z} = A\Phi(t) z + B(t)\Phi(t) z + f(t, \Phi(t)z).
$$

Since $\dot{\Phi} = A\Phi$, we have

$$
\Phi(t)\dot{z} = B(t)\,\Phi(t)\,z + f(t,\Phi(t)z)
$$

or

$$
\dot{z} = \Phi^{-1}(t) [B(t) x(t) + f(t, x(t))].
$$

Integration produces

$$
z(t) - z(t_0) = \int_{t_0}^t \Phi^{-1}(s) [B(s) x(s) + f(s, x(s)] ds
$$

or

$$
z(t) = x(t_0) + \int_{t_0}^t \Phi^{-1}(s) [B(s) x(s) + f(s, x(s)] ds
$$

Multiplication by $\Phi(t)$ and using the expression of $\Phi(t)\Phi^{-1}(\tau)$ yields the required result. \blacksquare

Theorem. *(Poincaré-Lyapunov)* Consider the equation in \mathbb{R}^n

$$
\dot{x} = Ax + B(t)x + f(t, x), \qquad x(t_0) = x_0, \quad t \in \mathbb{R}.
$$
 (4)

- *A is a constant* $n \times n$ *matrix with eigenvalues which all have negative real parts;*
- $B(t)$ *is a continuous* $n \times n$ *matrix with the property*

$$
\lim_{t \to \infty} \|B(t)\| = 0.
$$

• $f(t, x)$ *is continuous in t and x and Lipschitz continuous in x in a neighborhood of* $x = 0$ *; moreover,*

$$
\lim_{\|x\|\to 0}\frac{\|f(t,x)\|}{\|x\|}=0\quad \textit{uniformly in t.}
$$

This condition implies that $x = 0$ *is a solution.*

Then there exist positive constants C *,* t_0 *,* δ *,* μ *such that*

$$
||x_0|| \le \delta \quad \Longrightarrow \quad ||x(t)|| \le C||x_0||e^{-\mu(t-t_0)}, \qquad t \ge t_0.
$$

The solution $x = 0$ *is asymptotically stable and the attraction is exponential in a* δ *neighborhood of* $x = 0$ *.*

Proof.

Estimates. From theorem 6.1, since all the eigenvalues of *A* have negative real part, there exist positive constants C and λ such that

$$
\|\Phi(t)\| \le C e^{-\lambda(t-t_0)}, \qquad t \ge t_0.
$$

From the assumption on *f*, for $\delta_0 > 0$ sufficiently small there exists a constant $b(\delta_0)$ such that

$$
||x|| \le \delta_0 \implies ||f(t,x)|| \le b(\delta_0)||x||, \quad t \ge t_0.
$$

From the assumption on B , for t_0 sufficiently large

$$
||B(t)|| \le b(\delta_0), \qquad t \ge t_0.
$$

Existence & Uniqueness. The existence and uniqueness theorem yields that in a neighborhood of $x = 0$, the solution of the initial value problem (4) exists for $t_0 \le t \le t_1$. From the above theorem, if $\Phi(t)$ is a fundamental set with $\Phi(t_0) = I$, then

$$
||x(t)|| \le ||\Phi(t)|| ||x_0|| + \int_{t_0}^t ||\Phi(t-s+t_0)|| \, [||B(s)|| ||x(s)|| + ||f(s,x(s))|| \,] ds.
$$

Let $t_0 \le t_2 \le t_1$ be determined by the condition $||x|| \le \delta_0$. Using the estimates for Φ , *B*, and *f* we have for $t_0 \le t \le t_2$

$$
||x(t)|| \leq C e^{-\lambda(t-t_0)} ||x_0|| + \int_{t_0}^t C e^{-\lambda(t-s)} 2b ||x(s)|| ds
$$

so that

$$
e^{\lambda(t-t_0)}\|x(t)\| \le C\,\|x_0\| + \int_{t_0}^t 2bC\,e^{\lambda(s-t_0)}\|x(s)\|\,ds.
$$

We use Gronwal's inequality we obtain

$$
e^{\lambda(t-t_0)}\|x(t)\| \le C\, \|x_0\| \, e^{2Cb(t-t_0)},
$$

or

$$
||x(t)|| \le C ||x_0|| e^{(2Cb-\lambda)(t-t_0)}.
$$
\n(5)

If δ and consequently *b* are small enough, the quantity $\mu = \lambda - 2Cb$ is positive and we have the required estimate for $t_0 \leq t \leq t_2$.

Now we choose $||x_0||$ such that $||x_0|| \le \delta_0$, then $||x(t)||$ decreases and the estimate can be repeated on a longer time interval. So the estimate (5) holds for $t \ge t_0$ if $\delta = \min(\delta_0, \delta_0/C)$. \blacksquare

Example. *(Oscillator with damping)*

Consider the equation

$$
\ddot{x} + \mu \dot{x} + \sin x = 0, \qquad \mu > 0. \tag{6}
$$

The equivalent system can be written as

$$
\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -\mu \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ x_1 - \sin x_1 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + f(x_1, x_2)
$$

The eigenvalues of the linearized system are

$$
\lambda_{1,2} = \frac{-\mu \pm \sqrt{\mu^2 - 4}}{2}.
$$

so $Re \lambda_{1,2} < 0$ *. System (6) satisfies the requirements of the Poincaré-Lyapunov theorem, so the equilibrium solution* (0*,* 0) *is asymptotically stable.*

In the case that the linear part of the equation has periodic coefficients we can apply the theory of Floquet.

Theorem. *Consider the equation in* \mathbb{R}^n

$$
\dot{x} = A(t)x + f(t, x),\tag{7}
$$

with

- *A*(*t*) *a T-periodic continuous matrix,*
- $f(t, x)$ *is continuous in t and x and Lipschitz continuous in x for* $t \in \mathbb{R}$ *, x in a neighborhood of* $x = 0$ *. Moreover,*

$$
\lim_{\|x\| \to 0} \frac{\|f(t,x)\|}{\|x\|} = 0, \quad \text{uniformly in } t
$$

If the real parts of the characteristic exponents of the linear periodic equation

$$
\dot{y} = A(t) y
$$

are negative, the solution $x = 0$ *of* (7) *is asymptotically stable. Also the attraction is exponential in a* δ -*neighborhood of* $x = 0$ *.*

Proof. From Floquet theorem, any fundamental matrix $\Phi(t)$ of $\dot{y} = A(t)y$ can be written as $\Phi(t) = P(t)e^{Bt}$, *P* is *T*-periodic. Consider the transformation

$$
x = P(t)z.
$$

Substitution in (7) yields

$$
P\dot{z} + \dot{P}z = APz + f(t, Pz).
$$

Then

$$
P\dot{z} = (AP - \dot{P}) z + f(t, Pz).
$$

But

$$
\dot{P} = \dot{\Phi} e^{-Bt} + \Phi e^{-Bt}(-B) = AP - PB
$$

and thus

$$
P\dot{z} = PB z + f(t, Pz).
$$

Thus the transformed equation is

$$
\dot{z} = B z + P^{-1}(t) f(t, P(t)z). \tag{8}
$$

By assumption, the constant matrix *B* has only eigenvalues with negative real parts. The solution $z = 0$ of (8) satisfies the requirements of the Poincaré-Lyapunov theorem from which follows the result.

Remark. *Recall Theorem 3.1:*

Consider the equation $\dot{x} = Ax + q(x)$; if $x = 0$ is a positive (negative) attractor for the *linearized equation* $\dot{y} = Ay$ *then* $x = 0$ *is a positive (negative) attractor for the nonlinear equation* $\dot{x} = Ax + g(x)$

In other wards,

If $x = 0$ *is a positive (negative) attractor for the linear equation* $\dot{x} = Ax$ *then* $x = 0$ *is a positive (negative)* attractor for the nonlinear equation $\dot{x} = Ax + g(x)$ if $\lim_{\|x\| \to 0} \frac{\|g(x)\|}{\|x\|} = 0$. *Then clearly that theorem is a special case of Poincaré-Lyapunov theorem.*

Remark. *Example 5.3 show that*

positive attraction by a critical point fo nonlinear equation \implies *stability*

Since some orbits leaves initially then go back to the point.

Poincaré-Lyapunov theorem tells that under the stated conditions

linear approximation has a positive attractor

 \implies the solution of the nonlinear problem is asymptotically stable.

Remark.

 $y = 0$ *is a positive attractor of the linear equation* $\dot{y} = Ay + B(t)y$ \iff 0 *is a asymptotically stable if we add a smooth nonlinear term.*

The condition

$$
\lim_{t \to \infty} \|B(t)\| = 0
$$

is essential.

Example. *Consider for* $t \geq 1$ *the system*

$$
\dot{x}_1 = -ax_1, \n\dot{x}_2 = [-2a + \sin(\ln t) + \cos(\ln t)]x_2 + x_1^2, \qquad a > \frac{1}{2}.
$$

Note that $\lim_{t\to\infty} B(t) \neq 0$ for this system and thus this conditions of Poincaré-Lyapunov theorem is not satisfied. In a neighborhood of 0 the linearized system \dot{x} = $Ax + B(t)x$ is

$$
\dot{y}_1 = -ay_1,
$$

\n $\dot{y}_1 = [-2a + \sin(\ln t) + \cos(\ln t)]y_2.$

with independent solutions

$$
y_1(t) = e^{-at}
$$
, $y_2(t) = e^{t \sin(\ln t) - 2at}$.

This solutions tend to zero as $t \to \infty$.

Substitution of the solution $x_1(t) = c_1 e^{-at}$ into the second equation yields a linear inhomogeneous equation. Using the variation of parameters method we obtain

$$
x_2(t) = e^{t \sin(\ln t) - 2at} \left(c_2 + c_1^2 \int_0^t e^{-\tau \sin(\ln \tau)} d\tau \right).
$$

The solutions are not bounded as $t \to \infty$ unless $c_1 = 0$.

7.2 Instability of the trivial solution

Recall Theorem 3.2:

Consider the equation $\dot{x} = Ax + g(x)$; if *A* has an eigenvalue with positive real part, then the critical point $x = 0$ is not a positive attractor for the nonlinear equation $\dot{x} =$ $Ax + g(x)$.

In other wards,

If $x = 0$ is unstable for the linear equation $\dot{x} = Ax$ then $x = 0$ is unstable for the nonlinear equation $\dot{x} = Ax + g(x)$.

The following theorem is a more general version of this result.

Theorem. *Consider the equation in* R*ⁿ*

$$
\dot{x} = Ax + B(t)x + f(t, x), \t t \ge t_0 \t (9)
$$

with

- *A* is a constant $n \times n$ matrix with eigenvalues of which at least one has positive real *part.*
- $B(t)$ *is a continuous* $n \times n$ *matrix with the property*

$$
\lim_{t \to \infty} \|B(t)\| = 0.
$$

• $f(t, x)$ *is continuous in t and x, Lipschitz continuous in x in a neighborhood* of $x = 0$ *and* k*f*(*t, x*)

$$
\lim_{\|x\| \to 0} \frac{\|f(t,x)}{\|x\|} = 0, \qquad \text{uniformly in } t.
$$

Then the trivial solution of (9) is unstable.

Proof. See the textbook.

Example: competing species

Read the textbook.

7.3 Stability of periodic solutions of autonomous equations

In section 5.4, linearization of the autonomous equation $\dot{x} = f(x)$ in a neighborhood of a periodic solution $\phi(t)$ yields the equation

$$
\dot{y} = \frac{df}{dx}(\phi(t))y
$$

This linear equation always has the nontrivial *T*-periodic solution $\phi(t)$. This implies that at least one of the real parts of the characteristic exponents is zero, thus the above theorem does not apply. Instead we have the following result.

Definition.

• *Recall.* Let $M \subset \mathbb{R}^n$. The set

$$
U_{\eta}(M) = \{ x \in \mathbb{R}^n : dist(x, M) < \eta \}
$$

is call the η-neighborhood of M.

• An invariant set M of $\dot{x} = f(x)$ is said to be stable if for any $\epsilon > 0$ there exist $\delta > 0$ *such that*

 $x_0 \in U_\delta(M) \implies x(t, x_0) \subset U_\epsilon(M), \forall t \geq 0.$

M is asymptotically stable if it is stable and if there $U_b(M)$ *for some* $b > 0$ *such that* $x_0 \in U_b(M)$ *implies that the solution* $x(t, x_0)$ *approaches* M *as* $t \to \infty$ *.*

- If $\phi(t)$ is a nonconstant periodic solution of $\dot{x} = f(x)$ is orbitally stable, asymptotically *orbitally stable if the corresponding invariant closed curve* Γ *generated by* $\phi(t)$ *is stable, asymptotically stable, respectively.*
- A periodic solution is said to be asymptotically orbitally stable with asymptotic phase *θ*⁰ *if it is asymptotically orbitally stable and there is a δ such that*

 $dist(x_0, \Gamma) < \delta \implies \exists \theta_0 = \theta(x_0) \ni \lim_{t \to \infty} ||x(t, x_0) - \phi(t + \theta_0)|| = 0.$

Theorem. *Consider the equation* $\dot{x} = f(x)$ *which has a T-periodic solution* $\phi(t)$; $f(x)$ *is continuously differentiable in a domain in* \mathbb{R}^n , $n > 1$, *containing* $\phi(t)$ *. Suppose that linearization of* $\dot{x} = f(x)$ *in a neighborhood of* $\phi(t)$ *yields the equation*

$$
\dot{y} = \frac{df}{dx}(\phi(t))y
$$

with characteristic exponents of which one has real part zero (characteristic multiplier one is simple) and n−1 *exponents have real parts negative (all other characteristic multipliers have modulus* $\langle 1 \rangle$. Then the periodic solution $\phi(t)$ is asymptotically orbitally stable with *asymptotic phase.*

Example. *(generalized Liénard equation)*

Consider the equation

$$
\ddot{x} + f(x)\dot{x} + g(x) = 0.
$$

Suppose this equation has a periodic solution $x = \phi(t)$ *.*

As in chapter 6, the linearized equation is $\dot{y} = A(t)z$ with

$$
A(t) = \begin{pmatrix} 0 & 1 \\ \dots & -f(\phi(t)) \end{pmatrix}.
$$

The trace of the linearized equation is $trA(t) = -f(\phi(t))$ and thus the characteristic exponents

$$
\lambda_1 = 0,
$$
\n $\lambda_2 = -\frac{1}{T} \int_0^T f(\phi(s)) ds \left(\text{mod} \frac{2\pi i}{T} \right)$

and thus the periodic solution in the <u>linear approximation</u> is stable if $\lambda_2 \leq 0$.

Now, using this calculation and the above theorem we conclude that the periodic solution of the nonlinear equation $\ddot{x} + f(x)\dot{x} + g(x) = 0$ is asymptotically orbitally stable solution if $\int_0^T f(\phi(s)) ds > 0$.

Example. *Consider the two dimensional system*

$$
\dot{x} = f(x, y), \qquad \dot{y} = g(x, y)
$$

with T-periodic solution $x = \phi(t)$, $y = \psi(t)$.

By linearizing in a neighborhood of this periodic solution using

$$
x = \phi(t) + u, \qquad y = \psi(t) + v
$$

we obtain

$$
\dot{u} = f_x(\phi(t), \psi(t)) u + f_y(\phi(t), \psi(t)) v + \dots
$$

\n
$$
\dot{v} = g_x(\phi(t), \psi(t)) u + g_y(\phi(t), \psi(t)) v + \dots
$$

Using theorem 6.6 and the above theorem, asymptotically orbitally stable solution if

$$
\int_0^T [f_x(\phi(t), \psi(t)) + g_y(\phi(t), \psi(t)] dt < 0.
$$