
2 Autonomous Equations

An equation is autonomous if t does not appear explicitly in the equation. The vector
equation

ẋ = f(x)

is called autonomous.
The scalar equation of order n

x(n) + F (x(n−1), . . . , x) = 0

is autonomous and can be written as an autonomous system.

2.1 Phase-space, orbits

Translation property

Lemma. Suppose that φ(t) of ẋ = f(x) in the domain D ⊂ Rn, then φ(t − t0) is also a
solution.

Proof. Let τ = t − t0. Then d/dt = d/dτ and the rhs does not change since t does not
occur explicitly. Thus the autonomous equation does not change. So φ(τ ) is a solution of
the transformed equation which is the same as the original equation.

Remark. It follows from this lemma that:

φ(t) is a solution of ẋ = f(x), x(0) = x0 =⇒
φ(t − t0) is a solution of ẋ = f(x), x(t0) = x0.

For example since sin t is a solution of the equation ẍ+x = 0, then cos t is also a solution
since sin(t − π/2) = cos t.

Remark.

• Although the solutions φ(t) and φ(t−t0) are different, we will see that these solutions
correspond to the same orbital curves in phase space.

• The translation property is important for the study of periodic solutions and for the
theory of dynamical systems.
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Definition. Consider the equation ẋ = f(x) with x ∈ D ⊂ Rn.

• D is called phase-space. The space G = R × Rn is called the solution space.

• A point in the phase space with coordinates (x1(t), x2(t), . . . , xn(t)) for certain t is
called a phase point.

• The solution curves in the phase-plane are called orbits.

• The motion of a set of points with t along the corresponding orbits is called the
phase flow.

Example. Consider the harmonic equation

ẍ + x = 0.

which have the linearly independent solutions {sin t, cos t}.
To obtain the corresponding vector equation we put x = x1 and ẋ = x2 to obtain

ẋ1 = x2, ẋ2 = −x1,

for which the solution is {x1(t), x2(t)} = {sin t, cos t}. In the solution space the sketch of
the solution is a spiraling curve centered around the line (x, ẋ, 0) = (0, 0, t). The projection
in the phase-plane, the xẋ-plane, are circles centered at (0, 0) and parameterized by t.

Construction of solution curves

In general to obtain the solution curves in the phase-space we formulate a differential
equation describing the behavior of the orbits as follows.

The components can be written as

ẋi = fi(x), i = 1, . . . , n.

We use one of the components xi as independent variable if fi(x) 6= 0. Then with the
chain rule we obtain (n − 1) equations

dxj

dxi
=

fj(x)

fi(x)
, j = 1, . . . , n, j 6= i.

The solutions of this system are the orbits.
The existence and uniqueness theorem applied to this system implies that the orbits

in phase space will not intersect.
for this method to work we have to exclude the singularities of the rhs corresponding

to fi(x) = 0 by taking another independent variable.
There is a problem if there is a point a = (a1, . . . , an) such that f1(a) = · · · = fn(a) =

0, i.e. f(a) = 0. Such a point is called a critical point or equilibrium point.
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Example. Consider the system . . . x1 = x2, ẋ2 = −x1 corresponding to the harmonic
oscillator equation ẍ + x = 0. The phase space is R2 and the orbits are described by the
equation

dx2

dx1
= −x1

x2
.

Integration produces the family of circles

x2
1 + x2

2 = c.

The point (0, 0) is a critical point and is called a center

Example. Consider the equation ẍ − x = 0. The equation of the orbits is dx2/dx1 =
x1/x2. Integration produces the family of hyperbolas

x2
1 − x2

2 = 0.

(0, 0) is critical point and is called a saddle.

2.2 Critical points and linearization

Consider the equation ẋ = f(x), x ∈ D ⊂ Rn.

Definition. The point x = a with f(a) = 0 is called a critical point of equation ẋ = f(x).

• A critical point in phase-space can be considered as an orbit, degenerated into a
point.

• The critical point x(t) = a is a solution that satisfies the equation for all t (equilib-
rium solution).

• The existence and uniqueness implies that an equilibrium solution can never be
reached in a finite time (otherwise two solutions would intersect).

Example.
ẋ = −x, t ≥ 0.

x = 0 is a critical point, x(t) = 0, t ≥ 0 is an equilibrium solution. For all solutions x(t)
with x(0) 6= 0 we have limt→∞ x(t) = 0 (the solutions are x(t) = x(0) e−t ).
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Example.
ẋ = −x2, t ≥ 0.

x = 0 is a critical point, x(t) = 0, t ≥ 0 is an equilibrium solution. So the solutions x(t)
show qualitative and quantitative different behavior depending on the sign of x(0).

If x(0) > 0 then the solutions is positive and decreasing (negative derivative). If
x(0) < 0 then the solution is negative and decreasing.

More precisely, the exact solutions are

x(t) =
1

x−1
0 + t

, x0 6= 0.

If x0 < 0, the solution becomes unbounded in a finite time.

Definition. A critical point x = a is called a positive (negative) attractor if there exists
a neighborhood Ωa ⊂ Rn of x = a such that x(t0) ∈ Ωa implies x(t) → a as t → ∞ (−∞).

Linearization

Suppose f has a Taylor series expansion at x = a. Then we can write

f(x) = f(a) +
∂f

∂x
(a) (x − a) + O

[
(x − a)2

]
.

If x = a is a critical point of ẋ = f(x) then we have

ẋ =
∂f

∂x
(a) (x − a) + O

[
(x − a)2

]
.

The linearized system is the system

ẏ =
∂f

∂y
(a) (y − a).

Putting ȳ = y − a yields

˙̄y =
∂f

∂y
(a) ȳ.

Letting A = ∂f/∂y(a) and omitting the bar, the linearized system in a neighborhood of
x = a takes the form

ẏ = Ay.

Example. Consider the pendulum equation

ẍ + sinx = 0, x ∈ [−π, π].

The corresponding autonomous system is

ẋ1 = x2, ẋ2 = − sin x1.
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The critical points are (x1, x2) = (0, 0), (−π, 0), (π, 0)
The linearized system in a neighborhood of (0, 0) is

ẋ =


 0 1
−1 0


 x =


 x2

−x1


.

This system is described above.

Example. Consider the system
ẋ = ax− bxy
ẏ = bxy − cy

with x, y ≥ 0 and a, b, c positive constants.

Critical points are (0, 0) and (c/b, a/b).

∂f(x, y)

∂(x, y)
=

(
a − by −bx

by bx − c

)
.

In a neighborhood of (0, 0) the linearized system is

ẋ = ax
ẏ = −cy

The solution of this system is (x(t), y(t)) = (x(0) eat, y(0) e−ct).
In a neighborhood of (c/b, a/b) the linearized system is

ẋ = −c (y − a
b
)

ẏ = a (x− c
b
).

The solutions of this system are combinations of cos(
√

ac t) and sin(
√

ac t).

2.3 Periodic solutions

Definition. Suppose φ(t) is a solution of the equation ẋ = f(x), x ∈ D ⊂ Rn. Suppose
there exists a positive number T such that φ(t + T ) = φ(t) for all t ∈ R. Then φ(t) is a
periodic solution of the equation with period T .

Lemma.
Let φ(t) be a solution of ẋ = f(x). Then φ(t) is periodic ⇐⇒ the corresponding orbit

in phase space is closed.

Proof. A periodic solution assumes the same values in Rn and thus produces a closed
orbit.

Consider a closed orbit C traced by the solution φ(t). We want to show that there is
T > 0 such that φ(t + T ) = φ(t) for all t ∈ R.

By the uniqueness theorem, C can not contain a critical point. Thus ‖ẋ‖ = ‖f(x)‖ > 0.
Thus if we start from a point x0 ∈ C then we return to the same point after a certain
time T . This implies that there is T > 0 such that φ(0) = φ(T ). By uniqueness and
translation theorem, φ(t) = φ(t + T ) for all t ∈ R.
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Example. For the pendulum equation ẍ + sin x = 0 the phase plane contains a family of
closed orbits corresponding with periodic solutions.

Remark. For non-autonomous equations of the form ẋ = f(t, x), closed orbits do not
necessarily correspond with periodic solutions since the translation property is not valid.

Consider for example the system

ẋ = 2ty, ẏ = −2tx,

with solution of the form

x(t) = α cos t2 + β sin t2, y(t) = −α sin t2 + β cos t2.

In the phase-plane we have closed orbits, the solutions are not periodic.
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2.4 First integrals and integral manifolds

Consider the harmonic oscillator equation

ẋ1 = x2, ẋ2 = −x1.

Then the orbits satisfy the differential equation

dx1

dx2
= −x2

x1
.

The solution of this separable equation is

F (x1, x2) =
x2

1

2
+

x2
2

2
= E, E ≥ 0 a constant.

We call this expression the first integral of the harmonic oscillator equation.
In phase space, this relation with E > 0 corresponds to a manifold, a circle around

the origin. Also we can think of the orbits as the level surfaces F (x1, x2) = E.
Moreover, on a solution (x1, x2) of the differential equation we have

d

dt
F (x1, x2) =

∂F

∂x1
ẋ1 +

∂F

∂x2
ẋ2 = x1 x2 + x2 (−x1) = 0

In general we have the following definitions.

Definition. Consider the differentiable function F : Rn → R and the vector function x :
R → Rn. The derivative Lt of the function F along the vector function x, parameterized
by t, is

LtF :=
∂F

∂x1
ẋ1 + · · · + ∂F

∂xn
ẋn = ∇F (x) · ẋ.

Lt is called the orbital derivative.

Definition. Consider the equation ẋ = f(x), x ∈ D ⊂ Rn; the function F (x) is called
first integral of the equation if in D holds

LtF = 0

with respect to the vector function x(t).
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Remark. It follows from the definition that

• The first integral F (x) is constant along a solution. For this reason the first integrals
are called ”constants of motion”.

• The level sets of F (x) contain orbits of the equation.

• A level set defined by F (x) = constant which consists of a family of orbits is called
an integral manifold.

• Integral manifolds of an equation help in understanding the build-up of phase-space
of this equation.

• The concept of integral manifold is related to the concept of invariant set.

Definition. Consider the equation ẋ = f(x) in D ⊂ Rn. The set M ⊂ D is invariant if
the solution x(t) with x(0) ∈ M for −∞ < t < ∞. If this property is valid only for t ≥ 0
(t ≤ 0) then M is called a positive (negative) invariant set.

Clearly the equilibrium points and in general solutions which exist for all time are
(trivial) examples of invariant sets.

Example. The harmonic equation
ẍ + x = 0

has a first integral

F (x, ẋ) =
1

2
(ẋ)2 +

1

2
x2.

The family of circles F (ẋ, x) = E, E ≥ 0, is the corresponding set of integral mani-
folds.

Example. Consider the second order equation

ẍ + f(x) = 0

with f(x) sufficiently smooth. If we multiply both sides with ẋ, we can write the equation
as

d

dt

(
1

2
ẋ2

)
+

d

dt

∫ x

f(τ ) dτ = 0.

So a first integral of the equation is given by

F (x, ẋ) =
1

2
ẋ2 +

∫ x

f(τ ) dτ.

The orbits correspond with the level curves F (x, ẋ) = c.
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Example. Consider the equation

ẍ + x − 1

2
x2 = 0.

To find the critical points we write the equation in the form ż = f(z) with

f(z) =

(
z2

z2
1

2
− z1

)
.

Thus the critical points are (0, 0) and (2, 0).
For the linearized problem we have

∂f

∂z
=

(
0 1

z1 − 1 0

)
.

which at the critical points takes the values

∂f

∂z
(0, 0) =

(
0 1
−1 0

)
, and

∂f

∂z
(2, 0) =

(
0 1
1 0

)
.

Clearly (0, 0) is center point (stable but not asymptotically stable). The point (2, 0)
is a saddle point.

For nonlinear characterization, we can use the first integral

F (x, ẋ) =
ẋ2

2
+

x2

2
− x3

6
.

The orbits corresponds with the level sets

ẋ2 + x2 − x3

3
= c.

The level surfaces and orbits are shown in Figure 2.10.
The level set that passes through (2, 0) is

ẋ2 + x2 − x3

3
=

4

3
.

Definition. Consider F : Rn → R which is supposed to be C∞. The point x = a is called
a critical point of F if ∇F (a) = 0.

A critical point x = a of F is called non-degenerate if

det
∂2F (a)

∂x2
6= 0

where ∂2F (a)/∂x2 is the n × n matrix with entries ∂2F
∂xi∂xj

.

This implies that the vector function ∇F has a ”non-degenerate linearization” in a
neighborhood of x = a.
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Example. Consider the function

F (x1, x2) = x2
1 + x2

2.

Then

∇F = (2x1, 2x2), and
∂2F (x)

∂x2
=

(
2 0
0 2

)

Thus (0, 0) is a nondegenerate critical point of F .
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Definition. If x = a is a non-degenerate critical point of the C∞ function F (x), then
F (x) is called a Morse-function in a neighborhood of x = a.

Remark. The behavior of a Morse-function in a neighborhood of the critical point x = a
is determined by the quadratic part of the Taylor expansion of the function.

Suppose x = 0 is a non-degenerate critical point of the Morse-function F (x) with
expansion

F (x) = F0 − c1x
2
1 − c2x

2
2 − · · · − ckx

2 + ck+1x
2
k+1 + · · · + cnx2

n + O(x3),

with positive coefficients c1, . . . , cn. k is called the index of the critical point.
There exists a transformation x → y in a neighborhood of the critical point such that

F (x) → G(y) where G(y) is a Morse-function with critical point x = 0, the same index
k, and apart from G(0) only has quadratic terms.

Lemma. Consider the C∞ function F : Rn → R with non-degenerate critical point x = 0
of index k. In a neighborhood of x = 0 there exists a diffeomorphism (one-to-one, unique
C1 transform) which transforms F (x) to the form

G(y) = G(0) − y2
1 − y2

2 − · · · − y2
k + y2

k+1 + · · · + y2
n.

If k = 0, then the level sets in a neighborhood of the critical point correspond with a
positive definite quadratic form. The level sets are locally diffeomorphic to a sphere. In
the case of dimension n = 2 we have in this case closed orbits around the critical point.
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Example. Consider the system

ẋ1 = x2, ẋ2 = −f(x1)

with f(0) = 0.

Then (0, 0) is a critical point. The linearization produces

ẋ =

(
0 1

−f ′0) 0

)
x

The eigenvalues are ±
√

f ′(0). So (0, 0) is a center if f ′(0) > 0 or is a saddle if f ′(0) < 0
for the linearized equation. If f ′(0) = 0 then we have the degenerate case which we do
not consider.

A nonlinear characterization of the critical point can be given with the Morse lemma.
From above the first integral is

F (x1, x2) =
1

2
x2

2 +

∫ x1

0

f(t) dt.

F (x1, x2) is a Morse-function in a neighborhood of (0, 0) with the expansion

F (x1, x2) = f(0, 0) + ∇F (0, 0) · (x1, x2) + h.o.t

=
1

2
x2

2 +
1

2
f ′(0)x2

1 + h.o.t

If f ′(0) > 0, there is a C1 transformation to the quadratic form y2
2 + y2

1 ( index k = 0)
so for the nonlinear system we also have closed orbits (nonlinear center).

If f ′(0) < 0, there is a C1 transformation to the quadratic form y2
2 − y2

1 ( index k = 1,
saddle).
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Example. Consider the Volterra-Lotka equations

ẋ = ax− bxy ẏ = bxy − cy, x, y ≥ 0

with positive parameters a,b, and c.

Linearization produced periodic solutions in a neighborhood of the critical point
(c/b,a/b).

For the complete nonlinear equations the orbits satisfy the separable differential equa-
tion

dx

dy
=

x

y

a − by

bx − c
.

If we integrate we obtain
bx − c ln x + by − a lny = C.

So a first integral is
F (x, y) = bx − c lnx + by − a ln y.

Notice that

LtF = bẋ− c
ẋ

x
+ bẏ + a

ẏ

y
=

ẋ

x
(bx− c) +

ẏ

y
(by + a) = 0.

for any solution (x, y) of the system.
Now, F (x, y) is a Morse-function in a neighborhood of (c/b, a/b) with expansion

F (x, y) = F (c/b, a/b) +
b2

2c

(
x− c

b

)2

+
b2

2a

(
y − a

b

)2

+ . . .

The critical point has index zero and using Morse lemma it follows that the orbits are
closed.
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