Math 514 (091)

Advanced Mathematical Methods

HW \# 1: Complex Variables
Due: Monday, Mar 15.
(1) Define the principal value of $\arg z$ to lie in $(0,2 \pi]$. Find $\operatorname{Ln} 1, \operatorname{Ln}(-2)$, and $\operatorname{Ln}(-i)$.
(2) Use the branch cut structure of the square root function and logarithmic function to find a branch cut structure for $\ln \left(4+\sqrt{z^{2}-9}\right)$.
(3) Exercise 6.4.3.

HW \# 2: Complex Variables Due: Saturday, Mar 27.
(1) Consider the integral $\int_{C} \frac{z^{p} d z}{\sinh z-i a}, a \neq 0$ and real, over the contour which is the boundary of the rectangular region $-R \leq \operatorname{Re} z \leq R$ and $0 \leq \operatorname{Im} z \leq 2 \pi$. Use the integrals with $p=1,2$ to evaluate $\int_{-\infty}^{\infty} \frac{x d x}{\sinh x-i a}$.
(2) Exercise 6.3.5 (hint. Re $w-c \operatorname{Im} w=0$ on circles through ± 1 with centers at $z=i c . \arg w$ can be found by considering selected points on each circle such as $(1-\sqrt{2}) i$ and i.)
(3) Exercise 6.3.6.a
(1) Show that $\mathscr{F}\left\{t e^{-a t t}\right\}=-\frac{4 a i \omega}{\left(\omega^{2}+a^{2}\right)^{2}}, a>0$.
(2) Show that the Fourier transform of

$$
f(t)=\left\{\begin{array}{cc}
\cos (a t), & |t|<1 \\
0 & |t|>1
\end{array}\right.
$$

is

$$
F(\omega)=\frac{\sin (\omega-a)}{\omega-a}+\frac{\sin (\omega+a)}{\omega+a}
$$

(3) Use the definition of Fourier transform and $\mathscr{\mathscr { F }}\{H(t)\}=\pi \delta(\omega)-\frac{i}{\omega}$ to show that

$$
\int_{0}^{\infty} e^{-i \omega t} d t=\pi \delta(\omega)-\frac{i}{\omega} .
$$

(4) Given that $\mathscr{F}\left\{\frac{1}{1+t^{2}}\right\}=\pi e^{|\omega|}$, find $\mathscr{F}\left\{\frac{\cos (a t)}{1+t^{2}}\right\}, a$ is real.
(5) Use contour integration to find $\mathscr{F}^{-1}\left\{\frac{\omega}{\omega^{2}+1}\right\}$.
(6) Use the definition of the convolution to show that $e^{t} H(t) * e^{-2 t} H(t)=\left(e^{-t}-e^{-2 t}\right) H(t)$.

Homework \# 4 (Fourier transform II)
Due: Saturday May 1.
(1) Find the inverse of $F(\omega)=\frac{e^{i \omega}}{\omega^{2}+1}$ using the residue theorem.
(2) Find the particular solution for $y^{\prime \prime}-4 y^{\prime}+4 y=e^{-t} H(t)$.
(3) Solve

$$
\begin{array}{ll}
u_{t}=4 u_{x x}, & -\infty<x<\infty, t>0, \\
u(x, 0)=e^{-|x|}, & -\infty<x<\infty .
\end{array}
$$

(1) Find $Y(s)$ for

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+4 y=H(t-1), \quad t>0, \\
& y(0)=0, \quad y(3)=2 .
\end{aligned}
$$

(2) Solve the integral equation $f(t)=1+\int_{0}^{t} f(x) \sin (t-x) d x$.
(3) Show that $\mathscr{M}\left\{\int_{0}^{\infty} f(x u) g(u) d u\right\}=F(p) G(1-p)$, where $F(p)=\mathscr{M}\{f(x)\}$ and $G(p)=\mathscr{T}\{g(x)\}$.
(4) Use the definition of Mellin Transform to solve the integral equation

$$
\int_{0}^{\infty} f(u) g\left(\frac{x}{u}\right) d u=h(x), \quad x>0
$$

where $f(x)$ is unknown and $g(x)$ and $h(x)$ are given functions.

HW \# 6: Hankel Transform Due: Saturday, May 9.

1. Let $f(r)$ be defined for $r>0$ and such that $r f(r)$ and $r f^{\prime}(r)$ vanish as $r \rightarrow 0$ and $r \rightarrow \infty$. Show that $\mathscr{H}_{n}\left\{\left(\Delta-\frac{n^{2}}{r^{2}}\right) f(r)\right\}=-k^{2} F_{n}(k)$, where $\Delta=\frac{1}{r} \frac{d}{d r}\left(r \frac{d}{d r}\right)=\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}$.
2. Solve:

$$
\begin{array}{ll}
u_{r r}+\frac{1}{r} u_{r}+u_{z z}=0, & 0<r<\infty, \quad 0<z<\infty, \\
u(r, 0)=H(1-r), & 0<r<\infty .
\end{array}
$$

HW \# 7: Wiener-Hopf Technique and Asymptotic Expansions Due: Saturday, Jun 5.

1. DuT: problem 1, p. 570.
2. DuT: problem 1, p. 583. Use steps 5 and 9 without showing them.
3. Exercise 10.2.1
4. Exercise 10.3.1
