
3 Critical points

ẋ = f(x) −→
linearization

y = Aẏ

In this formulation the critical point has been translated to the origin. We also assume
that the critical point is non-degenerate, i.e. detA 6= 0.

The eigenvalues of the matrix A can be used to analyze the critical point of the linear
system.

Using matrix notation, we use the eigenvalues to construct a linear transformation
y = Tz to simplify the system to

T ż = ATz =⇒ ż = T−1ATz.

Here T−1AT is the Jordan normal form which is so simple that we can integrate to find
z and thus y = Tz.

3.1 Two-dimensional linear systems

Stable manifold. If the eigenvalues of A are real and have different sign then the critical
point is a saddle point. The orbits of ż = Az are given by

|z1| = c|z2|−|λ1/λ2|.

The behavior of the orbits is hyperbolic.
Note that the coordinate axes correspond to five solutions: the critical point (0, 0) and

the four half axes.
Two of these solutions approach the origin as t → ∞ while the other two approach

the origin as t → −∞.
The first two are called the stable manifolds of the saddle point, the other two the

unstable manifolds

3.2 Remarks on three-dimensional linear systems

If the eigenvalues are distinct then T−1AT is a diagonal matrix and we have

z(t) =
(
c1e

λ1t, c2e
λ2t, c3e

λ3t
)
.

We consider the following cases.

a. Three real eigenvalues. If all have the same sign then we have a three-dimensional
node otherwise we have a saddle-node

b. One real and two complex conjugate eigenvalues.
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• If all lie in {z : Re z < 0} then we have a positive attractor.

• If all lie in {z : Re z > 0} then we have a negative attractor.

• Sign of the real part of the complex eigenvalues is different from the third real
eigenvalue. Then we have (positive/negative) attraction in one direction and (at-
tractor/expansion) in the other two directions.

• Two eigenvalues purely imaginary. Then there is only in one direction positive or
negative attraction

3.3 Critical points of nonlinear equations

Above we analyzed critical points of autonomous equations ẋ = f(x) by linear analysis.
We assume that the critical point has been translated to the origin and that we can write
the equation in the form

ẋ = Ax + g(x),

with A a non-singular n × n matrix and that

lim
‖x‖→0

‖g(x)‖
‖x‖

= 0.

Remark.

• A sufficient condition for this assumption is that f(x) is continuously differentiable
in a neighborhood of x = 0.

• The analysis of nonlinear equations usually starts with a linear analysis as described
here, after which one tries to draw conclusions about the original, nonlinear system.

• Some properties of the linearized system also hold for the nonlinear systems.

• Other properties do not carry over from linear to nonlinear systems.

• Nomenclature: node, saddle , focus, center for the nonlinear equation.

• For plane systems (n = 2) we can still extend this terminology to the nonlinear case.

• For systems with dimension n > 2 this nomenclature meets with many problems
and so we characterize a critical point in that case with properties as attraction,
eigenvalues, existence of (un)stable manifolds etc.
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Nonlinear equation attractors vs Linearized equation attractors

To prepare for the stability analysis later we introduce the following two theorems.

Theorem. Consider the equation ẋ = Ax+g(x); if x = 0 is a positive (negative) attractor
for the linearized equation, then x = 0 is a positive (negative) attractor for the non-linear
equation ẋ = Ax + g(x).

That is the origin remains an attractor when we add the perturbation terms.
This result is not true for nonautonomous equations, A = A(t). See Bruer and Nohel

p. 158.

Theorem. Consider the equation ẋ = Ax+g(x); if A has an eigenvalue with positive real
part, then the critical point x = 0 is not a positive attractor for the nonlinear equation.

In particular, if the critical point is a saddle, then the critical point can not be an
attractor for the nonlinear equation.

Stable and unstable manifolds.
Consider the linear system

ẏ = Ay.

Let E(λ) be the generalized eigenspace of the n × n matrix A for the eigenvalue λ.

Definition. The stable manifold of the linear system ẏ = Ay is defined as the linear sub-
space Es of Rn which is equal to the sum over the generalized eigenspaces with eigenvalues
λ which have negative real part.

The unstable manifold Eu is the sum over the eigenvalues with positive real parts.

Note that since A is assumed to be nonsingular, 0 is not an eigenvalue.

Remark.

• Es and Eu are invariant sets of the linear system.

• Solutions are bounded for t → ∞ only if y(t0) ∈ Es.

• Solutions starting in the complement of Es ∪ Eu ”come from infinity and run away
to infinity”.

• If non of the eigenvalues is pure imaginary, then we have

Rn = Es ⊕ Eu.
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The following theorem contains a generalization to the nonlinear case.

Theorem. Consider the equation

ẋ = Ax + g(x), x ∈ Rn

in which the constant n×n matrix A has n eigenvalues with nonzero real part; g(z) is Ck

in a neighborhood of x = 0 and

lim
‖x‖→0

‖g(x)‖
‖x‖ = 0.

Then there exists a Ck manifold Ws, called the stable manifold of x = 0, with the following
properties:

a1. 0 ∈ Ws, Ws has the same dimension as Es and the tangent space of Ws at x = 0 is
equal to Es.

a2. If we have x(t0) ∈ Ws for a solution x(t), then x(t) ∈ Ws for all t ≥ t0 and
limt→∞ x(t) = 0

a3. If x(t0) 6∈ Ws for a solution x(t), then ‖x(t)‖ ≥ δ for some real, positive δ, suitable
t1 ≥ t0 and t ≥ t1.

Similarly, there exists a Ck manifold Wu, called the unstable manifold of x = 0 with
the properties

b1. 0 ∈ Wu, Wu has the same dimension as Eu and the tangent space of Wu at x = 0 is
equal to Eu.

a2. If we have x(t0) ∈ Wu for a solution x(t), then x(t) ∈ Wu for all t ≤ t0 and
limt→−∞ x(t) = 0

a3. If x(t0) 6∈ Ws for a solution x(t), then ‖x(t)‖ ≥ δ for some real, positive δ, suitable
t1 ≤ t0 and t ≤ t1.

Results.
Under the conditions of the above theorem, the phase-flows of the linear and the

nonlinear equations are homeomorphic in a neighborhood of x = 0 (a homeomorphism is
a continuous mapping which has a continuous inverse).
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Example. Consider the system in R2

ẋ = −x, ẏ = 1 − x2 − y2.

The critical points are (0, 1) and (0,−1). We have

∂f

∂(x, y)
(x, y) =

(
−1 0
−2x −2y

)
.

∂f

∂(x, y)
(0,±1) =

(
−1 0
0 ∓2

)
.

Thus by linear analysis, (0, 1) is a positive attractor while (0,−1) is a saddle.

Remark. It is easy to see that the conditions of the above theorem for the existence of
stable and unstable manifolds have been satisfied.

The stable manifold for the saddle separate the phase plane into two domains where
the behavior of the orbits is qualitatively different. Such a manifold we call a separatrix.
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