1. (10 points) Find each of the following limits of the function f whose graph is given in the adjacent figure
(a) $\lim _{x \rightarrow-2^{-}} f(x)=$
(b) $\lim _{x \rightarrow-1} f(x)=$
(c) $\lim _{x \rightarrow 0^{-}} f(x)=$
(d) $\lim _{x \rightarrow 0^{+}} f(x)=$
(e) $\lim _{x \rightarrow 1} f(x)=$
(f) $\quad \lim _{x \rightarrow 2^{-}} f(x)=$
(g) $\lim _{x \rightarrow 2^{+}} f(x)=$
(h) $\lim _{x \rightarrow 2} f(x)=$
(i) $\lim _{x \rightarrow-\infty} f(x)=$

(j) $\lim _{x \rightarrow+\infty} f(x)=$
2. (7 points) Sketch the graph of an example of a function f that satisfies the following conditions:
(a) $f^{\prime}(-3)=f^{\prime}(3)=0$,
(b) $\lim _{x \rightarrow 0^{-}} f(x)=-1$,
(c) $\lim _{x \rightarrow 0^{+}} f(x)=1$,
(d) $\quad f(0)$ is undefined,
(e) $\lim _{x \rightarrow 2} f(x)=-1$,
(f) $\quad f(2)=1$.

3. Evaluate each of the following limits (show your steps).
(a) (3 points) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{2-x}$.
(b) (4 points) $\lim _{x \rightarrow+\infty} \frac{1-x-2 x^{3}}{x^{3}+2 x^{2}+1}$.
(c) (4 points) $\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}+7}}{4 x-11}$.
(d) (4 points) $\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{12 x^{2}-6 x}{|2 x-1|}$.
4. (4 points) If $\lim _{x \rightarrow 2} f(x)=7$ and $\lim _{x \rightarrow 2} g(x)=3$, find $\lim _{x \rightarrow 2} \frac{\sqrt{x+f(x)}}{|x-2|-(g(x))^{2}}$. Justify each step.
5. (10 points) Use the Squeeze Theorem to show that $\lim _{x \rightarrow 0} \sin x \cdot \cos \frac{1}{x}=0$.
6. The displacement (in meters) of a particle moving in a straight line is given by the equation $S=40+16 t^{2}$, where t is measured in seconds.
(a) (3 points) Find the average velocity of the particle over the time interval with endpoints between 1 and $1+h$.
(b) (2 points) Use part (a) to find the instantaneous velocity of the particle when $t=1$.
7. (9 points) Use the graph of $f(x)=\frac{2}{\sqrt{x}}$ to find the largest a number δ such that $|f(x)-2|<\frac{1}{2} \quad$ whenever $\quad 0<|x-1|<\delta . \quad$ (Show your steps and write your answer in a rational form $\frac{p}{q}$).

8. (8 points) Find an equation of the tangent line to the curve $f(x)=\frac{2}{x+3} \quad$ at the point where $x=-1$. [You must use limits].
9. (9 points) If $[x]$ denotes the greatest integer less than or equal to x, find all values of x for which the following function is continuous:

$$
f(x)= \begin{cases}{[x],} & \text { if }-2 \leq x<0 \\ x, & \text { if } 0 \leq x<1 \\ 3 x-2, & \text { if } 1 \leq x \leq 2\end{cases}
$$

(Use limits to justify your answers).
10. (6 points) Determine whether the function

$$
f(x)=\frac{\sqrt{2 x+9}-\sqrt{x+9}}{2 x}
$$

has a removable discontinuity, a jump discontinuity, or an infinite discontinuity at $x=0$.
11. (5 points) Use the Intermediate Value Theorm to show that there is a root of the equation $x^{6}+x^{4}-1=0 \quad$ in the interval $[-1,1]$.
12. (4 points) The limit $\lim _{x \rightarrow \frac{\pi}{2}} \frac{6(\sin x-1)}{2 x-\pi} \quad$ represents the derivative of some function f at some number a. State such an f and a. (give a reason to your answer)
13. (8 points) Find the equations of all horizontal asymptotes to the graph of $f(x)=\tan ^{-1}\left(e^{-2 x}-1\right) . \quad$ (Show your work)

