1. Using the method of cylindrical shells, set up, but do not evaluate, an integral for the volume of the solid obtained by rotating
(a) $[\mathbf{7}$ points] the region bounded by the curves $y=\sqrt{x}, y=x-2$ and $y=0$ about the x-axis. [Sketch the region and a typical rectangle].

(b) [7 points] the region bounded by the circle $x^{2}+y^{2}=1$ about the line $x=-1$. [Sketch the region and a typical rectangle].

2. [5 points] Find the average value of the function $f(t)=\tan t \sec t$ over the interval $\left[0, \frac{\pi}{4}\right]$.
3. Determine whether the integral is convergent or divergent. If it is convergent, find its value.
(a) $[6$ points $] \int_{0}^{9} \frac{1}{x \sqrt{x}} d x$.
(b) $[8$ points $] \int_{0}^{+\infty} x e^{-10 x} d x$.
4. [6 points] Determine whether the sequence $\left\{\frac{(-1)^{n} \sqrt{n}}{n+7}\right\}_{n=1}^{+\infty}$ is convergent or divergent. If it is convergent, find its limit.
5. [7 points] Use geometric series to write the number

$$
1.2 \overline{13}=1.2131313 \ldots
$$

as a ratio of two integers.
6. Evaluate the following integrals:
(a) $[\mathbf{9}$ points $] \int x(\ln x)^{2} d x$.
(b) $[10$ points $] \int \frac{x^{3}}{\sqrt{4-x^{2}}} d x$.
(c) [12 points $] \int \frac{x^{3}+1}{x^{3}+x} d x$.
(d) $[\mathbf{1 0}$ points $] \int \frac{\sec x}{2+\tan x} d x$. Hint: Use the substitution $t=\tan \left(\frac{x}{2}\right)$.
7. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $[6$ points $] \sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{\frac{1}{n^{2}}}$.
(b) $[7$ points $] \sum_{n=1}^{+\infty}\left[\tan ^{-1}(2 n-1)-\tan ^{-1}(2 n+1)\right]$.

