1. Evaluate the limit if it exists.
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}$.
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{2}}{1-x}$.
(6 points)
(c) $\lim _{x \rightarrow 0^{+}} \frac{3}{x}\left(\frac{1}{4+x}-\frac{1}{4-x}\right)$.
(d) $\lim _{x \rightarrow 2^{-}}\left([x-1]-x^{2}\right), \quad$ where $[\cdot]$ denotes the greatest integer function.
(e) $\lim _{x \rightarrow+\infty} \frac{\cos ^{2} x}{x^{3}}$.
(6 points)
(f) $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)$.
2. Use the graph of $f(x)=\frac{1}{x}$ to find a number δ such that

$$
\left|\frac{1}{x}-\frac{1}{3}\right|<\frac{1}{5} \quad \text { whenever } \quad|x-3|<\delta
$$

(7 points)

3. Consider the function

$$
f(x)= \begin{cases}x+2 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ e-\ln x & \text { if } x>1\end{cases}
$$

(a) Is f continuous from the left at 0 . Justify.
(b) Is f continuous at 1. Justify.
4. Where is the function $f(x)=\frac{\sin \left(\frac{1}{x}\right)}{e^{x}-2}$ continuous.
5. Show that the equation $e^{x}=-1-2 x$ has a root in the interval $(-1,0)$.
6. Find the horizontal and vertical asymptotes of the graph of the function $f(x)=\frac{4 x-1}{x^{3}-8 x^{2}}$. Explain.
7. Sketch the graph of a function f that satisfies all of the given conditions:

$$
\begin{aligned}
& f(0)=0, f(2)=1, \lim _{x \rightarrow 2^{+}} f(x)=0, \lim _{x \rightarrow 2^{-}} f(x)=2, \\
& \lim _{x \rightarrow+\infty} f(x)=4, \lim _{x \rightarrow-\infty} f(x)=-1, \lim _{x \rightarrow-2} f(x)=+\infty
\end{aligned}
$$

8. Find an equation of the tangent line to the curve $y=\frac{1}{x-2}$ at the point $\left(4, \frac{1}{2}\right)$.
[You must use limits]
9. The position function of a particle moving in a straight line is given by the equation of motion $s=t^{3}-2 t$, where t is measured in seconds and s in meters.
(a) Find the average velocity of the particle over the time interval $[1,3]$.
(b) Use limits to find the instantaneous velocity of the particle when $t=2$. (6 points)

