King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics
Math 101- Calculus I
Exam I
2007-2008 (073)
Tuesday, July 22, 2008
Allowed Time: 2 hours

Name: $\qquad$
ID Number: $\qquad$
Section Number:
Serial Number:
Instructions:

1. Write neatly and eligibly. You may lose points for messy work.
2. Show all your work. No points for answers without justification.
3. Calculators and Mobiles are not allowed.
4. Make sure that you have 8 different problems (6 pages + cover page)

| Problem <br> No | Grade | Maximum <br> Points |
| :---: | :---: | :---: |
| 1 |  | 33 |
| 2 |  | 7 |
| 3 |  | 7 |
| 4 |  | 8 |
| 5 |  | 13 |
| 6 |  | 8 |
| 7 |  | 16 |
| 8 |  | 100 |
| Total |  |  |

1. Evaluate the limit if it exists. Justify your answer
(a) $\lim _{x \rightarrow 0^{+}} \frac{x-1}{x^{2}+2 x}$.
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-x^{2}}{1-\sqrt{x}}$.
(c) $\lim _{x \rightarrow 0^{-}} x \sin \left(\frac{\sqrt{x+2}}{x}\right)$.
(d) $\lim _{x \rightarrow 1} \arcsin \left(\frac{1-x}{1-x^{2}}\right)$.
(4 pts.)
(e) $\lim _{x \rightarrow-\infty} \frac{x^{3}-2 x+7}{-2 x^{2}+x-3}$.
(4 pts.)
(f) $\lim _{x \rightarrow+\infty}\left(\sqrt{9 x^{2}+x}-3 x\right)$.

## MATH 101, EXAM-I (Term 073)

2. Use the graph of $f(x)=\sqrt{x-1}$ to find a number $\delta$ such that

$$
|\sqrt{x-1}-1|<0.1 \text { whenever }|x-2|<\delta
$$


3. Where is the function $f(x)=\frac{1}{1-e^{\frac{x+1}{x}}}$ continuous?

## MATH 101, EXAM-I (Term 073)

4. Find the constant $k$ that makes the function

$$
f(x)=\left\{\begin{array}{lll}
x^{2}-k^{2} & \text { if } & x \leq 2 \\
k x+5 & \text { if } & x>2
\end{array}\right.
$$

continuous on $(-\infty,+\infty)$.
5. Show that the equation $x \ln x=\sin x$ has a root in the interval $(1, e)$.

## MATH 101, EXAM-I (Term 073)

6. (a) How many horizontal asymptotes can a function have? Illustrate your answer graphically.
(b) Does the graph of $f(x)=\ln \left(9-x^{2}\right)$ have a vertical asymptote
(i) at $x=3$. Justify.
(ii) at $x=-1$. Justify.
7. The position function of a particle moving in a straight line is given by the equation of motion $s(t)=\frac{1-t}{1+t}$, where $t$ is measured in seconds and $s$ in meters. Find the instantaneous velocity of the particle when $t=1$.
8. (a) TRUE or FALSE. Justify: If $f^{\prime}(a)$ exists, then $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) Is $f(x)=x|x|$ differentiable at $x=0$. Justify.
(c) Graph the derivative of the function whose graph is given below.


