King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

CODE 003

Math 101 Exam 2 CODE 003

103

August 2, 2011
Net Time Allowed: 120 minutes

Name:		
ID:	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $y = x^x + 2^x + x^2$, then y' =

- (a) $xx^{x-1} + x2^{x-1} + 2x$
- (b) $x^x(\ln x + 1) + x2^{x-1} + 2x$
- (c) $xx^{x-1} + 2^x \ln 2 + 2x$
- (d) $x^x(\ln x + 1) + 2^x \ln 2 + 2x$
- (e) $x^x \ln x + 2^x \ln 2 + 2x$

- 2. If $f(x) = \frac{h(x) + x}{x+1}$, $f'(1) = \frac{1}{2}$, and h(1) = 1, then h'(1) = 1
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{2}$
 - (d) -1
 - (e) $\frac{3}{2}$

- 3. If $(0, \beta)$ is a point on the tangent line to the graph of $y = -\pi + 4 \tan^{-1} \left(\frac{2}{x}\right)$ at x = 2, then $\beta =$
 - (a) 5
 - (b) 6
 - (c) 4
 - (d) 3
 - (e) 2

- 4. The slope of the normal line to the curve $e^y \sin x = e^x \sin y$ at $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is equal to
 - (a) $-e^{-\frac{\pi}{4}}$
 - (b) 2
 - (c) $e^{\frac{\pi}{4}}$
 - (d) -1
 - (e) 0

- 5. The radius of a circular disk is given as 5 cm with a maximum error in measurement of 0.1 cm. Using differentials, the maximum error in the calculated area of the disk is
 - (a) $10\pi \text{ cm}^2$
 - (b) π cm²
 - (c) $0.5 \pi \text{ cm}^2$
 - (d) $0.2 \pi \text{ cm}^2$
 - (e) $0.1 \pi \text{ cm}^2$

- 6. If $f(x) = (x-1)^{\frac{1}{3}}$, then the equation of the vertical tangent to the graph of f is
 - (a) None of these
 - (b) x = -1
 - (c) x = 1
 - (d) $x = \frac{1}{3}$
 - (e) $x = -\frac{1}{3}$

- 7. If the tangent line to the parabola $y = x^2 1$ is perpendicular to the tangent line of the parabola $y = ax^2 + 1$ at each intersection point, then a =
 - (a) $-\frac{1}{7}$
 - (b) $-\frac{1}{9}$
 - (c) $\frac{1}{9}$
 - (d) $\frac{1}{7}$
 - (e) $-\frac{1}{8}$

- 8. Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$. The shaded area formed by the two axes and the tangent line to the ellipse at (a, b), has area
 - (a) $\frac{ab(1-a)^2}{a-2}$
 - (b) ab
 - (c) $\frac{a^2(1+b^2)}{b^2(1+a^2)}$
 - (d) $\frac{a^2(1+b^2)}{2b^2(1+a^2)}$
 - (e) 2ab

- 9. If $y = e^z$, $z = \ln u^2$ and $u^2 + 1 = \tan x$ then $\frac{dy}{dx}\Big|_{x=\pi/4}$ is
 - (a) $\frac{1}{\sqrt{2}}$
 - (b) None of these
 - (c) $\frac{1}{2}$
 - (d) 2
 - (e) $\sqrt{2}$

- 10. The curve $y = x^3 + x^2 x$ has two horizontal tangents at x = a and x = b. Then a + b =
 - (a) $-\frac{2}{3}$
 - (b) 0
 - (c) $\frac{5}{3}$
 - (d) $\frac{1}{3}$
 - (e) $\frac{1}{2}$

- $11. \quad \lim_{x \to 0} \frac{x x \cos 3x}{\sin^2 2x} =$
 - (a) 3
 - (b) $\frac{1}{4}$
 - (c) $\frac{3}{2}$
 - (d) $\frac{3}{4}$
 - (e) 0

- 12. If $y = \sec^2 x$, then y'' =
 - (a) None of these
 - (b) $-2y^2 + 4y$
 - (c) $-2y^2 4y$
 - $(d) 6y^2 4y$
 - (e) $6y^2 + 4y$

- 13. If linear approximation is used to approximate $\cos(59^\circ)$, we get $\cos(59^\circ) \approx a + b\left(\frac{\pi}{180}\right)$, then $2a + \frac{2}{\sqrt{3}}b$ is equal to
 - (a) 5
 - (b) 2
 - (c) 3
 - (d) 6
 - (e) 4

- 14. A particle moves according to the law of motion $s(t) = \ln(1+t^2)$ for t in $[0,\sqrt{2})$, where t is measured in seconds and s in meters. The particle is speeding up when
 - (a) $0 < t < \sqrt{2}$
 - (b) $1 < t < \sqrt{2}$
 - (c) 0 < t < 1
 - (d) $0 \le t < \sqrt{2}$
 - (e) None of these

15. If
$$y = \frac{(x-1)^4(2x-1)^5}{(3x-1)^3(10x+1)^7}$$
, then $\frac{dy}{dx}\Big|_{x=0} =$

- (a) -47
- (b) -75
- (c) 75
- (d) 0
- (e) 47

- 16. The velocity of a particle in motion along a line is $v(t) = \ln |2-t^2| \text{ for } t \text{ in } [0,\sqrt{2}). \text{ Find the acceleration when the object is at rest.}$
 - (a) -1
 - (b) -2
 - (c) 2
 - (d) 1
 - (e) None of these

- 17. $\lim_{x \to 0} (1 + 2x)^{\frac{3}{x}} =$
 - (a) $e^{\frac{2}{3}}$
 - (b) $e^{\frac{3}{2}}$
 - (c) e^3
 - (d) 1
 - (e) e^6

- 18. If $f(x) = \ln(1-x)$, then $f^{(2011)}(0)$ is equal to
 - (a) (2011)!
 - (b) ln(2011)
 - (c) (2012)!
 - (d) -(2010)!
 - (e) -2009!

19. A right circular cone has a base with radius r, and height h. If the radius is expanding at a rate of 2 mm/hr, while the height is contracting/shrinking at the same rate, then the volume will stay constant if

$$\left[\text{Hint: } V = \frac{1}{3} \, \pi r^2 h \right]$$

- (a) $r^2 = h$
- (b) 2h + r = 0
- (c) r = h
- (d) h = 2r
- (e) r = 2h

- 20. When a stone is dropped into a pool, a circular wave moves out from the point of impact at the rate of 3a meter per second (a > 0 a real constant). How fast is the area enclosed by the wave increasing when the radius of the wave is a meter?
 - (a) $3\pi a \text{ m}^2/s$
 - (b) $6\pi a \text{ m}^2/s$
 - (c) $6\pi a^2 \text{ m}^2/s$
 - (d) $3\pi a^2 \text{ m}^2/s$
 - (e) $2\pi a^2 \text{ m}^2/s$