
6 Linear Equation

6.1 Equation with constant coefficients

Consider the equation
ẋ = Ax, x ∈ Rn.

This equating has n independent solutions.
If the eigenvalues are distinct then the solutions are

cke
λkt, k = 1, . . . , n,

where ck are the corresponding eigenvectors.
If an eigenvalue λ has multiplicity m > 1 then the it has m dependent solutions of the

form
P0e

λt, P1e
λt, . . . , Pm−1e

λt,

where Pk(t), k = 0, . . . ,m − 1 are polynomial vectors of degree k or smaller.
Let x1(t), . . . , xn(t) are n independent solutions then

Φ(t) = (x1(t) x2(t) . . . xn(t))

is called a fundamental matrix. The solutions are given by

x(t) = Φ(t)c,

with c a constant vector. Given initial condition x(t0) = x0 the solution of the initial
value problem is

x(t) = Φ(t)Φ−1(t0)x0

Often one chooses Φ such that Φ(t0) = I, the n × n identity matrix.

Theorem. Consider the equation ẋ = Ax, with A a constant matrix , eigenvalues λ1, . . . , λn.

a. If Reλk < 0, k = 1, . . . , n, then for each x(t0) = x0 ∈ Rn and suitable chosen positive
constants C and µ we have

‖x(t)‖ ≤ C‖x0‖ e−µt, and lim
t→∞

x(t) = 0.

b. If Reλk ≤ 0, k = 1, . . . , n, where the eigenvalues with Reλk = 0 are distinct, then x(t)
is bounded for t ≥ t0. Explicitly

‖x(t)‖ ≤ C‖x0‖.

c. If there exists an eigenvalue λk with Reλk > 0, then in each neighborhood of x = 0
there are initial values such that for the corresponding solutions we have

lim
t→∞

‖x(t)‖ = ∞.
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The solution x = 0 is

• asymptotically stable in a.

• Lyapunov stable in b

• unstable in c

Example. See example 6.1
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6.2 Equations with coefficients which have a limit

Consider the equation
ẋ = Ax + B(t)x x ∈ Rn.

with A a non-singular constant n × n matrix, B(t) is continuous n × n matrix with

lim
t→∞

‖B(t)‖ = 0.

It is not always true that the solution of this equation tend to the solution of ẋ = Ax.

Example. Consider the equation

ẍ − 2

t
ẋ + x = 0, t ≥ 1.

The equation
ẍ + x = 0, t ≥ 1.

has bounded solutions only. However, the non-autonomous equation has the two un-
bounded independent solutions

sin t − t cos t, and cos t + t sin t.

So more conditions on B(t) are required

Theorem. Consider the equation

ẋ = Ax + B(t)x,

with B(t) continuous for t ≥ t0 with the properties that

a. the eigenvalues λk of A, k = 1, . . . , n have Reλk ≤ 0, the eigenvalues corresponding
with Reλk = 0 are distinct;

b.
∫∞

t0
‖B‖ dt is bounded,

then the solutions are bounded and x = 0 is stable in the sense of Lyapunov.

Theorem. Consider the equation

ẋ = Ax + B(t)x,

with B(t) continuous for t ≥ t0 such that

a. all eigenvalues of A have negative real parts;

b. limt→∞ ‖B‖ = 0,

then for all solutions we have
lim
t→∞

x(t) = 0

and x = 0 is asymptotically stable.
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Example. Consider the equation

ẋ = −x + b(t)x, t > 0.

• b(t) = (1 + t2)−1, t ≥ 0, then by the first theorem x = 0 is stable and by the second
theorem x = 0 is actually asymptotically stable.

• b(t) = (1 + t)−1, t ≥ 0, then the first theorem does not apply but by the second
theorem x = 0 is asymptotically stable.

• b(t) = at(1 + t)−1, t ≥ 0, a > 0, then both theorems do not apply. On the other
hand, we can write the equation in the form

ẋ = −x +
at

1 + t
x =

(
a − 1 − a

1 + t

)
x, t > 0.

and by integration we obtain

x(t) = c(1 + t)a e(a−1)t.

Thus x = 0 is asymptotically stable if 0 < a < 1 and unstable if a > 1.

Theorem. Consider the equation ẋ = Ax + B(t)x with B(t) continuous for t ≥ t0 and
limt→∞ ‖B(t)‖ = 0. If at least one eigenvalue of the matrix A has a positive real part,
there exists in each neighborhood of x = 0 solutions x(t) such that

lim
t→∞

‖x(t)‖ = ∞.

The solution x = 0 is unstable.
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6.3 Equations with periodic coefficients (Linear Periodic equa-

tion)

Consider the homogenous linear periodic equation

ẋ = A(t) x, A(t + T ) = A(t), t ∈ R, A(t) continuous, T > 0, (3)

where A(t) is an n × n matrix. This equation can have both periodic and non-periodic
solutions.

For example consider the equation ẋ = a(t)x with a(t) = 1 and a(t) = sin2 t. In both
cases we have non-periodic solutions , even unbounded solutions if x(t0) 6= 0.

Lemma. If C is a nonsingular n×n matrix, then there is a matrix B such that C = eB.

Lemma. If Φ(t) is a fundamental matrix of

ẋ = A(t) x, A(t + T ) = A(t), t ∈ R, A(t) continuous, T > 0.

then Φ(t + T ) is also a fundamental matrix and thus

Φ(t + T ) = Φ(t)C,

for some constant matrix C.

Proof. Let τ = t + T , then

dx(τ )

dτ
= A(τ − T )x(τ ) = A(τ )x(τ ).

So Φ(τ ) = Φ(t + T ) is also a fundamental matrix. The fundamental matrices Φ(t) and
Φ(t + T ) are linearly dependent and thus there exists a nonsingular n× n matrix C such
that Φ(t + T ) = Φ(t)C.

This follows from the fact each column in one matrix is a linear combination of the
columns of the other matrix.

Theorem. Suppose A(t + T ) = A(t). The system ẋ = A(t)x has at least one nontrivial
solution φ(t) such that

φ(t + T ) = µφ(t), µ constant.

Proof. Let Φ(t) be a fundamental matrix. Then Φ(t + T ) = Φ(t)C, where C is a
nonsingular constant matrix. Let µ be an eigenvalue of C with eigenvector v. Let φ(t) =
Φ(t)v. Then

φ(t + T ) = Φ(t + T )v = Φ(t)C v = µΦ(t)v = µφ(t).

57



Remark. If µ = 1 then φ is periodic.

Theorem. (Floquet)
Consider the equation

ẋ = A(t) x, A(t + T ) = A(t), t ∈ R, A(t) continuous, T > 0.

Each fundamental matrix Φ(t) has the form

Φ(t) = P (t) eBt,

where P (t) is T -periodic and B is constant n × n matrix.

Proof. From the above lemmas, there exists a constant matrix B such that

Φ(t + T ) = Φ(t)C = Φ(t) eBT .

Let
P (t) = Φ(t) e−Bt.

Then

P (t + T ) = Φ(t + T ) e−B(t+T ) = Φ(t)C e−BTeBt = Φ(t) eBt = P (t).

Corollary. There exists a nonsingular periodic transformation of variables which trans-
forms

ẋ = A(t) x, A(t + T ) = A(t), t ∈ R, A(t) continuous, T > 0.

into an equation with constant coefficients.

Proof. Let P (t) and B be as in Floquet theorem. Let

x = P (t) y.

Then
Ṗ (t) y + P (t) ẏ = A(t)P (t) y.

Or,
ẏ = P−1(AP − Ṗ ) y.

On the other hand, differentiation of P (t) = Φ(t)e−Bt yields

Ṗ = Φ̇ e−Bt + Φ e−Bt(−B) = AP − PB.

So we find
ẏ = By.
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Remark.

• The solutions of ẏ = By, are vector polynomials in t multiplied by eλt.

• Thus the Floquet theorem implies that any solution of the periodic equation (3) is a
linear combination of a product of polynomials in t, eλt and T -periodic terms, where
the exponents λ are the eigenvalues of B.

• The matrix C is called the monodromy matrix of (3). It is a nonsingular matrix
associated with a fundamental matrix Φ(t) of (3) through the relation Φ(t + T ) =
Φ(t)C.

• A monodromy matrix is the inverse of the fundamental matrix of a system of ODEs
evaluated at zero times the fundamental matrix evaluated at the period of the coef-
ficients of the system.

Φ(t + T ) = Φ(t)C =⇒ Φ(T ) = Φ(0)C =⇒ C = [Φ(0)]−1 Φ(T ).

• The eigenvalues ρ of a monodromy matrix are called the characteristic multipliers
of (3).

• Any λ such that ρ = eλT is called a characteristic exponent of (3).

• Notice that the characteristic exponents are not uniquely defined, but the multipliers
are. (since e2πi = 1).

• The real parts of the characteristic exponents λ are uniquely defined and we can
always choose the exponents λ as the eigenvalues of B, where B is any matrix so
that C = eBT .

• The characteristic multipliers do not depend upon the particular monodromy matrix
chosen; that is, the particular fundamental solution used to define the monodromy
matrix. In fact if Φ(t) is a fundamental matrix solution, Φ(t + T ) = Φ(t)C, and
Ψ(t) is another fundamental matrix solution, then there is a nonsingular matrix D
such that Ψ(t) = Φ(t)D. Therefore,

Ψ(t + T ) = Φ(t + T )D = Φ(t)C D = Ψ(t)D−1CD

and the monodromy matrix for Ψ(t) is D−1CD. On the other hand matrices which
are similar have the same eigenvalues.

• We can always select the monodromy matrix for a fundamental matrix Φ(T ) with
Φ(0) = I.
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Lemma. λ ∈ C is a characteristic exponent of (3) iff there is a nontrivial solution of (3)
of the form eλtp(t) where p(t + T ) = p(t). In particular,

there is a periodic solution of (3) of period T (or 2T but not T ) iff there is a multiplier
= 1 (or -1).

Proof. Suppose eλtp(t), p(t + T ) = p(t) 6= 0 is a solution of (3). Then Floquet theorem
implies there is an x0 6= 0 such that

eλtp(t) = P (t)eBt

︸ ︷︷ ︸
Φ(t)

x0, P (t + T ) = P (t).

We have

P (t)eBteBTx0 = P (t)eB(t+T )x0 = P (t + T )eB(t+T )x0 = eλ(t+T )p(t + T ) = eλ(t+T )p(t)

= eλTeλtp(t) = eλTP (t)eBtx0 = P (t)eBteλTx0.

Thus
P (t)eBt

[
eBT − eλT

]
x0 = 0.

Therefore det
(
eBT − eλTI

)
= 0 and thus eλT is an eigenvalue of eBT which implies that

λ is an eigenvalue of B and thus a characteristic exponent.
Conversely, suppose λ is a characteristic exponent, i.e. λ satisfies det

(
eBT − eλTI

)
=

0. Then there exists x0 6= 0 such that
(
eBT − eλTI

)
x0 = 0. One can choose the rep-

resentation by Floquet theorem Φ(t) = P (t)eBt so that λ is an eigenvalue of B. Then
eBtx0 = eλtx0 for all t and

solution

P (t)eBt

︸ ︷︷ ︸
Φ(t)

x0 = P (t)x0︸ ︷︷ ︸
p(t)

eλt

is the desired solution.

Remark.

• The existence of periodic solution of the equation ẋ = A(t)x and the stability of the
trivial solution are both determined by the eigenvalues of the matrix B.

• A necessary condition for the existence of T -periodic solutions is that one or more
of the characteristic exponents, λ, are purely imaginary (multiplier has modulus 1).

• A necessary and sufficient condition for asymptotic stability of the trivial solution
of ẋ = A(t)x, A(t) is T -periodic, is that all characteristic exponents have a negative
real part (multipliers have moduli < 1).

• A necessary and sufficient condition for stability of the trivial solution is that all
characteristic exponents have real part ≤ 0 while the exponents with real part zero
have multiplicity one.

• A serious difficulty with equations with periodic coefficients is that there are no gen-
eral methods available to calculate the matrix P (t) or the characteristic exponents.
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• Each equation requires a special study and whole books have been devoted to some of
them.

• However the following general theorem can be useful.

Lemma. If X(t) is a fundamental matrix of the equation ẋ = A(t)x, then z(t) = detX(t)
satisfies the scalar equation ż = trA(t)z. Thus

detX(t) = [detX(t0)] exp

(∫ t

t0

trA(s) ds

)
.

Theorem. If ρj = eλjT , j = 1, 2, . . . , n are the characteristic multipliers of (3), then

Πn
j=1ρj = exp

(∫ T

0

trA(s) ds

)
,

n∑

i=1

λi =
1

T

∫ T

0

trA(t) dt

(
mod

2πi

T

)
.

Proof. Suppose C is a monodromy matrix for the matrix solution X(t), X(0) = I of (3).
Then C = X(T ) and thus from the above lemma

detC = det X(T ) = exp

(∫ T

0

trA(s) ds

)

The statements of the theorem now follow immediately from the definitions of character-
istic multipliers and exponents.

Remark.

• If the sum is positive then the trivial solution is unstable.

• If the sum is negative or zero then we do not have enough information to draw
conclusions about the stability of the trivial solution.

• We have seen in section 5.4, when linearizing in a neighborhood of a periodic solution
φ(t) of an autonomous equation, that one of the solutions of the linear system is
φ̇(t) and thus has multiplier = 1 or one of the exponents is 0.

• This implies that if the equation has order 2 then we can construct the other inde-
pendent solution.
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application

(generalized Liénard equation) Consider the equation

ẍ + f(x) ẋ + g(x) = 0.

Suppose the equation has a T-period solution x = φ(t). Let

y = x − φ

Then,
φ̈ + ÿ + f(φ + y)(φ̇ + ẏ) + g(φ + y) = 0

Using the expansions of f and g

f(φ + y) = f(φ) +
df

dx
(φ) y + . . . g(φ + y) = g(φ) +

dg

dx
(φ) y + . . . .

we have

φ̈ + ÿ +

[
f(φ) +

df

dx
(φ) y

]
(φ̇ + ẏ) + g(φ) +

dg

dx
(φ) y + · · · = 0

By grouping we have

φ̈ + f(φ)φ̇ + g(φ) + f(φ)ẏ + ÿ +
df

dx
(φ)φ̇ y +

dg

dx
(φ) y + · · · = 0

Since φ is a solution,

ÿ + f(φ) ẏ +

[
df

dx
(φ) φ̇ +

dg

dx
(φ)

]
y = . . .

The equivalent vector form is

ẏ1 = y2

ẏ2 = −
[

df

dx
(φ) φ̇ +

dg

dx
(φ)

]
y1 − f(φ) y2 + . . .

=

(
0 1

−
[

df
dx

(φ) φ̇ + dg
dx

(φ)
]

−f(φ)

)(
y1

y2

)
+ . . .

The trace of the linearized equation is

TrA(t) = −f(φ(t)).

From section 5.4, φ̇(t) is a solution of the linearized equation.
So we can put λ1 = 0. From the above theorem,

λ2 =
1

T

∫ T

0

f(φ(t)) dt

(
mod

2πi

T

)
.

The periodic solution in the linear approximation is stable if λ2 ≤ 0 and instable if λ2 > 0.
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Example. Consider the equation ẋ = A(t)x with

A(t) =

(
−1 + 3

2
cos2 t 1 − 3

2
sin t cos t

−13
2
sin t cos t −1 + 3

2
sin2 t

)

The above theorem yields

λ1 + λ2 =
1

2π

∫ 2π

0

(
−2 +

3

2
cos2 t +

3

2
sin2

)
dt = −1

2

With this we have no immediate conclusion of the stability of th trivial solution.
The instantaneous eigenvalues of the matrix A(t), λ(t), are (−1 ± i

√
7)/4, which

surprisingly are time independent. This suggest theat the equation has characteristic
exponent with negative real part and stability of the trivial solution.

However the solution exists of the form
(
− cos t
sin t

)
et/2.

The characteristic exponents are λ1 = 1
2
, and λ2 = −1, the trivial solution is unstable.

One of the characteristic multipliers is eπ and the other one is e−2π.
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