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Abstract

The nearest positive semidefinite symmetric Toeplitz matrix to an
arbitrary data covariance matrix is useful in many areas of engineer-
ing, including stochastic filtering and digital signal processing appli-
cations. In this paper, the interior point primal-dual path-following
method will be used to solve our problem after reformulating it into
different forms, first as a semidefinite programming problem, then
into the form of a mixed semidefintie and second-order cone optimiza-
tion problem. Numerical results, comparing the performance of these
methods against the modified alternating projection method will be

reported.
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1 Introduction

Toeplitz matrices appear naturally in a variety of problems in engineering.
Since positive semi-definite Toeplitz matrices can be viewed as shift invari-
ant autocorrelation matrices, considerable attention has been paid to them,
especially in the areas of stochastic filtering and digital signal processing ap-
plications [14, 7] and [27]. Several problems in digital signal processing and
control theory require the computation of a positive definite Toeplitz matrix
that closely approximates a given matrix. For example, because of rounding
or truncation errors incurred while evaluating the data matix, it does not
satisfy one or all conditions. Another example in the power spectral esti-
mation of a wide—sense stationary process from a finite number of data, the
data matrix formed from the estimated autocorrelation coefficients, is often
not a positive definite Toeplitz matrix [23]. In control theory, the Gramian
assignment problem for discrete-time single input system requires the com-
putation of a positive definite Toeplitz matrix, which also satisfies certain
inequality constraints [20].

Our work is mainly casting the problem: first as a semidefinite program-
ming problem and second as a mixed semidefinite and second-order cone
optimization problem. A semidefinite programming (SDP) problem is to
minimize a linear objective function subject to constraints over the cone of
positive semidefinite matrices. SDP problems are of great interest due to
many reasons , e.g., SDP contains important classes of problems as special
cases, such as linear and quadratic programming. Applications of SDP exist



in combinatorial optimization, approximation theory, system and control the-
ory, and mechanical and electrical engineering. SDP problems can be solved
very efficiently in polynomial time by interior point algorithms [25, 28, 5, 18].

The constraints in a mixed semidefinite and second-order cone optimiza-
tion problem are constraints over the positive semidefinite and the second-
order cones. Although the second-order cone constraints can be seen as
positive semidefinite constraints, recent research has shown that it is more
effecient to deal with mixed problems rather than the semidefinite program-
ming problem. Nesterov et. al. [18] can be considered as the first paper to
deal with mixed semidefinite and second-order cone optimization problems.
However, the area was really brought to life by Alizadeh et al. [4] with the in-
troduction of SDPPack, a software package for solving optimization problems
from this class. The practical importance of second-order programming was
demonstrated by Lobo et al. [16] and many subsequent papers. In [21] Sturm
presented implementational issues of interior point methods for mixed SDP
and SOCP problems in a unified framework. One class of these interior point
methods is the primal-dual path-following methods. These methods are con-
sidered the most successful interior point algorithms for linear programming.
Their extension from linear to semidefinite and then mixed problems has fol-
lowed the same trends. One of the successful implementation of primal-dual
path-following methods is in the software SDPT3 by Toh et al. [24].

A similar problem to our problem was studied by Suffridge et. al. [22].
They solve the problem using the self-inversive polynomial P(z). The roots

P(zz enable them to approximate the data matrix. They

of the derivative of =
also solve the problem using the ideas of a modified alternating projection al-
gorithm that was successfully used in solving similar approximation problems
for distance matrices [3]. In [11], alternating convex projection techniques are
used to solve the problem. Toeplitz matrix approximations are also discussed
in [7, 15].

In [2] a similar problem is studied. One approach followed is a projection
algorithm which converges globally but the rate of convergence is very slow.
Another approach is the quasi-Newton method which is faster. Then a hybrid
method to combine the best features of both is used. A similar problem which
requires the knowledge of the rank was studied in [1, 6] and formulated as a
nonlinear minimization problem and then solved using techniques related to

filterSQP [9).




1.1 Notation

Throughout this paper, we will denote the set of all n x n real symmetric
matrices by 8", the cone of the n X n real symmetric positive semidefinite
matrices by P and the second-order cone of dimension k by Qy, and is defined
as

Qr={x € R lz2kll2 < 21},

(also called Lorentz cone, ice cream cone or quadratic cone), where ||.||2
stands for the Euclidean distance norm defined as ||z]js = /> ., 2%, Vo €
IR"™. The set of all n x n real symmetric Toeplitz matrices will be denoted
by 7. An n x n real Toeplitz matrix T(x) has the following structure:

xl :L‘2 « .. xn
To X1 o Tp—1

Tx)=1|. . _ ) , x€IR".
Tp Tp—1 1

It is clear that T C 8™ . The Frobenius norm is defined on 8™ as follows:
|U|lr = VU @ U = |[vec” (U)vec (U)||;, Y UeS" (1.1)

Here U o V' = trace(UV) = 377", U;;Vi; and vec (U) stands for the vectoriza-
tion operator found by stacking the columns of U together. The symbols >,
>¢ and > will be used to denote the partial orders induced by P, Q) on S"
and IR®, respectively. That is,

UV & U-VeP, VU VeS"

and
u>oue u—veE Q Yu, v eRF

The statement x > 0 for a vector € IR" means that each component of
x is nonnegative. We use I and O for the identity and zero matrices. The
dimensions of these matrices can be discerned from the context.

1.2 The Problem and Outline

Our problem in mathematical notation can, now, be formulated as follows:
Given a data matrix F' € IR™*", find the nearest positive semidefinite Toeplitz



matrix 7(z) to F such that [|[F — T(z)||% is minimal. Thus, we have the
following optimization problem:

minimize |F —T(2)|3
subject to T(x)eT,
T(z) = 0. (1.2)

The alternating projection method is described briefly in Section 2; since
it converges to the optimal solution globally. However, the rate of conver-
gence is slow. A brief description of semidefinite and second-order cone op-
timization problems along with reformulations of problem (1.2) in the form
of the respective class will be given in Sections 3 and 4, respectively. Nu-
merical results, showing the performance of the projection method against
the primal-dual path-following method acting on our formulations, will be
reported in Section 5.

2 The projection Method

The method of successive cyclic projections onto closed subspaces C;’s was
first proposed by von Neumann [19] as an extension of the method of Kacz-
marz [13], then independently by Wiener [26]. They showed that if, for
example, C; and Cy are subspaces and D is a given point, then the nearest
point to D in C'; N Cy could be obtained by:

Algorithm 2.1 Alternating Projection Algorithm
Let X1 =D
Fork=1,2,3,...
Xiy1 = Pi(Po(Xy)).

X}, converges to the near point to D in Cy N (5, where P, and P, are the
orthogonal projections on Cy and Cy, respectively. Dykstra [8] modified von
Neumann’s algorithm to handle the situation when C and C), are replaced by
convex sets. Other proofs and connections to duality along with applications
were given in Han [12]. The modified Neumann’s algorithm when applied to
(1.2) yields:

Algorithm 2.2 Modified Alternating Projection Algorithm
Let Fi =F



Forj=1,2,3,...
Fji1 = Fj +[Pp(Pr(F;)) — Pr(F})]

Then {Pr(F;)} and Pp(Pr(F};)) converge in Frobenius norm to the solu-
tion. Here, Pr(F') is the orthogonal projection onto the subspace of Toeplitz
matrices 7. It is simply setting each diagonal to be the average of the cor-
responding diagonal of F. Pp(F) is the projection of F onto the convex
cone of positive semidefinite symmetric matrices. Simply Pp(F') is finding
the spectral decomposition of F' and setting the negative eigenvalues to zero.

3 Semidefinite Programming Approach

The semidefinite programming (SDP) problem in primal standard form is:

minimize CeX
subject to A;e X =0, i=1,---.m
X >=0. (3.1)

where all A;, C' € 8", b € R™ are given, and X € 8™ is the variable.
This optimization problem (3.1) is a convex optimization problem since its
objective and constraint are convex. The dual problem of (3.1) is

minimize b’y
m

subject to Z%‘Az‘ <C (3.2)
i=1

where y € IR™ is the variable. Although (3.1) and (3.2) seem to be quite
specialized, it includes, as we said before, many important problems as special
cases. It also appears in many applications. One of these applications is
problem (1.2) as we will show now.

Theorem 3.1 (Schur Complement) If

A B
M = <BT C) ’
where A is a symmetric positive definite matriz and C € 8" , then the matriz

M s positive (semi)definite if and only if the matriz C — BT A=' B is positive
(semi)definite. O



This matrix C — BTA~'B is called the schur complement of A in M.
Letting ||[F — T'(z)||% < a, « is a nonnegative real scalar and noting that:

| = T(2) || = vec " (F = T(x))vec (F — T(x)),
we have:
vecT(F — T(z))vec (F — T(z)) < a
&  a—vec!(F—T(z))Ivec (F—T(z)) >0

I vec (F — T (z))
<vecT(F () o ) =0 (3:3)

The last equivalence is a direct application of Theorem 3.1 Thus, problem
(1.2) can be rewritten as

(SDV)  minimize a

subject to

«Q 0
0 T(x) 0| =0, (3.4)
0 Vv

where

)

which is an SDP problem in the dual form (3.2) with block dimensions n+ 1
and n?+n+2, SDP problem (3.4) is very large even for a small data matrix F.
For example, a 50 x 50 matrix F' will give rise to a problem with dimensions
51 and 2552, hence solving (1.2) using formula (3.4) is not efficeint. Fur-
thermore, we do not exploit the structure of T'(z) being symmetric Toeplitz
. Which leads to another way of formulation that produces an SDP problem
with reasonable dimensions and exploits the symmetric Toeplitz structure of
T'(x). This can be done by means of the following isometry operator:

Definition 3.2 Let tvec : T — IR" be defined as tvec(T(u)) =
[Vruy /2(n — Dug \/2(n — 2)uz -+ V2u,)T for any T'(u) € T.

tvec is a linear operator from 7 to IR", which satisfy the following charac-
terizations:

Corollary 3.3 For any u,v € R"



1. T(u) @ T(v) = tvec (T (u))tvec (T (v)).
2. |T(w) — T(v)||% = tvec T(T'(u) — T(v))tvec (T (u) — T(v)). O

Part 1 implies that tvec is an isometry. To take the advantage of the isom-
etry operator tvec, we need F' to be Toeplitz. If we project F onto T to
get Pr(F'). The following lemma show that the nearest symmetric Toeplitz
positive semidefinite matrix to F' is exactly equal to the nearest symmetric
Toeplitz positive semidefinite matrix to Pr(F).

Lemma 3.4 Let T'(z) be the nearest symmetric Toeplitz positive semidefinite
matriz to Pr(F), then T(x) is so for F.

Proof. If Pr(F) is positive semidefinite, then we are done. If not, then
for any T'(x) € T, we have

(T'(z) — Pr(F))e (Pr(F)—F)=0
since Pr(F) is the orthogonal projection of F'. Thus,
IT(2) — Fl = ||T(x) — Pr(F)|[ + || Pr(F) — F|%

this complete the proof since the second part of the above equation is con-
stant. |

As a consequence of this lemma, (1.2) equivalent to :

minimize |Pr(F) —T()||r
subject to T(x) €T
T(z) = 0. (3.5)

3.1 Formulation I (SDT)

From Theorem 3.1, we have the following equivalences (for 0 < a € R):

1Pp(F) = T(a)|[F < @
& tvec T (Pp(F) — T(z))tvec (Pp(F) — T(z)) < a by Corollary 3.3
& a—tvec” (Pp(F) —T(x))Itvec (Pp(F) — T(z)) >

I tvec (Pp(F) — T(x))> by Theorem 3.1.

A (tvecT(Pp(F) ~T()) a



Hence, we have the following SDP problem:

(SDT) minimize «
subject to
o) 0
0 T(x) 0|=0, (3.6)
0 0 V
where
v _ I tvec (F — T'(x))
— \tvec”(F — T(z)) a '

This SDP problem has block dimensions n+ 1 and 2n + 2 which is far better
than (3.4).

3.2 Formulation II (SDQ)

Another way for formulating (1.2) is through the definition of the Frobenius
norm being a quadratic function. Let,

|F = T(@)l[ = 2" Pz +2¢" 2 + B,

where
n

P = 2di
iag(][ 5

n

Q= — Z -Fl'iia
=1
n

gy = — Z(Fi—kﬂ,i + Fi,i—k+1), k=2,---n and
i=k

B=1Fllz.

Now, we have for a nonnegative real scalar «

n—1n-2---1]),

|F=T()[F <o

TPr+2¢"z+ < a
(PY22)"(P?2) + 2"+ B < a
oa—2¢"x — f— (PPx)T1(PYV?2) >

0
( I (P/2g) ) . 0.

T o0

(PY22)T a—2¢"z — 3



10

Hence, we have the following SDP problem:
(SDQ) minimize a
subject to

0 T(x) - 0, (3.7)
0

where

(1 (P1/2a)

Q - <(P1/2I)T o — 2qT:E o 5) )
This SDP problem is of block dimenstions n + 1 and 2n + 2. Although
problem (3.7) has the same dimentions as problem (3.6), it is less efficient to
solve it over the positive semidefinite cone P, especially when we have large
size F'. In practice, as we will see in Section 5, it has been found that the
performance of this formulation is poor. The reason for that is the matrix P
being of full rank. A more efficient interior point method for this formulation
can be developed by using Nestrov and Nemirovsky formulation as a problem
over the second-order cone [17, Section 6.2.3]. This what we will see in the
next section.

The last formulation seems to be straight forward, but it was found that
using this formulation to solve similar problems was not a good idea. The
reasons for that will be discussed in the following section when we talk about
second-order cone programming. This fact about SDQ formulation will be
clear in Section 5 when we use it to solve numerical examples, especially for
large size F'. We think also SDV formulation is not good enough to compete
with other formulation even with the projection method. This is simply
due to the fact that the amount of work per one iteration of interior-point
methods that solve SDV fomulation is O(n®), where n in the dimension of F.
This disappointing fact makes using SDV formulation to solve (1.2) a waste
of time. This leaves us with SDT formulation from which we expect good

performance; since it does not have the poor performance of SDQ nor the
huge size of SDV.
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4 Mixed Semidefinite and Second-Order
Cone Approach:

The primal mixed semidefinite, second-order and linear problem SQLP is of
the form:

(P') minimize CseXg+ CgXQ + CgXL
subject to (Ag)i @ Xs+ (Ag)i Xo + (A X, =b;, i=1,---,m
Xg =0, X5 >0 0, X, >0 (4.1)

where Xg € §", Xg € R* and X; € IR™ are the variables. Cy, (As);
€ 8", Vi Cg, (Ag)i € R" Vi and Cy, (Ar); € R™ Vi are given data. It
is possible that one or more of the three parts of (4.1) is not present. If
the second-order part is not present, then (4.1) reduces to the ordinary SDP
(3.1) and if the semidefinite part is not present, then (4.1) reduces to the
so-called convex quadratically constrained linear programming problem.
The standard dual of (4.1) is:

(D") maximize by

subject to Zyi(AS)i = Cs

Here, y € IR™ is the variable.

In our setting, we may drop the third part of the constraints in (4.1) and
its dual (4.2), since we do not have explicit linear constraints. One natural
claim can be made here: In (1.2) the objective function can be recast as a
dual SQLP in three different ways.

4.1 Formulation IIT (SQV)

One way to minimize ||F' — T(z)||% is to minimize ||F — T(z)||r = ||vec (F —
T(z))|l2- So, if we put ||[F — T(2)||r < a for o € R™, then by the definition



of the second-order cone, we have

@mwiﬂm>e%ﬁ2

Hence, we have the following reformulation of (1.2):

(SQV) minimize o

subject to
« 0
S~
(i 7o) =

(wdFiTm»>ZQ0

4.2 Formulation IV (SQQ)

The second definition is as introduced in Subsection 3.2, i.e.,
|F —T()||% = 2" Pz +2¢"z + 3

Hence, we have the following equivalent problem to (1.2)

minimize 2T Px+2¢Tc +
subject to T(z) €T
T(x) = 0.

But

2’ Pr+2¢"x+ B =||Px+ P V22 + 38— ¢" Py

Now, we minimize ||F — T(z)||% by minimizing || P'/%z 4+ P~/2

have the following problem:

(SQQ) minimize a

subject to

12

(4.3)

(4.5)

q||2. Thus we

(4.6)
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where o € IR" is as before. Again, this problem is in the form of problem
(4.2). Here, the difference between this form and SQV is in the second-order
cone constraint since the SDP part is the same as SQV. The dimension of the
second-order cone in SQV is 1 +n? and in SQQ is just n+ 1, which makes us
expect less efficiency in practice when we work with SQV. The optimal value
of SQV is the same as that of problem (1.2), whereas the optimal values
of SQQ (4.6) and (4.5) are equal up to a constant. Indeed, the optimal
value of (4.5) is equal (p*)? + 3 — ¢ P~'q, where p* is the optimal value of
(4.6). It might notice that we did not talk about the constraint of 7'(x) being
Toeplitz. This is because the Toeplitz structure of T'(z) is embedded in the
other constraints.

4.3 Formulation V (SQT)

The last formulation will take advantage of the Toeplitz structure of T'(z)
explicitly. The vectorization operator tvec on Toeplitz matrices, introduced
in Section 3 will be used. From Corollary 3.3, we have the following:

1Pp(F) = T(x)|lr = [[tvec (Pp(F) = T(x))[|2,
so that we have the following problem:

(SQT) minimize a

Publect 10 (3 T?I)> -0 (47
(tvec (Pp(;) — T@))) 2q V- (4.8)

The dimension of the second-order cone in this form is n + 1, the same as
that of SQQ. Furthermore, the optimal solution is the same as that of (1.2).

Table 4.1 shows the dimensions of the semidefinite part (SD part) and the
second-order cone part (SOC part) for each formulation. For the formulations
SDV, SDT and SDQ, the second-order cone part is not applicable, so the cell
in the table corresponding to that is left blank.

In practice, we expect that the mixed formulations are more effecient
than the SDP-only formulations, especially the SQQ and SQT which have
second-order cone constraint of least dimension. Since, as we have seen,
interior point methods for SOCP have better worst-case complexity than an
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Formulation SD part SOC part
SDV n+1x (n*+n+2)
SDT n+1x(2n+2)
SDQ n+1x(2n+2)
SQV n+1x(n+1) n?+1
SQQ n+1x(n+1) n+1
SQT n+1x(n+1) n+1

Table 4.1: Problem dimensions

SDP method. However, SDT has a less SDP dimension with no illness such
as that SDQ has, which makes SDT a better choice among other SDP. This
is due to the economical vectorization operator tvec. Practical experiments
show a competitive behaviour of SDT to SQQ and SQT (see Section 5).

5 Computational Results

We will now present some numerical results comparing the performance of the
methods described in Sections 2, 3 and 4. The first is the projection method
and the second is the interior-point primal-dual path-following method em-
ploying the NT-direction. The latter was used to solve five different formu-
lations of the problem.

A Matlab code was written to implement the projection method. The
iteration is stopped when || Pp(Pr(F})) — Pr(F;)||r < 1072

For the other methods, the software SDPT3 ver. 3.0 [24] was used be-
cause of its numerical stability [10] and its ability to exploit sparsity very
efficiently. The default starting iterates in SDPT3 were used throughout
with the NT-direction. The choice of the NT-direction came after some pre-
liminary numerical results. The other direction is HKM-direction which we
found less accurate, although, faster than the NT-direction. However, the
difference between the two in speed is not of significant importance.

The problem was converted into the five formulations described in Sec-
tions 3 and 4. A Matlab code was written for each formulation. This code
formulates the problem and passes it through to SDPT3 for a first time. A
second run is done with the optimal iterate from the first run being the initial
point. This process is repeated until no progress is detected. This is done
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when the relative gap:

P D)
max{L, (IP + D])/2}

of the current run is the same as the preceding one. (Here, P and D denote
the optimal and the dual objective values, respectively.)

All numerical experiments in this section were executed in Matlab 6.1 on
a 2.0 GHz Pentium IV PC with 512 MB memory.

Size Pro. SDT SDQ SQT SQQ SQV

n [ Tt. | CPU |It. | CPU |It. | CPU |It.| CPU |It. | CPU |1t. | CPU
50 5665 91.97 | 24 | 2234 |28 | 2.584 | 16 | 1.312 | 20 | 1.532 | 21 | 1.653
100 | 3337 | 290.97 | 34 | 17.896 | 33 | 17.454 | 17 | 8.332 | 23 | 10.866 | 24 | 11.887
150 | 8898 | 1921.2 | 38 | 69.16 | 37 | 66.576 | 20 | 33.98 | 23 | 38.024 | 23 | 39.076
200 | 26162 | 12504 | 71 | 329.12 | 66 | 306.15 | 21 | 96.98 | 26 | 115.17 | 26 | 117.57
250 | 21573 | 13521 | 70 | 711.67 | 83 | 845.46 | 20 | 195.94 | 27 | 259.92 | 25 | 245.81

Table 5.1: Performance comparison among the projection method and the
path-following method with the formulations SDT, SDQ, SQT, SQQ and
SQV.

The numerical experiments were carried out on two set of randomly gen-
erated square data matrices, each matrix is dense and its entries vary between
—100 and 100 exclusive. First, we applied all approaches on small matrices F'
of dimension n ranging from 50 to 250, and typical results are summarized in
Table 5.1. In all cases, we found the optimum to high accuracy, at least eight
decimals. Table 5.1 compares the CPU time and the number of iterations
of all six approaches. We notice that the consumed time gets larger more
rapidly in the projection method with the size of the data matrix F'. An ob-
vious remark is that the projection method is the slowest. It is at least seven
times slower than the slowest of the five formulations of the path-following
method. However, the difference in time between the five formulations is not
big enough to have a significant importance.

The projection method is expencive hence we exclude it from the second
set of test problems, which we applied to the SDP and SOC formula for a
randomly generated data matrices ranges from n = 10,...,500. The com-
putations for the formulations SDT and SDQ are slow hence we stop the
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Figure 5.1: Comparing the CPU times against the size of the matrix F.

computations for them when n reaches 350. The results appear in Figure 5.1
which compare the CPU time in minutes against the size of the data matrix
F. We can see the correlation between the CPU time and the size of the
matrix. Figure 5.2 shows the number of iterations by SDPT3 against the
size of the matrix F.

6 Conclusion:

We conclude this paper by addressing few remarks. The projection method,
despite its accuracy, is very slow. Whereas, the path-following method with
SDT, SQT and SQQ formulations is very fast, sometimes more than 120 times
faster than the projection method (see Table 5.1 e.g. when n = 200), and
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Figure 5.2: Comparing the number of iterations by SDPT3 against the size
of the matrix F.

gives results of acceptable accuracy. The other is that we gain considerable
advantage out of solving our problem as a mixed semidefinite and second-
order cone problem (SQT, SQQ and SQV). This can be seen clearly by
noticing the bad performance of the formulation SDT and SDQ), (see Figures
5.1 and 5.2 ) which solves the problem as a semidefinite program.
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