1. Using the method of cylindrical shells, set up, but do not evaluate, an integral for the volume of the solid obtained by rotating
(a) the region bounded by the curves $y=x-x^{2}$ and $y=0$ about the line $x=-1$. Sketch the region and a typical rectangle.
(b) the region bounded by the curves $y=\ln x, y=0$, and $x=2$ about the x-axis. Sketch the region and a typical rectangle.
2. Find all numbers b such that the average value of $f(x)=\sqrt{x}$ on the interval $[0, b]$ is 6 .
(7 points)
3. Evaluate the following integrals:
(a) $\int \tan ^{2} t \sec ^{4} t d t$.
(7 points)
(b) $\int e^{-x} \cos (2 x) d x$.
(c) $\int \frac{1}{x^{3} \sqrt{x^{2}-1}} d x$.
(7 points)
(d) $\int x^{3} e^{x^{2}} d x$.
(7 points)
(e) $\int \frac{1}{5+3 \cos x} d x$
(f) $\int \frac{1}{\left(-x^{2}-2 x\right)^{3 / 2}} d x$.
(7 points)
4. (a) Write out the form of the partial fraction decomposition of $\frac{x-2}{x\left(x^{3}+x\right)^{2}}$. Do not determine the numerical values of the coefficients.
(b) Evaluate $\int \frac{x^{3}-4 x-10}{x^{2}-x-6} d x$.
(8 points)
5. Evaluate the integral or show that it is divergent.

$$
\text { (a) } \int_{-\infty}^{0} \frac{3 x}{\left(5 x^{2}+6\right)^{2}} d x \text {. }
$$

(b) $\int_{0}^{2} \frac{1}{(x-1)^{3}} d x$.
6. (a) Find the arc length of the curve $y=x^{2}-\frac{1}{8} \ln x, \quad 1 \leq x \leq 3$.
(7 points)
(b) Find the area of the surface generated by rotating the curve $y=\sqrt{4-x^{2}}, \quad 0 \leq x \leq 1$ about the y-axis.

