6 Linear Equation

6.1 Equation with constant coefficients

Consider the equation
T = Ax, xr € R™

This equating has n independent solutions.
If the eigenvalues are distinct then the solutions are

e, k=1,...,n,

where ¢, are the corresponding eigenvectors.
If an eigenvalue A has multiplicity m > 1 then the it has m dependent solutions of the
form

P0€>\t, P1€>\t, ey Pm_le’\t,
where Py(t), k =0,...,m — 1 are polynomial vectors of degree k or smaller.
Let x1(t), ..., z,(t) are n independent solutions then

O(t) = (z1(t) xa(t) ... zn(t))
is called a fundamental matrix. The solutions are given by
x(t) = ®(t)e,

with ¢ a constant vector. Given initial condition z(ty) = ¢ the solution of the initial
value problem is

z(t) = &) (to)xo
Often one chooses ® such that ®(ty) = I, the n x n identity matrix.

Theorem. Consider the equation © = Ax, with A a constant matrix , eigenvalues A1, . .., Ay,.

a. If Rel, <0, k=1,...,n, then for each x(ty) = xo € R" and suitable chosen positive
constants C' and p we have

|z ()] < C|zol| e, and lim x(t) = 0.

t—o00

b. If Re X, <0, k=1,...,n, where the eigenvalues with Re A\, = 0 are distinct, then x(t)
1s bounded fort > tg. Explicitly

lz@ < Cllol-

c. If there exists an eigenvalue N\, with Re N\, > 0, then in each neighborhood of x = 0
there are initial values such that for the corresponding solutions we have

lim ||z(t)|| = oo.

t—o00
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The solution £ = 0 is

e asymptotically stable in a.

e Lyapunov stable in b

e unstable in ¢

Example. See example 6.1
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6.2 Equations with coefficients which have a limit

Consider the equation
t=Ax+ B(t)xr x€R"

with A a non-singular constant n x n matrix, B(t) is continuous n X n matrix with

lim || B(t)]| = 0.

It is not always true that the solution of this equation tend to the solution of # = Ax.

Example. Consider the equation

2

The equation
i4x=0, t>1

has bounded solutions only. However, the non-autonomous equation has the two un-
bounded independent solutions

sint — t cost, and cost + tsint.

So more conditions on B(t) are required

Theorem. Consider the equation
&= Ax+ B(t)«x,
with B(t) continuous for t > to with the properties that

a. the eigenvalues N\, of A, k = 1,...,n have Re Ay < 0, the eigenvalues corresponding
with Re A\, = 0 are distinct;

b. [ 1Bl dt is bounded,

then the solutions are bounded and x = 0 is stable in the sense of Lyapunov.

Theorem. Consider the equation
&= Ax+ B(t)«x,
with B(t) continuous for t > ty such that
a. all eigenvalues of A have negative real parts;
b. lim;_ ||B]| =0,
then for all solutions we have

lim z(t) =0

t—o00

and x = 0 s asymptotically stable.
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Example. Consider the equation
T=—x+0b(t)x, t > 0.

e b(t) = (1+t*)~' t > 0, then by the first theorem x = 0 is stable and by the second
theorem x = 0 is actually asymptotically stable.

e b(t) = (1 +1¢)7', t > 0, then the first theorem does not apply but by the second
theorem = = 0 is asymptotically stable.

e b(t) =at(l+1t)"* t >0, a > 0, then both theorems do not apply. On the other
hand, we can write the equation in the form

t
T =—x+ ¢ x:(a—l— a )x, t> 0.

1+t 1+t

and by integration we obtain
z(t) = c(1 4 1) el V2,

Thus z = 0 is asymptotically stable if 0 < a < 1 and unstable if a > 1.

Theorem. Consider the equation & = Ax + B(t) x with B(t) continuous for t > ty and
limy_oo || B(t)|| = 0. If at least one eigenvalue of the matriz A has a positive real part,
there exists in each neighborhood of x = 0 solutions x(t) such that

lim ||z(t)]| = oo.

t—o00

The solution x = 0 is unstable.
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6.3 Equations with periodic coefficients (Linear Periodic equa-
tion)

Consider the homogenous linear periodic equation
T =A(t) z, Alt+T) = A(t), t € R, A(t) continuous, T>0, (3)

where A(t) is an n x n matrix. This equation can have both periodic and non-periodic
solutions.

For example consider the equation & = a(t) z with a(t) = 1 and a(t) = sin®t. In both
cases we have non-periodic solutions , even unbounded solutions if x(tg) # 0.

Lemma. If C is a nonsingular n X n matriz, then there is a matriz B such that C' = 5.

Lemma. If ®(t) is a fundamental matriz of
T =A(t) z, Alt+T) = A(t), teR, A(t) continuous, T > 0.
then ®(t +T) is also a fundamental matriz and thus
O(t+T)=o(t)C,
for some constant matrix C'.
Proof. Let 7 =t + T, then

dx(T)
dr

=A(r—T)x(r) = A(7) z(7).

So (1) = ®(t + T) is also a fundamental matrix. The fundamental matrices ®(¢) and
®(t 4 T) are linearly dependent and thus there exists a nonsingular n x n matrix C' such
that ®(t+ 1) = ¢(¢) C.

This follows from the fact each column in one matrix is a linear combination of the
columns of the other matrix.

Theorem. Suppose A(t +T) = A(t). The system & = A(t)x has at least one nontrivial
solution ¢(t) such that
ot+T)=pot), i constant.

Proof. Let ®(t) be a fundamental matrix. Then ®(¢t +T) = ®(¢)C, where C is a
nonsingular constant matrix. Let p be an eigenvalue of C' with eigenvector v. Let ¢(t) =
®(t)v. Then

Pt+T)=P(t+T)v=>(t)Co=pud(t)v=pp(t). M
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Remark. If u =1 then ¢ is periodic.

Theorem. (Floquet)
Consider the equation

T =A(t) z, A(t+1T) = A(t), teR, A(t) continuous, T > 0.

Fach fundamental matriz ®(t) has the form

where P(t) is T-periodic and B is constant n X n matriz.

Proof. From the above lemmas, there exists a constant matrix B such that
O(t+T)=d(t)C = d(t)ePT.

Let

Then

Corollary. There exists a nonsingular periodic transformation of variables which trans-
forms

T =A(t) z, Alt+T) = A(t), teR, A(t) continuous, T > 0.
into an equation with constant coefficients.

Proof. Let P(t) and B be as in Floquet theorem. Let
x=P(t)y.

Then

P(t)y+ P()§ = A(t) P(t)y.

Or, .
=P (AP - P)y.

On the other hand, differentiation of P(t) = ®(t)e B yields
P=&e B+ de B (—B)= AP - PB.

So we find
y=DBy. N
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Remark.

The solutions of 1 = By, are vector polynomials in t multiplied by e

Thus the Floquet theorem implies that any solution of the periodic equation (3) is a
linear combination of a product of polynomials in t, e’ and T-periodic terms, where
the exponents X\ are the eigenvalues of B.

The matriz C' is called the monodromy matriz of (3). It is a nonsingular matriz
associated with a fundamental matriz ®(t) of (3) through the relation ®(t + T) =
o(t)C.

A monodromy matriz is the inverse of the fundamental matriz of a system of ODEs
evaluated at zero times the fundamental matriz evaluated at the period of the coef-
ficients of the system.

t+T)=d1t)C = d(T)=0(0)C = C=I[®0)] " ().

The eigenvalues p of a monodromy matrix are called the characteristic multipliers

of (3).

Any X such that p = e’ is called a characteristic exponent of (3).

Notice that the characteristic exponents are not uniquely defined, but the multipliers
are. (since e*™ =1).

The real parts of the characteristic exponents X\ are uniquely defined and we can
always choose the exponents A as the eigenvalues of B, where B is any matrix so
that C' = eBT.

The characteristic multipliers do not depend upon the particular monodromy matrix
chosen; that is, the particular fundamental solution used to define the monodromy
matriz. In fact if ®(t) is a fundamental matriz solution, ®(t +T) = ®(t) C, and
U(t) is another fundamental matriz solution, then there is a nonsingular matriz D
such that W (t) = ®(t) D. Therefore,

U(t+T)=d(t+T)D=&(t)CD=V(t)D'CD

and the monodromy matriz for V(t) is D™*C'D. On the other hand matrices which
are stmilar have the same eigenvalues.

We can always select the monodromy matriz for a fundamental matriz ®(T') with
o(0)=1.
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Lemma. A € C is a characteristic exponent of (3) iff there is a nontrivial solution of (3)
of the form e p(t) where p(t +T) = p(t). In particular,

there is a periodic solution of (3) of period T (or 2T but not T ) iff there is a multiplier
=1 (or-1).

Proof. Suppose e*p(t), p(t +T) = p(t) # 0 is a solution of (3). Then Floquet theorem
implies there is an zy # 0 such that

eMp(t) = P(t)eP xy, P(t+T)=P(t).
()
o(t

We have

P(t)eBteBTry = P(t)eBW gy = P(t + T)eP gy = 2 Dp(t 4+ T) = XEHDp(1)
= MeMp(t) = M P(t)ePlag = P(t)ePleM .

Thus
P(t)eP [ePT — M zo = 0.

Therefore det (eB7 — e*"'T) = 0 and thus e’ is an eigenvalue of 7 which implies that
A is an eigenvalue of B and thus a characteristic exponent.

Conversely, suppose A is a characteristic exponent, i.e. \ satisfies det (eBT —eMT ) =
0. Then there exists zo # 0 such that (57 —e*T) zy = 0. One can choose the rep-
resentation by Floquet theorem ®(t) = P(t)eP! so that X is an eigenvalue of B. Then

eBtry = eMxy for all t and
solution

P(t)eP zy = P(t)zg e
—— ——
(1) p(t)

is the desired solution. [ |

Remark.

e The existence of periodic solution of the equation & = A(t) x and the stability of the
trivial solution are both determined by the eigenvalues of the matrix B.

o A necessary condition for the existence of T-periodic solutions is that one or more
of the characteristic exponents, A, are purely imaginary (multiplier has modulus 1).

o A necessary and sufficient condition for asymptotic stability of the trivial solution
of & = A(t) z, A(t) is T-periodic, is that all characteristic exponents have a negative
real part (multipliers have moduli < 1).

o A necessary and sufficient condition for stability of the trivial solution is that all
characteristic exponents have real part < 0 while the exponents with real part zero
have multiplicity one.

o A serious difficulty with equations with periodic coefficients is that there are no gen-
eral methods available to calculate the matriz P(t) or the characteristic exponents.
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e Fach equation requires a special study and whole books have been devoted to some of
them.

e However the following general theorem can be useful.

Lemma. If X(t) is a fundamental matriz of the equation & = A(t)z, then z(t) = det X (t)
satisfies the scalar equation Zz = trA(t)z. Thus

det X (t) = [detX (to)] exp ( /t CirA(s) ds) .

Theorem. If p; = eNT | j =1,2,...,n are the characteristic multipliers of (3), then

T
IT7_,p; = exp (/ trA(s) ds) )
0

I 2mi

i=1 0

Proof. Suppose C' is a monodromy matrix for the matrix solution X (¢), X (0) = I of (3).
Then C' = X(7T') and thus from the above lemma

det C' = det X(T) = exp ( /O ' trA(s) ds)

The statements of the theorem now follow immediately from the definitions of character-
istic multipliers and exponents. [ |

Remark.
o [f the sum is positive then the trivial solution is unstable.

o [f the sum is negative or zero then we do not have enough information to draw
conclusions about the stability of the trivial solution.

o We have seen in section 5.4, when linearizing in a neighborhood of a periodic solution
@(t) of an autonomous equation, that one of the solutions of the linear system is
o(t) and thus has multiplier = 1 or one of the exponents is 0.

o This implies that if the equation has order 2 then we can construct the other inde-
pendent solution.
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application

(generalized Liénard equation) Consider the equation
T+ f(x)z + g(z) =0.

Suppose the equation has a T-period solution = = ¢(t). Let

y=c—0¢

Then, ) .
dp+i+ flo+y)o+y)+gle+y)=0

Using the expansions of f and g

640 =16+ L@yt aorn) =96)+ Loyt .
we have of p
T L g B
G+ 100+ Loy | i)+ 900 + L)y =0
By grouping we have
. - Codf . dg »
O+ f(0)0+9(0) + f(9)y + i+ - (9)oy + (P y+ - =
Since ¢ is a solution,
d - d
i+ 100+ | T @+ Lo)|u-.
The equivalent vector form is
Y1 = Yo
o= = L@+ 0| n - rom

0 1 n
~ L@+ 26)] 1) QJ*
The trace of the linearized equation is
TrA(t) = —f(o(t)).

From section 5.4, ¢(t) is a solution of the linearized equation.
So we can put A\; = 0. From the above theorem,

Do = %/OTf(qﬁ(t)) dt (mod?) |

The periodic solution in the linear approximation is stable if Ay < 0 and instable if Ay > 0.
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Example. Consider the equation & = A(t) z with

_ 3 2 _ 34
A(t) _ 13—1-.2(:05 t 1 2sgnzﬁcgst
—1gsintcost —1+g5sin“t

The above theorem yields
AL+ A= 1/% —2—|—§Cos2t—i-§sin2 dt——1
P ar 2 2 )

With this we have no immediate conclusion of the stability of th trivial solution.

The instantaneous eigenvalues of the matrix A(t), A(t), are (—1 =% iv/7)/4, which
surprisingly are time independent. This suggest theat the equation has characteristic
exponent with negative real part and stability of the trivial solution.

However the solution exists of the form

(o e
sint

The characteristic exponents are A\ = %, and Ay = —1, the trivial solution is unstable.
One of the characteristic multipliers is e™ and the other one is e ~2".
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