King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

CODE 004

Math 101 Final Exam Term 103 CODE 004

Wednesday, August 17, 2011 Net Time Allowed: 180 minutes

Name:		
ID.	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. Using Newton's method to find a root for $3x \sin(2\pi x) = 1$, and taking $x_1 = \frac{1}{2}$ as the first approximation, the second approximation x_2 is
 - (a) 0
 - (b) π
 - (c) $\frac{1+\pi}{3+2\pi}$
 - (d) 1
 - (e) $\frac{1-\pi}{3-2\pi}$

- 2. If $\cosh x = \frac{5}{3}$ and x < 0, then $3 \sinh x + 5 \tanh x$ is equal to
 - (a) 6
 - (b) -8
 - (c) 0
 - (d) 8
 - (e) -6

- 3. The absolute maximum of $f(x) = xe^{-\frac{x^2}{8}}$ over [-1, 4] is
 - (a) $\frac{4}{\sqrt{e}}$
 - (b) $\frac{2}{\sqrt{e}}$
 - (c) $\frac{4}{\sqrt[8]{e}}$
 - (d) $2\sqrt{e}$
 - (e) $\frac{-1}{\sqrt[8]{e}}$

- 4. The equation of the normal line to the parabola $y = x^2 5x + 4$ that is parallel to the line x 3y = 5 is given by
 - (a) 3y = 4 x
 - (b) 3y = 1 x
 - (c) 3y = x 4
 - (d) y = x 1
 - (e) 3y = x 1

$$5. f(x) = e^{\frac{1}{x}} \text{ has}$$

- (a) one critical number and one inflection point
- (b) no critical number and no inflection point
- (c) no critical number and one inflection point
- (d) no critical number and two inflection points
- (e) one crticial number and no inflection point

6. If
$$f(x) = \begin{cases} \ln(x-5), & 5 < x \le 6 \\ \|x\| + \|-x\|, & x > 6 \end{cases}$$
. Find $\lim_{x \to 6} f(x)$.

- (a) -2
- (b) -1
- (c) 0
- (d) 1
- (e) Does not exist

7.
$$\lim_{x \to \infty} \frac{x^2 + \cos x}{(x-1)^4} =$$

- (a) ∞
- (b) 1
- (c) -1
- (d) 0
- (e) $-\infty$

8. If
$$x^3 + y^3 = 1$$
, then $y'' =$

- (a) $2xy^4$
- (b) $\frac{x}{y^5}$
- (c) $\frac{-x}{y^4}$
- (d) $\frac{x}{y^4}$
- (e) $\frac{-2x}{y^5}$

- 9. If $f(t) = -t^2 + 3t + 5$ is the position of an object at time t, where f(t) is in feet and t in seconds, then the total distance travelled by the object over the time interval [0,3] is
 - (a) 3 ft
 - (b) $\frac{3}{2}$ ft
 - (c) 5 ft
 - (d) $\frac{9}{2}$ ft
 - (e) 0 ft

- 10. The slant asymptote of $f(x) = e^x + x + 1$ is
 - (a) y = 2x + 1
 - (b) y = x
 - (c) y = -2x + 1
 - $(d) \quad y = x + 1$
 - (e) None of these

11. If $x^y = (2 - y)^x$ then y' at x = 1 is equal to

- (a) -2
- (b) 2
- (c) -1
- (d) 4
- (e) ln 2

- 12. If the function $f(x) = \begin{cases} \frac{\cos x 1}{3 \tan^2 x} & x \neq 0 \\ a & x = 0 \end{cases}$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then a =
 - (a) None of these
 - (b) $-\frac{1}{6}$
 - (c) $\frac{2}{3}$
 - (d) 0
 - (e) $-\frac{1}{3}$

- $13. \quad \lim_{x \to 0} 5x(\csc x + \cot 2x) =$
 - (a) $\frac{15}{2}$
 - (b) 15
 - (c) 0
 - (d) $\frac{7}{2}$
 - (e) $\frac{5}{2}$

- 14. $\sin^{-1} x + \cos^{-1} x =$
 - (a) $\frac{\pi}{3}$
 - (b) None of these
 - (c) 0
 - (d) $\frac{\pi}{2}$
 - (e) 1

- 15. Given $f(x) = \frac{x^3}{3} x$, $x \in [-2, 2]$, then which one of the following statements is true about the graph of f?
 - (a) f has no inflection points
 - (b) f is concave upward from (-2,2)
 - (c) f is decreasing on (-2,0)
 - (d) f is concave downward on (-2,0)
 - (e) f is increasing on (0,2)

- 16. Using the graph of $y=e^x$, the maximum value of δ such that $|e^x-1|<\frac{1}{2}$ whenever $|x-0|<\delta$ is equal to
 - (a) ln 2
 - (b) $\ln \frac{1}{3}$
 - (c) None of these
 - (d) $\ln \frac{3}{2}$
 - (e) ln 3

17. If h(2) = 5, h'(2) = -3, then $\frac{d}{dx} \left(\frac{h(x)}{2x+1} \right) \Big|_{x=2}$ is

- (a) 1
- (b) 5
- (c) -5
- (d) -1
- (e) 0

- 18. A particle moves in a straight line and has acceleration a(t) = 2. Its initial velocity v(0) = -5 cm/s and its initial displacement s(0) = 9 cm. The position function s(t) is
 - (a) $s(t) = t^2 + 5t 9$
 - (b) cannot be determined from the given data
 - (c) $s(t) = t^2 5t + 9$
 - (d) $s(t) = t^2 9t + 5$
 - (e) s(t) = 2t 5

 $19. \quad \lim_{x \to \infty} \sqrt[x]{x} =$

- (a) $-\infty$
- (b) ∞
- (c) 1
- (d) e
- (e) 0

20. A street light is mounted at the top of a 5-meter-tall pole. A man 2 m tall walks away from the pole with a speed of $\frac{3}{2}$ m/s along a straight path. How fast is the tip of his shadow moving when he is 10 m from the pole?

- (a) $\frac{5}{3}$ m/s
- (b) 1 m/s
- (c) $\frac{5}{2}$ m/s
- (d) 5 m/s
- (e) $\frac{3}{2}$ m/s

- 21. Suppose that $3 \le f'(x) \le 5$ for all values of x. Then $a \le f(8) f(2) \le b$ where b a is equal to
 - (a) 12
 - (b) 10
 - (c) 4
 - (d) 6
 - (e) 8

- 22. If f'(x) is a continuous function and f'(3) = 3, then $\lim_{x \to 0} \frac{f(3+3x) f(3-3x)}{x} =$
 - (a) -3
 - (b) 3
 - (c) Does not exist
 - (d) 18
 - (e) 0

- 23. The dimensions of the rectangle of largest area that can be inscribed in a circle of radius r are
 - (a) 2r and 2r
 - (b) $\sqrt{2}r$ and $\frac{r}{\sqrt{2}}$
 - (c) 3r and r
 - (d) $\sqrt{2}r$ and $\sqrt{2}r$
 - (e) $\frac{r}{\sqrt{2}}$ and $\frac{r}{\sqrt{2}}$

- 24. A cylindrical can (without bases) is to be made from a rectangular plate. If we can change the length and the width of the plate so that length + width = 3, then the dimensions of the plate that has to be chosen to get a can with the largest volume is
 - (a) width $=\frac{1}{2}$, length $=\frac{5}{2}$
 - (b) width $=\frac{5}{4}$, length $=\frac{7}{4}$
 - (c) None of these
 - (d) width = length = $\frac{3}{2}$
 - (e) width = 2, length = 1

25. If $f(x) = \frac{x^4 + 1}{x^2 + 2}$, then f(x) has

- (a) f(x) has two slant asymptotes
- (b) f(x) has only one slant asymptote
- (c) f(x) has only one horizontal asymptote
- (d) f(x) has only one vertical asymptote
- (e) None of these

26. If $y = e^{cx}$ satisfies the equation y'' + 5y' - 6y = 0 then the sum of values that c may have is

- (a) 3
- (b) -5
- (c) 0
- (d) 6
- (e) -6

27. If $f(x) = xe^{\sqrt{x}}$, then $\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} =$

- (a) e^2
- (b) 0
- (c) Does not exist
- (d) $2e^2$
- (e) $-e^2$

28. The linear approximation of $\tan x$ at x = 0 is

- (a) $\frac{1}{1+x^2}$
- (b) $x^2 1$
- (c) x
- (d) x 1
- (e) 2x