Math 514 (091) Advanced Mathematical Methods

Updated on May 29, 2010

HW # 1: Complex Variables

Due: Monday, Mar 15.

- (1) Define the principal value of $\arg z$ to lie in $(0,2\pi]$. Find Ln1, Ln(-2), and Ln(-*i*).
- (2) Use the branch cut structure of the square root function and logarithmic function to find a branch cut structure for $\ln\left(4 + \sqrt{z^2 9}\right)$.
- (3) Exercise 6.4.3.

HW # 2: Complex Variables

Due: Saturday, Mar 27.

(1) Consider the integral $\int_{C} \frac{z^{p} dz}{\sinh z - ia}$, $a \neq 0$ and real, over the contour which is the boundary of

the rectangular region $-R \le \text{Re } z \le R$ and $0 \le \text{Im } z \le 2\pi$. Use the integrals with p = 1,2 to

evaluate
$$\int_{-\infty}^{\infty} \frac{x dx}{\sinh x - ia}$$

- (2) Exercise 6.3.5 (hint. Re $w c \operatorname{Im} w = 0$ on circles through ± 1 with centers at z = ic. arg w can be found by considering selected points on each circle such as $(1 \sqrt{2})i$ and i.)
- (3) Exercise 6.3.6.a

HW # 3: Fourier Transform

Due: Monday, Apr 5.

(1) Show that
$$\mathscr{F}\left\{te^{-a|t|}\right\} = -\frac{4ai\omega}{\left(\omega^2 + a^2\right)^2}, \ a > 0.$$

(2) Show that the Fourier transform of

$$f(t) = \begin{cases} \cos(at), & |t| < 1\\ 0 & |t| > 1 \end{cases}$$

is

$$F(\omega) = \frac{\sin(\omega - a)}{\omega - a} + \frac{\sin(\omega + a)}{\omega + a}$$

(3) Use the definition of Fourier transform and $\mathscr{F}{H(t)} = \pi \,\delta(\omega) - \frac{i}{\omega}$ to show that

$$\int_{0}^{\infty} e^{-i\omega t} dt = \pi \delta(\omega) - \frac{i}{\omega}.$$

(4) Given that $\mathscr{F}\left\{\frac{1}{1+t^2}\right\} = \pi e^{|\omega|}$, find $\mathscr{F}\left\{\frac{\cos(at)}{1+t^2}\right\}$, *a* is real.

(5) Use contour integration to find $\mathscr{F}^{-1}\left\{\frac{\omega}{\omega^2+1}\right\}$.

(6) Use the definition of the convolution to show that $e^t H(t) * e^{-2t} H(t) = (e^{-t} - e^{-2t})H(t)$.

Homework # 4 (Fourier transform II)

Due: Saturday May 1.

(1) Find the inverse of $F(\omega) = \frac{e^{i\omega}}{\omega^2 + 1}$ using the residue theorem.

- (2) Find the particular solution for $y'' 4y' + 4y = e^{-t}H(t)$.
- (3) Solve

$$u_t = 4u_{xx}, \qquad -\infty < x < \infty, \ t > 0,$$
$$u(x,0) = e^{-|x|}, \qquad -\infty < x < \infty.$$

HW # **5**: Laplace and Mellin Transforms

Due: Saturday, May 1.

(1) Find Y(s) for

$$y'' + 4y' + 4y = H(t-1),$$
 $t > 0,$
 $y(0) = 0,$ $y(3) = 2.$

- (2) Solve the integral equation $f(t) = 1 + \int_{0}^{t} f(x) \sin(t-x) dx$.
- (3) Show that $\mathscr{M}\left\{\int_{0}^{\infty} f(xu) g(u) du\right\} = F(p)G(1-p)$, where $F(p) = \mathscr{M}\left\{f(x)\right\}$ and $G(p) = \mathscr{M}\left\{g(x)\right\}$.
- (4) Use the definition of Mellin Transform to solve the integral equation

$$\int_{0}^{\infty} f(u) g\left(\frac{x}{u}\right) du = h(x), \qquad x > 0,$$

where f(x) is unknown and g(x) and h(x) are given functions.

HW # 6: Hankel Transform

1. Let f(r) be defined for r > 0 and such that rf(r) and rf'(r) vanish as $r \to 0$ and $r \to \infty$.

Show that
$$\mathscr{H}_n\left\{\left(\Delta - \frac{n^2}{r^2}\right)f(r)\right\} = -k^2 F_n(k)$$
, where $\Delta = \frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}\right) = \frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}$.

2. Solve:

$$u_{rr} + \frac{1}{r}u_r + u_{zz} = 0, \qquad 0 < r < \infty, \qquad 0 < z < \infty,$$

$$u(r,0) = H(1-r), \qquad 0 < r < \infty.$$

Due: Saturday, May 9.

HW # 7: Wiener-Hopf Technique and Asymptotic Expansions

- 1. DuT: problem 1, p. 570.
- 2. DuT: problem 1, p. 583. Use steps 5 and 9 without showing them.
- 3. Exercise 10.2.1
- 4. Exercise 10.3.1