1 Introduction

1.1 Definitions and Notation

We consider differential equation of the form

T = f(t,z) (1)

d
T = d—f, t eR, z € R", G open subset of R x R" = R",

f: G — R™is continuous in ¢t and z, i.e. f € C(G).

Definition.
The vector function z(t) is a solution of (1) on an interval I C R if z: 1 — R" is
continuously differentiable and if x(t) satisfies (1).

Remark.
Any general n'" order scalar equation

d"x . dx Az
— = Ty—y .., ——
an I\ @ At )

with g : R™™ — R, can also be put into the form of (1).

Derivatives.
For f(t,z) we have the following notation

oft ofr
af oxy 7 O0xn
e | r

fn ofr

oxy 7 O0xn

Smooth functions.

If no explicit assumption is made, we assume the function f(¢,x) to have a convergent
Taylor expansion in the domain considered.

A vector function is smooth means that the function has a continuous first derivatives.




Norm.

£l = Z fil,  feER™

Al = Z |, A is n x n matrix.
ij=1
If f(t,x) is a vector function for tg <t <ty + T and x € D with D a bounded domain in
R"™; then the uniform norm is defined by:

[fllsup = sup [ f]]
to<t<to+T'
xzeD




1.2 Existence and uniqueness

Lipschitz condition

Consider the function f(¢,z) with
fiRY™ R it —to| <a, x€DCR"
f(t, z) satisfies the Lipschitz condition with respect to z if
1t 20) = f(two) || < Loy — 2o, @1, € D,
and L a constant. L is called the Lipschitz constant. Also we can use the expression:

f(t,z) is Lipschitz continuous in z.

Note that:
e Necessary condition: Lipschitz continuity in « implies continuity in x

e Sufficient condition: continuous differentiability implies Lipschitz continuity

Equivalence of the Cauchy problem and the integral equation

We show first that the IVP
o(t) = f(t,»), x(to) = o,

is equivalent to finding a continuous solution of the Volterra integral equation (VIE):

z(t) = o —l—/t f(s,x(s)) ds.

Theorem. Suppose f(t,x) is continuous in a domain G € R™™ and that (to, z0) € G.
i. If x(t) is a solution of the IVP on interval I, then x(t) satisfies VIE on I.

it. If x(t) is a continuous solution of the VIE on some interval J containing to, then
x(t) satisfies the IVP on J.

Proof.
i. Follows clearly by integration.

ii. If x(¢) is a continuous solution of the VIE, then by the continuity of f(¢,x(t)) the
solution xz(t) is differentiable. Thus by the FTC applied to the VIE we have that z(t)
satisfies

z(t) = f(t,x(t)), telJ

and by substituting ¢ = ¢, we obtain x(ty) = xo. |




Existence and uniqueness theorem
Theorem. Consider the initial value problem
T = f(t,z), x(to) = xo,

with
x € DCR", [t —to] < a, D ={x: ||z — x| < d},

a and b are positive constants. The vector function f(t,z) satisfies the following condi-
tions:

i. f(t,x) is continuous in G = [ty — a,to+ a] X D;
it. f(t,x) is Lipschitz continuous in x:

Hf(ta'r1>_f(t7x2>H SLHxl_l?H’ .Tl,l'QED,

Then the IVP has a unique solution for
t—to <o =min(a,d/M), M =supl|f].
€]

Proof.
Consider the successive approximations {z,,(t)} € R™ defined by
t) =0+ /ttf(s,xm_l(s)) ds, xo(t) = .
Then for all m=1,2,..., O
[z (8) = zo(@)]| < /tt 1f (s, wm(s)l ds < M|t —to] < Md/M = d.
0

Thus {x,,(t)} C D for |t — o] < a
Next we show by induction that

MLm|t _ t0|m+1
(m+1)!

@i (1) = 2n(0)]] < Com=01,., -t <a.

We consider the interval [to,to + a] since the same argument applies to the interval
[to — a, to]. From above we already have

1 () = o) ]| < M(t = to).

Suppose
ML™ Yt —tg)™
m!

[2m(t) = Zm-1 ()] <
Then

[2m1(t) = zm ()] < / L (8 2m(s)) — (&, 2ma(s))] ds

< me( ) = Tm-1(s)[ ds
to
MITE = )" /t (5 —50)" ds = MLI™(t — to)™
= m! o 0 (m+1)



as required. Thus we have

M(La)m+1
m(t) = m+1(t S :O,l,..., t—t .
nlt) = Nomia0) = 2] < TErdsr, i~ tof <o
This implies that
= —~ M(La)™' M N (La)™ M,

n <y = (o ) D .
TRZOT()_WZOL(erl Lzm—i—l L (=1, bl <a
— Z rm(t) converges (in fact, uniformly) on |t — to| < a.

m=0
— Z[:cm+1(t) — T (t)] converges absolutely (and uniformly) on |t — o] < a.
m=0
Let

m—00

H(0) = Jim 1) = 1) + T 3" [aia(t) — (1)

Since each term x;41(t) — x;(t) is continuous, then x(¢) is continuous on |t —ty| < a being
a uniform limit of continuous functions.

Moreover, z(t) satisfies the VIE on [t — | < a since the uniform convergence of z,(t)
allows us to take m — oo in the definition of z,,.

To prove uniqueness, suppose that Z(t) is another solution. Then the function z(t) =
x(t) — x(t) satisfies the inequality

t

Izl = (s,2(s)) — f(s,2(s)) ds

< [ lf(s,2(s)) = f(s,2(s))]| ds

< /H:v ~alas =1 [ (o)l s

Let u(t ft |2(s)|| ds, then u'(t) = ||2(¢)| and
u'(t) < Lu(t).

We multiply by e~ (~*)Z and write the inequality in the form

% [e_(t_tO)Lu(t)} <0.

Integration from ¢y to t gives
ey <0 = |2t)| =ult) <0 = z(t) =0.

Thus z(t) = Z(t).



Remark.

e The solution of the IVP will be indicated by x(t), or sometimes by x(t;xo) or
x(t;to, o).

e The theorem guarantees the existence of the solution in a neighborhood of t = ty.

o The size of the neighborhood depends on the sup norm M of the vector function

f(t,x).

e Often the solution can be extended outside this neighborhood.

Examples

Example. Consider the IVP
t=uz xz(0)=1, ¢>0.

To apply the theorem we have f(t,2) = = which is continuous for all ¢ and z. Also f
is Lipschitz continuous in # with L = 1 in D = R. Then the solution exists and unique
for 0 <t < a with a an arbitrary positive constant. The solution can be continued for all
positive t. The solution of this problem is z(¢) = e’ which exists for all ¢ > 0.

Example. Consider the IVP

t=2z z(0)=1, t>0.
e

2
To apply the theorem we have f(t,2) = x? which is continuous in R x R. Let D =
{z:]z—1] <d}and G ={(t,z) : 0 <t < a,z € D} for some arbitrary positive constant
a > 1. Then

M =sup|fll = (1+d)"

Moreover,
|f(t,z1) — f(t,22)] = |a7 — 23| < |@1 + a2y — 22| < 2(1 4 d)|21 — 2],

and thus f is Lipschitz continuous with L = 2(1 4 d). It follows from the theorem that
the IVP has a unique solution for

d
(1+d)?

0<t<oa=min{a,d/M} =

Notice that o < 1 for all d.
On the other hand, using the separation of variables method we obtain the solution

This solution exists for 0 < ¢ < 1.




1.3 Gronwall Inequality

Theorem. Let 1) and ¢ be continuous nonnegative functions on to <t <tg+a such that

/ 1/1 dS + 53, 51,53 > 0.

Then .
(1) < 05 M E gy <t <ty ta.
Proof. Divide by the RHS, multiply by d1¢(¢) and then integrate. W

Theorem. Let ¢ be continuous nonnegative functions on to <t < tg+ a such that
t
¢(t) < 52(t — to) + 51/ ¢(S) ds + 53, 01 > 0, 52,53 > 0.
to

Then

5 5
Mﬂ§(§+@)&“%%7§ to <t <to+a.
1 1

Proof. Note that t —ty = ftto ds and thus we can combine the first two terms in one
integral. Let 1(t) = ¢(t) + §—2, then the estimate becomes

<&/¢ @+ +@

Application of the first theorem yields

s (2 es) v
1

Replacing v produces the required result. [ |
Remark. In the special case 09 = 03 = 0 we have ¢p(t) =0 forty <t <ty+ a.

Theorem. Consider the equation
@(t)=f(t,z), zeR', [:R"™ =R" >0

f is continuous in t and x and satisfies the Lipschitz condition. Let x(t) and Z(t) be the
solutions of the IVP’s

&= f(t,x), (0) = o,

&= f(t,z), x(0)=zo+n,
on interval I, respectively. Then if ||| < e >0, then

|z(t) — 2(t)| < ee™ on 1.
Proof. The two IVP are equivalent to the integral equations:

t):onr/O f(r, (7)) dr, is(t):xo+77+/0 f(r,z(r))dr

Subtracting,

Hﬂﬂ—fw}SWMA!Vﬁwﬁﬁ—fﬁ@ﬁDWT§8+LAHﬂﬂ—fﬁwﬁ-

The result follows from Gronwall’s inequality. W



