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Abstract

The problem of finding the nearest positive semidefinite Hankel matrix of
a given rank to an arbitrary matrix is considered. The problem is formulated
as a nonlinear minimization problem with positive semidefinite Hankel matrix
as constraints. Then an algorithm with rapid convergence is obtained by the
Sequential Quadratic Programming (SQP) method. A second approach is to
formulate the problem as a smooth unconstrained minimization problem, for
which rapid convergence can be obtained by, for example, the BFGS method.
This paper studies both methods. Comparative numerical results are reported.
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1 Introduction

Hankel matrices appear naturally in a variety of problems of engineering: communi-
cation, control, filter design, identification, model reduction and broadband matching
and in different fields of mathematics: e.g., in systems theory, integral equations and
operator theory [10, 13, 19, 22].

Hankel matrices possess certain properties regarding their rank and positive
semidefinite structures depending on the construction or arrangement of their ele-
ments. In practical applications, these matrices are constructed from noisy obser-
vations and hence some of their nice properties may be destroyed or changed. The
signal processing problem estimates the matrices with desired properties so that the
estimated matrix is close to the given observation in some reasonable sense.

We consider the following problem: Given an arbitrary data matrix F ∈ IRn×n,
find the nearest positive semidefinite Hankel matrix H of rank m to F , i. e.,

minimize φ = ‖F − H‖
subject to H ∈ K. (1.1)
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Throughout this paper, the matrix norm is the Frobenius norm. K is the set of all
n× n symmetric positive semidefinite Hankel matrices

K = {H : H ∈ IRn×n, H ≥ 0, Rank(H) = m and H ∈ H}, (1.2)

where H is the set of all Hankel matrices.
The problem was studied by MacInnes [14]; he proposed a method for finding

the best approximation of a matrix A by a full rank Hankel matrix. In [14], the
initial problem of best approximation of one matrix by another is transformed into
a problem involving best approximation of a given vector by a second vector whose
elements are constrained so that its inverse image is a Hankel matrix. Related signal
processing problems have also been studied by [15, 17] and [18].

Another, related problem is the solution of the least square problem min
x
‖Ax−b‖

where A has a special structure such as Toeplitz, Hankel or is a large, sparse matrix.
When A is noisy, the least square solution is no longer optimal and it suffers from
bias and increased covariance due to the accumulation of noise errors. To alleviate
this problem, a generalization of the least square solution was formally introduced by
Golub et al. [11], called total least square (TLS) which attempts to remove the noise
in A and b using a perturbation on A and b of the smallest 2-norm which makes
the system of equations consistent. Abatzoglou et al. [1] discuss a reformulation
of the method in view of the linear algebraic relation among the noise entries of
A and b. They apply Newton’s method to the new formula to obtain the precise
minimum point. Rosen et al. [16] generalized TLS using other norms, in addition to
the Frobenius norm. An advantage of using the other norms is that they preserve the
structure of the matrix A and b.

In the past ten years, there has been much interest in the interior point meth-
ods applied to problems with semidefinite matrix constraints (e.g. the survey papers
[21, 20, 23] and references therein). Semidefinite programming optimizes a linear
function subject to positive semidefinite matrix constraints. It is a convex program-
ming problem since the objective and constraints are convex. In this paper, we deal
with a slightly different problem since the objective is quadratic; also an additional
rank constraint is added which makes the problem unconvex and harder to solve.
Here, we use a different approach. A similar problem was studied in [3] but with no
restriction on the rank. One approach followed in [3] is a projection algorithm which
converges globally but the rate of convergence is very slow; another approach is the
l1SQP method which converges faster but requires the knowledge of the rank. The
approach in Section 2 closely follows the one in [3] but (1.1) is first formulated as a
nonlinear minimization problem and then solved using techniques related to filterSQP
[9].

In [4], we studied a similar problem with no restriction on the rank. One approach
we followed is a projection algorithm which converges globally but the rate of con-
vergence is very slow. Another approach is the Newton method which is faster but
requires tedious calculations of the Hessian matrix. Then we used a hybrid method to
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combine the best features of both. In Section 3, a more efficient method is introduced
to solve (1.1), where it is formulated as a smooth unconstrained minimization prob-
lem using the BFGS method which converges at a superlinear order rate and does
not require the second derivative [8]. Finally, in Section 4, numerical comparisons of
these methods are carried out.

A Hankel matrix H is denoted by

H =


h1 h2 . . . hn

h2 h3 . . . hn+1
...

...
. . .

...
hn hn+1 . . . h2n−1

 = Hankel(h1, h2, h3, . . . , h2n−1). (1.3)

The trace inner product of the matrices is defined by

A : B =
∑

aijbij = tr(AT B), (1.4)

where “tr” means trace of the matrix AT B.
Section 2 contains a brief description of the SQP method for solving (1.1). The

problem is formulated as a nonlinear minimization problem and then solved using
techniques related to filterSQP . In Section 3, the problem is formulated as a smooth
unconstrained minimization problem and then solved using the BFGS method. Fi-
nally, in Section 4, numerical comparisons of these methods are carried out.

2 The SQP Methods

In this section an iterative scheme is investigated in order to develop an algorithm
for solving problem (1.1). The problem is formulated as a nonlinear minimization
problem and then solved by using techniques related to filterSQP [9] which provides
global convergence at a second order rate.

It is difficult to deal with the matrix set constraint in (1.2) since it is not easy
to specify if the elements are feasible. Using partial LDLT factorization of H, this
difficulty can be overcome. Since m, the rank of H, is known and for F sufficiently
close to H, commuting rows and columns if necessary, and partitioning

H =
[
H11 HT

21

H21 H22

]
, (2.1)

where H11 is m×m invertible matrix, the partial factors H = LDLT can be calculated
such that

L =
[
L11

L21 I

]
, D =

[
D1

D2

]
, (2.2)

where L11, D1 and are m×m matrices; I, D2 and H22 are n−m×n−m matrices;
L21 and H21 are n − m × m matrices; D1 is diagonal and D1 > 0 and D2 have no
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particular structure other than symmetry. At the solution, D2 = 0 and H is the
symmetric positive semidefinite Hankel matrix. In general,

D2(H) = H22 − H21H
−1
11 HT

21. (2.3)

Now, if the structure of the matrix H is in a Hankel form, i.e.,

H =

 x1 · · · xn
...

. . .
...

xn · · · x2n−1

 = Hankel(x1, · · · , x2n−1) = Hankel(x), (2.4)

then (2.3) enables the constraint H ∈ K to be written in the form

D2(H(x)) = 0. (2.5)

Hence, (1.1) can now be expressed as

minimize φ

subject to D2(H(x)) = 0 = ZT HZ, (2.6)

where Z =
[−H−1

11 HT
21

I

]
is the basis matrix for the null space of H when D2 = 0.

The Lagrange multipliers for the constraint (2.5) are Λ relative to the basis Z and
the Lagrangian for problem (2.6) is

L(x(k), Λ(k)) = φ− Λ : ZT HZ. (2.7)

The above approach has been studied in a similar way in [7, 5].
Using the structure of the Hankel matrix H given in (2.4),

φ =
n∑

i,j=1

(fij − hij)
2 =

n∑
i,j=1

(fij − xi+j−1)
2, (2.8)

and 5φ = [ ∂φ
∂x1

· · · ∂φ
∂x2n−1

]T , where ∇ denotes the gradient operator

(∂/∂x1, . . . , ∂/∂x2n−1)
T . Therefore,

∂φ

∂xs

= 2
s∑

i=1

(xs − fi s−i+1) s = 1, . . . , n

∂φ

∂xs

= 2
2n−s∑
i=1

(xs − fn−i+1 s+i−n) s = n + 1, . . . , 2n− 1. (2.9)

Differentiating gives
∂2φ

∂xr∂xs

= 0 if r 6= s,
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where s, r = 1, · · · , 2n− 1, and

∂2φ

∂x2
s

= 2s s = 1, . . . , n

∂2φ

∂x2
s

= 2(2n− s). s = n + 1, . . . , 2n− 1. (2.10)

The advantage of formula (2.5) is that expressions for both the first and second
derivatives of the constraints with respect to the elements of H can be obtained. The
simple form of (2.3) is utilized by writing the constraints D2(H) = 0 in the following
form:

dij(x) = xi+j−1 −
m∑

k,l=1

xi+k−1[H
−1
11 ]kl xj+l−1 = 0, (2.11)

where i, j = m + 1, · · · , n and [H−1
11 ]kl denotes the element of H−1

11 in kl–position.
Thus (2.6) can be expressed as

minimize φ =
n∑

i,j=1

(fij − xi+j−1)
2

subject to dij(x) = 0. (2.12)

In this problem, since the equivalent constraints dij(x) = 0 and dji(x) = 0 are both
present, they would be stated only for i ≥ j.

In order to write down the SQP method applied to (2.12), it is necessary to derive
first and second derivatives of dij.

Let Is be an m×m matrix given by

Is = Hankel(0, . . . , 0, 1, 0, . . . , 0),

where the “1” appearing in the first row is in the sth column and the “1” appearing in
the first column is in the sth row. Hence the matrix Is is a matrix that contains ones
in one across anti–diagonal and zeros elsewhere. Now differentiating H11H

−1
11 = I

gives

∂H−1
11

∂xs

= − H−1
11 Is H−1

11 s < 2m (2.13)

∂H−1
11

∂xs

= 0 s ≥ 2m.

Hence from (2.3),
∂D2

∂xs

= IIs + V T IsV + UT + U, (2.14)

where

V T = −H21H
−1
11 , U = IIIsV, IIs =

∂H22

∂xs

and IIIs =
∂H21

∂xs

,
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IIs and IIIs are matrices similar to Is with IIs being an n − m × n − m matrix
which contains ones in one across anti–diagonal and zeros elsewhere, and IIIs is an
n−m×m matrix which contains ones in one across anti–diagonal and zeros elsewhere.

Furthermore, differentiating (2.13), we get

∂2D2

∂xs∂xr

= Y + Y T ,

where
Y = −ZT

r H−1
11 Zs and Zt = ItV − IIIT

t .

Table 1 summarizes the state of the gradient and Hessian of D2 with respect to xs

∂D2

∂xs
Zt s

V T IsV ItV 0 < s ≤ m
V T IsV + UT + U ItV − IIIT

t m < s < 2m
UT + U −IIIT

t s = 2m
IIs + UT + U −IIIT

t 2m < s < n + m
IIs 0 n + m < s < 2n− 1

Table 1: Gradient and Hessian formulas for D2.

Now, let

W = ∇2L(x, Λ)

= ∇2φ −
n∑

i,j=m+1

λij∇2dij, (2.15)

where ∇2φ is given by (2.10) and

n∑
i,j=m+1

λij∇2dij =


∑

i,j λij
∂2dij

∂x1∂x1
· · · ∑

i,j λij
∂2dij

∂x1∂xn

...
. . .

...∑
i,j λij

∂2dij

∂xn∂x1
· · · ∑

i,j λij
∂2dij

∂xn∂xn

 .

Usually, ∇2L is positive definite, in which case, if x(k) is sufficiently close to x∗, the
basic SQP method converges and the rate is second order, where superscripts (k) and ∗
mean the kth iteration and optimal solution, respectively (Fletcher [8]). However, the
method may not converge globally. An algorithm with better convergence properties,
when x(k) is remote from x∗, is suggested by Fletcher et al. [9] in which the filterSQP
can be used to solve (2.12). Now, since the gradient and Hessian are both available,
therefore filterSQP can be used to solve the problem.

This description of iterative schemes for solving (2.12) has so far ignored an im-
portant constraint, that is, D1 > 0 in which the variables x(k) must permit the matrix
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H(k) to be factorized as in (2.2). However, since m is identified correctly and x(k) is
near the solution, this restriction will usually be inactive at the solution. If x(k) is
remote from the solution, additional constraints

d(k)
rr > 0. r = 1, 2, . . . ,m

are introduced. However, strict inequalities are not permissible in an optimization
problem and it is also advisable not to allow drr(x

(k)) to come too close to zero,
especially for small r, as this is likely to cause the factorization to fail. Hence the
constraints

md(k)
rr /r ≥ 0 r = 1, 2, . . . ,m

are added to problem (2.12). Finally, it is possible that partial factors of the matrix
H(k) in the form (2.2) do not exist for some iterates. In this case, the parameter
in the filterSQP method ρ(k+1) = ρ(k)/4 is chosen for the next iteration in the trust
region method.

3 Solution by Unconstrained Minimization

In this section, we consider a different approach to problem (1.1). The main idea
is to replace (1.1) by a smooth unconstrained optimization problem in order to use
superlinearly convergent quasi-Newton methods. A partial connection between the
problem and signal processing is given in the following factorization.

Classical results about Hankel matrices that go back to [6] may be stated according
to which a positive semidefinite real Hankel matrix can be represented as the product
of a Vandermonde matrix and its transpose and a diagonal matrix in between

H = V DV T , (3.1)

where D is an m×m diagonal matrix with positive diagonal entries and V is an n×m
real Vandermonde matrix

V = [yi
j], i = 0, . . . , n− 1, j = 1, . . . ,m (3.2)

(see [2, 12]).
Since m, the rank of the matrix H∗, is known, it is possible to express (1.1) as a

smooth unconstrained optimization problem in the following way: Since the unknown
in (1.1) is the matrix H, therefore the unknowns are chosen to be the elements of
the matrices V ; y1, . . . , ym and D; d11, . . . , dmm introduced in (3.1). This gives us an
equivalent unconstrained optimization problem to (1.1) in 2m unknowns expressed
as

minimize φ(V, D) = ‖F − V DV T‖2
F . (3.3)
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Now, the objective function φ(V, D) can be readily calculated by first forming H
from V and D as indicated by (3.1) and (3.2), after which φ is given by φ(V, D) =
‖F −H‖2

F = ‖F − V DV T‖2
F . The elements of the matrix H take the form

hij =
m∑

k=1

dkky
i+j−2
k . (3.4)

Hence

φ(V, D) =
n∑

i,j=1

(hij − fij)
2

=
n∑

i,j=1

({
m∑

k=1

dkky
i+j−2
k } − fij)

2. (3.5)

Our chosen method to minimize φ(X) is the BFGS quasi-Newton method (see,
for example, [8]). This requires expressions for the first partial derivatives of φ, which
are given from (3.5) by

∂φ

∂dss

=
n∑

i,j=1

2({
m∑

k=1

dkky
i+j−2
k } − fij)y

i+j−2
s (3.6)

∂φ

∂ys

=
n∑

i,j=1
i=j 6=1

2({
m∑

k=1

dkky
i+j−2
k } − fij)(i + j − 2)dssy

i+j−3
s . (3.7)

The BFGS method also requires the Hessian approximation to be initialized. Where
necessary, we do this using an identity matrix.

Some care has to be taken when choosing the initial value of the matrices V and
D, in particular the rank m. If not, the minimization method may not be able to
increase m. An extreme case occurs when the initial matrix V = 0 and D = 0 is
chosen, and F 6= 0. It can be seen from (3.6) and (3.7) that the components of the
gradient vector are all zero, so that V = 0 and D = 0 is a stationary point, but not a
minimum. A gradient method will usually terminate in this situation, and so fail to
find the solution.

4 Numerical Results

In this section, we report our numerical results. Fortran codes have been written to
program solver for (1.1) to both filterSQP and BFGS methods and executed on a
SUN workstation.

The results were obtained by applying the methods of Sections 2 and 3 as follows:
A matrix H was formed from (3.1) by randomly choosing m weights dj, 0 ≤ dj ≤
1.0, j = 1, . . . ,m. These are the diagonal elements of the matrix D ∈ IRm×m. Also,
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dj yj

0.5916 0.7590 m nq ls φ d∗j y∗j
0.6690 0.4677 10 113 10 0.32737 0.5823 0.7078 0.7771 0.4824
0.1158 0.2630 0.1126 0.5037 0.2148 0.1595
0.5040 0.1299 0.5820 0.3518 0.7768 0.5333
0.5890 0.7915 0.2236 0.0377 0.6231 0.7414
0.3539 0.5301 0.0419 0.0380 0.5118 0.7417
0.1753 0.6123 9 87 8 0.32731 0.6514 0.6848 0.7402 0.4836
0.0388 0.7089 0.0912 0.4733 0.2772 0.1409
0.0647 0.5516 0.6193 0.3613 0.7940 0.4529
0.0822 0.7284 0.1581 0.0797 0.6479 0.7349

0.0622 0.5377
8 72 27 0.32729 0.6878 0.7484 0.7274 0.4478

0.0563 0.4243 0.3155 0.1194
0.5840 0.4262 0.7979 0.4715
0.1386 0.1157 0.7275 0.7214

7 96 39 0.32729 0.7069 0.7380 0.7265 0.4652
0.0755 0.4493 0.3005 0.1296
0.6266 0.4144 0.7956 0.4699
0.1707 0.7276

6 116 21 0.32730 0.8067 0.7309 0.7223 0.4603
0.0819 0.4611 0.2936 0.1356
0.6954 0.4053 0.7931 0.4885

5 89 25 0.32730 0.7948 1.0051 0.7191 0.4619
0.1707 0.4875 0.4655 0.1373
0.7232 0.7921

4 120 30 0.32738 1.2740 0.9119 0.7743 0.5323
0.3758 0.6196 0.4785 0.1668

3 80 31 0.32738 1.2796 1.2719 0.7741 0.5177
0.6299 0.1685

2 79 12 0.33105 1.5741 1.6007 0.7593 0.3602
1 54 6 0.75111 2.8019 0.6735

Table 2: Comparing both methods with n = 20 and m = 10 .
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dj yj

0.5326 0.8249 m nq ls φ d∗j y∗j
0.7690 0.3051 5 70 55 0.1649725 0.5793 0.4719 0.8233 0.2515
0.4558 0.5136 0.6305 0.2394 0.5186 0.5163
0.2040 0.7090 0.0429 0.2326

4 65 41 0.1649723 0.5789 0.5183 0.8233 0.2509
0.6029 0.2639 0.5183 0.5194

3 77 28 0.1649723 0.5788 0.5192 0.8234 0.2512
0.8660 0.5188

2 63 12 0.166825 0.6925 1.2675 0.8095 0.3981
1 89 8 0.573705 1.6696 0.6814

Table 3: Comparing both methods with n = 10 and m = 4 .

we randomly choose m values yj, 0 ≤ yj ≤ 1.0 to determine the elements of the
Vandermonde matrix V as in (3.2). The matrix thus obtained by (3.1) was perturbed
to produce F by adding random noise matrix S to H, where elements of S vary
between −0.10 and 0.10. The problem is to recover the m frequencies yj and weights
dj that determine the matrix before the noise was added. The convergence criterion is
that the maximum changes of the matrix H(k) should be less than 1×10−5. Typically,
n was chosen to be 20, 10, 4 with m = 10, 4, 2, respectively.

Both filterSQP and BFGS converge to essentially the same values φ. For both
algorithms, the housekeeping associated with each iteration is O(p2), where in the
filterSQP, p = 2n − 1 and in BFGS, p = 2m. Also, if care is taken, it is possible to
calculate φ and ∇φ in O(4m2) operations.

dj yj

0.1763 0.9218 m nq ls φ d∗j y∗j
0.4057 0.7382 3 51 12 0.058136 0.1280 0.9386

0.2530 0.6789
0.1924 0.8297

2 47 6 0.059907 0.1730 0.9382
0.3999 0.7242

1 72 8 0.066124 0.5584 0.8124

Table 4: Comparing both methods with n = 4 and m = 2.
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Table 2 illustrates an example of the approximation described in Sections 2 and
3. The first two columns give the weights dj and frequencies yj used to generate the
matrix H before the noise is added using (3.1). The matrix is 20× 20 and of rank
10 before the perturbation. In the last six columns, the approximations are obtained,
decreasing the rank of the approximation by 1 at each step. m is the rank of the
approximation, nq is the number of quadratic programming problems solved by the
filter-SQP method to get convergence, ls is the number of line searches in the BFGS
method to get convergence, φ gives the norm of F−H where H is the approximated
matrix, d∗j and y∗j are the weights and frequencies in the approximating matrix.

Because approximation will increase the bias but decrease the variance, φ decreases
as the rank of the approximation increases from one to seven, then φ starts increasing
as the rank of the approximation increases. Hence the variance decreases but the
bias increases more which leads to an increase in the error. It is clear that the rank
changes from ten to seven and φ remains nonzero; this is because of the remaining
noise.

Table 3, shows an example of a 10 × 10 matrix and of rank 4 before the pertur-
bation. Comparing φ in all three tables, we find them proportional with the size of
the matrix. The process of the methods is to obtain the nearest positive semidefinite
Hankel matrix that tends to minimize the effect of the noise. It is to be expected
that the noise would be more significant in smaller matrices. The computations have
shown that for matrices as large as 50× 50, the results are quite good compared with
10 × 10. The results are not as good in the 4 × 4 case; see Tables 2, 3 and 4. It
seems that the noises are quite big for the smaller matrices which makes φ almost
equal in all cases in the four tables. Also, since φ is very small, this means that the
approximated matrix is very close to the original H.

5 Conclusions

In this paper, we have studied the Hankel matrix approximation problem involving the
positive semidefinite matrix constraint using both the filterSQP and BFGS methods.
Numerical comparisons are given. The problem needs more study in terms of the
hybrid methods involving both the current method and the projection method [3,
4]. Also, some numerical experiment comparisons with the hybrid and projection
methods need to be carried out.
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