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Abstract

Accurate estimation of the in vivo locations of skeletal landmarks
plays an integral role in several biomechanical research techniques.
Because of rounding errors caused by instruments or skin movement,
the data obtained through cinematography are usually not accurate
and rise to a distance matrix which, because of the data errors, may
not be Euclidean. The aim of this paper is to find the best Euclidean
distance matrix (EDM) that approximates the distance matrix and
then, an accurate estimation of the locations of skeletal landmarks. A
useful scheme for parametrizing an orthogonal matrix is also described.

Keywords: Ankle; Bone markers; EDM; Errors; Foot; Quasi-Newton
method; Skin displacement.
1 Introduction

Data obtained through cinematography are usually derived from the coordi-
nates of skin-mounted markers positioned over specific skeletal points. The
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errors in the accuracy of such data are therefore dependent upon either in-
strumental errors representing the errors with which marker coordinates are
reconstructed in a global frame or skin displacements mostly associated with
the interposition of both passive and active soft tissues, and caused by the
relative movement between the marker and the underlying bone. This is a
major source of error because when the calculations are being carried out on
the data, we are assuming that the body parts are rigid and the movement
of the skin goes against this assumption. As can be seen in Figure 1, the foot
is made up of many individual joints, resulting in a considerable amount of
movement within the foot.

The experimental data are measurements of squared distances between
markers positioned over specific skeletal points in a Euclidean space. Such
distances are referred to as Euclidean distance matrices. However, because
of experimental errors, these matrices are not exactly Euclidean and it is
desirable to find the ‘best’ Euclidean distance matrix which approximates
the non-Euclidean matrix. The aim of this paper is to reduce the errors in
the experimental data. In doing this, it is hoped that subsequent calculations
for finding the location of the axes in relation to each other will produce more
accurate results.

An n x n symmetric matrix D = (d;;) with nonnegative elements and
zero diagonal is called a distance matriz. In addition, if there exist points
X1, Xg, . ..,X, in IR" such that

dij = [|x; — %13, i, j=1,2,...,n, (1.1)

then D is called an Fuclidean distance matriz. The smallest value of r is called
the embedding dimension of D, also r = rank(A). Let F' be a distance matrix
representing the experimental data and let ||F||r = Vtrace FTF denote the
Frobenius norm of F. We consider the objective function

f(D)=||F - D|f3. (1.2)
The nearest Fuclidean distance matriz problem is

minimize f(D)

(EDM) subject to Deé&

(1.3)
where £ denotes the cone of Euclidean distance matrices.

We consider two problems which generalize (1.3). First, given a set of
frames, each frame F} is a set of coordinate points in the Euclidean space.



All frames should generate identical EDMs but because of errors in reading,
they are a little different. Thus, we need to find the best Euclidean distance
matrix of all frames, i.e.

(GEDM) minimize Y _||F, — D||}
k=1
subject to D € €. (1.4)

After the best Euclidean distance matrix D has been found, a second problem
is to fit D to each frame of data. This will enable the original frame coordi-
nates to be replaced by coordinates whose distance matrices are consistent
with the best distance matrix obtained from (1.4). Hence, the problem can
be expressed as: given a frame with the coordinate points p1, p2, - - ., Pn, the
problem can be expressed as

n
(FEDM) minimize  » _||pr — X3
k=1
subject to ||Xz — X]'Hg = di]', (15)
where x1,Xs,...,X, are the unknown coordinate points representing the de-

sired frame that fits D.

Theoretical properties of Euclidean distance matrices (1.3) can be found
in, e.g. [2, 3,9, 10, 12, 20]. This includes characterizations, solutions, as well
as graph-theoretic conditions for EDM problem. More information can be
found in a recent survey article by Laurent [15].

Applications of Euclidean distance matrices abound: e.g., molecular con-
formation problems in chemistry [7]; multidimensional scaling and multivari-
ate analysis problems in statistics [16, 17]; genetics, geography, and others
[1].

In medicine where our problem arises, Stanhope et. al. [24] have pre-
sented experimental results whereby the bone-embedded frame of reference
was obtained using halo pins inserted into the periosteum of the tibia of
three volunteer subjects who walked on the level. Karlsson et. al. [14] report
results obtained using markers mounted on a cortical pins. In a study of
skin displacement, Maslen et. al. [18] refer to the fact that the extent and
direction of this displacement can vary according to the specific location of
the markers and the nature of the movement.



Lately, Cappozzo et. al. [6, 5] have studied the position and orientation
in space of bones during movement. In order to analyze the ankle joint in
movement in three-dimensions, they determine the instantaneous position
and orientation of the system of axes, which they consider to be rigid with
the bone under analysis. Some references that consider problem (1.5) are
[4, 8, 11, 13, 22, 23, 25, 27]. Woltring [26] considers parametrisation of
rotations matrices. Some of them are only relevant when the dimension r
equals 3. However, Many of the above applications require a low embedding
dimension, e.g. r = 3.

2  Solving the EDM

In this section, we describe a method to solve (1.4). This problem has been
formed as an unconstrained optimization problem and then solved by the
quasi-Newton method [2]. However, recently, [21] considered an organized
way to calculate the gradient of the objective function so that efficient clas-
sical optimization techniques can be applied. The main idea is to replace
(1.4) by a smooth unconstrained optimization problem in order to use super-
linearly convergent quasi-Newton methods. In what follows, we describe the
original problem, and the gradient of the objective function.

Given a set of frames where each frame represents coordinate points in
IR?, problem (1.4) is to find the best Euclidean distance matrix of all frames,
or equivalently

minimize Z{Z (fijk - dij)2}
k=1 1,5=1
subject to D €€&. (2.1)

The following theorem is needed to explain the method; its proof can be
found in [2].

Theorem 2.1 The distance matriz D € R™" is a Euclidean distance ma-
triz if and only if the n — 1 x n — 1 symmetric matrix A defined by

a;; = 3ldi; + di; — dyj) (2<i,j5<n) (2.2)

is positive semi-definite, and D is irreducibly embeddable in R"(r < n).
Moreover, consider the spectral decomposition A = UAU”T. Let A, be the



matriz of non—zero eigenvalues in A and define X by
X =UAY?  then A=XXT, (2.3)

where AY? € R™" and U, € R""" comprises the corresponding columns
of U. Then the columns of XT furnish coordinate choices for ps,Ps,--.,Pn

It is possible to express (2.1) as a smooth unconstrained optimization
problem. The unknowns in the problem are chosen to be the elements of
the matrix X introduced in (2.3). From (1.1), d;; = ||x; — x,||3, therefore
(2.1) is replaced by an unconstrained optimization problem in rn variables
as follows:

minimize  ¢(x) = > {)_ (fij, — Ixi — x;03)°}. (2.4)

k=1 ij=1
Let t;;, = fij, — ||%i —%;3, then we can express problem (2.4) as
m n
minimize  ¢(x) = Z Z t?jk' (2.5)
k=1 4,5=1

If the elements ¢;;, are put in a matrix T, then (2.5) becomes

minimize  ¢(x) = Z trace T (2.6)
k=1
The expressions for the first partial derivatives of ¢ are given by
o) T Otij,
0z,. 2 Z Z Liy, o, (2.7)
k=1 1i,j=1
where
o 0 if s & s#j
# = 2(xps — xpi) if s=17 (2.8)
Trs 2(xrs — xrj) if s=1
which is equivalent in matrix notation to
2] = 8X Y (Di —Tx), (2.9)

k=1



where Dy, = diag(dy), d, = Tre and e = (1,...,1)" € R".

An extreme case occurs when the initial matrix X = 0 is chosen, and
> F) # 0. It can be seen from (2.8) that the components of the gradient
vector are all zero, so that X = 0 is a stationary point, but not a minimizer.
A gradient method will usually terminate in this situation, and so fail to find
a solution. A reliable method for initializing X is to use the construction
suggested by (2.2) and (2.3). Thus, we define the elements of A from the
averge elements of Fj by

m

Qij = Z{%(fijk — frie — fij) }/m 1>2, j3>2. (2.10)

k=1

The first row and column of A are zero and are ignored. We then find the
spectral decomposition UAUT of the nontrivial part of A. Finally, X is ini-
tialized to the matrix A;/QUTT, where A, = diag();), i = 1,...,r is composed
of the r largest eigenvalues in A, and columns of U, are the corresponding
eigenvectors.

3 Fitting the frames

In the first part of the problem, an EDM D is found which best fits the data
given by all the frames Y} in the least squares sense. Columns of matrix X
provide a coordinate system from which D can be calculated. The procedure
in the second part is to fit X to each frame of data Y). That is, we find the
nearest coordinate system Y to Y} (in some sense) such that Y has the same
EDM D as X. We can always express

Y =vel +Q(X — Xee' /n), (3.1)

where () is an orthogonal matrix, which is the result of a translation and a
rotation about the centroid of points in X. This is necessary because the
coordinate system X is arbitrary and has no relation to the coordinate system
in which the experimental data are expressed.

In what follows, two methods of finding v and @) are suggested. The first
is a direct method which is readily implemented in say matlab. The second is
an optimal method which requires the application of an unconstrained min-
imization technique. We stress that these calculations must be repeated for
every frame of data, so it is important to find an efficient method. However,



there are some potential difficulties that can arise when working with an or-
thogonal matrix. Hence, we introduce a section on a stable parametrization
of an orthogonal matrix.

3.1 On the Stable Parametrization of an Orthogonal
Matrix

In various optimization problems there are variables which are elements of
an orthogonal matrix, and hence are subject to nonlinear orthogonality nor-
malization constraints. It can be efficient to parameterise the problem in a
different way so as to remove these constraints. However it is important that
this is done in a stable way.

A well known parameterization is the Cayley transform

Q=I-S)(IT+5)" (3.2)

which parameterises () € IR™*" in terms of a skew-symmetric matrix S. This
is a minimal representation in that S has in(n — 1) independent parameters,
which is the appropriate number, since () has n? elements and there are
sn(n — 1) orthogonality conditions and n normalization conditions. The
inverse representation

S=I-QU+Q)" (3.3)

enables S to be calculated from a given orthogonal matrix Q).

Unfortunately, not every orthogonal matrix can be expressed in this way.
Orthogonal matrices may be classified as proper or improper according to
whether det(Q) is +1 or —1. Clearly det(Q)) = 1 in (3.2) so the Cayley
transform cannot be used for an improper orthogonal matrix. In 2 or 3 di-
mensions, proper orthogonal matrices are associated with rotation operations
(see e.g. Mirsky [19]). However, a rotation through an angle 7 in 2D gives
-1 0
0 -1
transformed using (3.3). Moreover, for angles close to 7, the resulting matrix
S is large, giving rise to possible numerical instability.

We suggest a procedure which is applicable to both proper and improper
orthogonal matrices, and which always yields a finite S matrix. It uses the
transformation

rise to the proper orthogonal matrix () = , which also cannot be

QP=(I-9)I+5™" (3.4)



where P is a nonsingular matrix consisting of columns from [/, —1], i.e. P
incorporates column permutations and sign changes in ). The inverse trans-
formation is

S=(-QP)I+QP)" (3.5)

The problem therefore is, given an orthogonal matrix (), find P and S such
that @ is given by (3.4). In the algorithm we describe below, we need to
calculate factors

(I+QP)=LU (3.6)

where L is unit lower triangular, U is upper triangular with positive diagonal
elements, and P is determined during the factorization process. These factors
can then be used to compute S from (3.5).

To describe the process, here is an algorithm that computes U and L:

Algorithm 3.1 Let U represent a stored matriz, which will finally become
the upper triangular matriz in (3.6).
Initialization: U = Q, P = 1.
fori=1:n
Set k = argmax -, ||
Interchange columns i and k of U
Interchange columns i and k of P
if u; <0
change the signs of column i of U and of P
end
Set WUj; = Uj; + 1
for j=i+1:n
Set lji = u’]z/uzz
Subtract l;;x row i of U from j of U
end
end

Essentially the algorithm implements column pivoting with sign change to
make the pivot positive. At this stage the unit element of I is added into the
pivot. To illustrate the procedure in Algorithm 3.1, we consider the following
example:



Example 3.2 Let

0 N N
S=(-N 0o NJ|. (3.7)
~N —N 0

As N — oo, it is readily observed that Q in (3.2) converges to

L1 -2 2
Q=5|-2 -1 -2 (3.8)
2 -2 -1

Clearly, the inverse calculation (3.3) fails for this Q. We first illustrate how
the new procedure calculates LU factors as in (3.6). Initially, U = Q and
column 2 is chosen as a pivot with sign change, the unit value is added in,
and columns 1 and 2 are interchanged. After eliminating the subdiagonal, we
have

1 00 1 0 5/3 —1/3  2/3
L=|1/5 1 0|, P=(-1 0 o], u=[ 0 -3/5 —4/5
2/5 0 1 0 1 0 4/5 -3/5

On stage 2, column 3 is chosen with sign change, giving

1 0 0 0 0 1 5/3 —2/3 —1/3
L=|15 1 o|,p=|-1 0 o|,U=| 0 9/5 -3/5
2/5 1/3 1 0 -1 0 0 0 1

On stage 3, column & is necessarily chosen, but there is mo sign change.
However, we still add unity into uzz giving

5/3 —2/3 —1/3
U=| 0 9/5 =3/5
0 0 2

L and U are now the factors I + QP = LU. The resulting skew-symmetric
matriz in (3.5) is
0 1/3  1/3
S=1-1/3 0 1/3
-1/3 -1/3 0
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We now return to the second problem of fitting the best configuration
with EDM D to each of the frames F;. We use some aspects of the ideas
previously presented. What we have is a set of coordinates (columns of a
matrix X) which has the best EDM D as calculated in Section 2. We also
have coordinates Y) for frame F},. Because Y) does not have the optimal
EDM D, Y}, cannot be obtained from X by using (3.1). We therefore need
to develop a procedure for transforming X to be as close as possible to Y.

3.2 A Direct Method

In this method, we first translate X and Y} to have a zero common centroid,
giving matrices X = X — Xee’ /n and Y, = Y}, — Y,ee” /n. Next, we find an
orthogonal matrix () such that

Y — QX (3.9)

is close to Y;. Were it to exist, a general linear transformation of X to Y}
could be written ) )
MX =Y. (3.10)

However, because Y} has many more columns than rows, these equations are
overdetermined and an exact solution for M does not usually exist. Even if
it were to exist, it is unlikely that M would be an orthogonal matrix. Our
strategy is to find the matrix M which best fits (3.10), and then find an
orthogonal matrix @ which is close to M. The best solution of (3.10) may be
expressed as M = Y, X, where X' is the Moore-Penrose generalized inverse
of X, although it is most efficiently calculated from QR factors of X7. First,
we check whether det(M) is close to +1, which indicates that the Cayley
transform

Q=0U-91I+97", (3.11)
is applicable. The inverse of this transformation is
S=I-QU+Q)" (3.12)

which determines a skew-symmetric matrix from an orthogonal matrix. We
apply (3.12) to the matrix M to get

P=(I—M)(I+M)™
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If M were close to an orthogonal matrix, then P should be close to a skew-
symmetric matrix. Thus, we calculate the nearest skew symmetric matrix to
P from
S=(P-P")2,

and then use (3.11) to determine Q). If S were very large, then we would use
the procedure outlined in Section 3.1 to make it smaller. Finally, we translate
Y in (3.9), giving a matrix Y = Y + veT which has the same centroid as Y.
This is achieved by defining

v = (Y,e—Ye)/n.

A similar method is investigated in the project report of Smith [21] where
a translation has been done first and then the rotation. However, we think
that the method used in [21] has a flaw as it does not do the rotation about
the common centroid.

3.3 An Optimal Method

The main disadvantage of our method described in Section 3.2 is that it does
not provide an optimal choice of v and (). This is the subject of this section.
Given a frame with the coordinate points py, po, ..., Pn, the problem can be
expressed as

n
minimize Z Ipx — x5
k=1
Subject to ||Xz - Xj”; = dij7 (313)
where x1,Xs,...,X, are the unknown coordinate points representing the de-

sired frame that fits D. In our problem, the embedding dimension is r = 3.
Now, if the matrix X is rotated by the matrix S and transformed by the
vectoer v € IR? to fit the best Euclidean distance matrix, then (3.13) can be

expressed as
minimize @, (3.14)

where

ov.8) = 3 lpe — vl
k=1

3

= Z Z(pm — Yki)’ (3.15)

k=1 i=1
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and y; are the elements of the matrix

Y =QX + vel,

where
X=X-Xeel/n, v=][v, vy, v3]"
and
0 S12 513
Q == (I—S)(I+S)_1, S == —S519 0 S93
—S13 —S23 0

This problem is equivalent to (3.13) but with only six variables. A gra-
dient method requires expressions for the first partial derivatives of ¢ with
respect to s;; which are given from (3.15) by

2 = S5 - ) ay’“, (3.16)
s,]

k=1 =1
where oy 90
= X 3.17
851']' 852-3- ( )

We can express ) implicitly by Q(I + S) = (I — S). Then, the implicit
derivative of () with respect to s;; is

oQ
852-3-

(I+S)+QE;; = — Ej, (3.18)

where E;; is the matrix representing the derivative of I + S with respect to
Sij i.e. Ezy = ez-e e] Hence

9Q

Erotiaiie (I+Q)E;(I+5) " (3.19)

The expressions for the first partial derivatives of ¢ with respect to v; is

given by
av, O,

klzl
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where
0 0
oY € oY oY
el 0|, — = el |, — = 01, (3.21)
8’01 0 81}2 81}3 eT
ande’ =[1 1 ... 1]eR"

Algorithm 3.1 can be used to recalculate P and S if the elements of S
become large.

4 Computational Results

In this section, we will explain how the data are generated. Thereafter, the
data analysis for all the methods in Sections 2 and 3 will be considered.

Recently, there has been a study by the Ninewells Teaching Hospital,
Dundee, Scotland, on the location of the axes in the ankle joint, where the
data are analyzed in the form of distance matrices. The subjects in this
study are patients that have some form of ankle deformity or injury. Five
markers are fixed on the skin of the lower leg and six on the foot of the
patient and then they walk down the middle of a large room. As they walk,
cameras are taking reading of the markers. The markers are fixed to the skin
to estimate the position of the underlying skeletal structure. Figures 1 and
2 are idealized models of the lower leg and foot.

The ankle joint is connected by two axes about which it can rotate, one
axis allows for up and down movement and the other allows for movement
from side to side. The aim of this study is to determine where these axes
are, but more specifically, determine how far apart these axes are from each
other. Hence, to calculate where these axes are in relation to each other so
that the appropriate corrective footware can be prescribed or, if necessary
surgery can be carried out.

We are grateful to the Gait Laboratory at Ninewells Hospital for supply-
ing a test set of data for us to analyze. The data are in the form of a matrix
with 34 columns and 363 rows each row represent a frame and contains the
frame number and the coordinate components for the eleven markers namely,
STA1, STA2, PCAL, LCAL, MCAL, P2MT, TTUB, LEPC, MEPC, LMAL,
MMAL. The first six are markers on the foot and the rest are markers on
the leg. All the data measurements in this section are in decimeters.

All numerical experiments in this section were executed in Matlab 6.1 on
a 2.0GHz Pentium IV PC with 512 MB memory running MS-Windows XP.
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4.1 Best EDM

The best EDM of all 363 frames of data has been found by the algorithm in
Section 2, using both conjugate gradient and quasi-Newton methods. Both
give exactly the same results in almost the same CPU time with tolerance=
107'2. Figure 3 shows the best coordinate points for the foot markers and
Figure 4 shows the best coordinate points for both foot and leg markers.
Table 4.1 shows the value of the objective function, the gradient ||g®||? and
the CPU time in seconds for the best EDM for the leg, foot and both leg and
foot.

) g™ 13 CPU time
Leg 247.2982 | 1.6889¢-007 | 14.8410
Foot 12.2281 5.3879¢-009 | 12.2770
Leg and Foot | 1.2377e+004 | 2.7674e-006 | 100.9160

Table 1: This table shows the value of the objective function, the gradient
and the CPU time in seconds for the best EDM for the leg, foot and both
leg and foot.

The best EDM for both leg and foot approximated to four digits is given
by D =

0.6031
0.6130
12.646
10.335
15.703
11.286
13.314
15.727
14.964
13.574

0.6031
0
1.2477
14.540
13.219
17.824
14.537
15.445
18.040
18.194
16.869

0.6130 12.646
1.2477  14.540
0 14.431
14.431 0
11.368  0.900
16.926 0.3478
12.994 1.0918
14.116 0.4330
17.573 0.1980
16.053 0.9271
16.333  1.4267

10.335
13.219

15.703
17.824
11.368 16.926
0.900 0.3478
0 1.2024
1.2024 0
0.2487 1.6766
0.7059 0.1666
1.1656 0.1854
0.4336 0.6406
1.3068 2.3656

4.2 Fitting the frames

11.286
14.537
12.994
1.0918
0.2487
1.6766
0
1.3841
1.2221
0.5976
0.4689

13.314
15.445
14.116
0.4330
0.7059
0.1666 0.1854
1.3841 1.2221
0 0.5069
0.5069 0
0.5431 0.6350
25133 1.3901

15.727
18.040
17.573
0.1980
1.1656

14.964
18.194
16.053
0.9271
0.4336
0.6406
0.5976
0.5431
0.6350
0
1.4281

13.5747
16.869
16.333
1.4267
1.3068
2.3656
0.4689
2.5133
1.3901
1.4281
0

In Section 3, two methods have been described for finding the best fitting to
each frame. In Table 4.2, the direct method explained in Section 3.1 and the
optimal method explained in Section 3.2 are compared. We fit all 363 frames
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using these two methods, both satisfying the constraints ||x; — x;|| = d;.
However, the optimal method is the best in terms of fitting the data to the
nearest best coordinate points. As shown in Table 4.2, the frame Y3g; fits
the best EDM with /¢ = 0.1248 and the average /¢ of all frames is 0.3427,
while the direct method is far from these minimum values as can be seen in
Table 4.2. Figure 5 shows frame Yig; as the center of the circles. The best
fitting for the two methods is given by dot for the optimal method, and cross
for the direct method. It is clear from the figure that the dots are nearer to
the center of the circles from the crosses. Figure 6 shows a similar example
but this time only for the foot with frame Y33,.

Vo Vo CPU for | CPU for | CPU for
Direct | Optimal | Direct OP1 OoP2
Average | 0.58456 | 0.3427 | 0.00259 | 0.01285 | 0.1166
Maximum | 1.01262 | 0.5403 0.01 0.04 0.921
Minimum | 0.166134 | 0.1248 0 0 0.02

Table 2: Comparison between the direct method and the optimal method

In the contrast of Section 3.1, we found from the numerics by both meth-
ods, the direct method and optimal method that S contains small entries
between —0.2 and 0.2, the determinant of () is always one and the determi-
nants of M range from 1.0409 and 0.90261, i.e. det(Q) = 1, det(M) =~ 1.
This means we have a very stable orthogonal matrix. However, if we have a
data with unstable matrix M, then we switch to the Algorithm 3.1.

Table 4.2 shows the amount of computations by both methods. In Table
4.2, OP1 means that the initial data for the optimal method are the solution
obtained from the direct method while OP2 means that the initial data are
remote from the optimal solution, specifically by choosing v(¥) = P2MT” and
S0 = 0. These CPU times are very small; however, in practice, considering
the huge number of frames involved, fitting these frames will add up time
and become large. It is clear from Table 4.2 that the direct method is almost
4 times faster than the OP1 and is almost 40 times faster than the OP2. The
initial choice for OP2 will slow it down almost 10 times from OP1. These
observations suggest that we always start with the direct method then we
switch to the optimal method saving the data as an initial data for optimal
method. These procedures are needed especially if we need high accuracy
and they will reduce the amount of computations almost 10 times. If high
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accuracy is not required, then we can stop with the solution found by the
direct method which can be found in almost no time.

5 Summery

This paper describes methods for rectifying the frame of markers from noisy
point data. We were able to determine the best EDM for all the frames, and
then fitted each frame to this best EDM. The methods were fast, reliable
and able to remove the errors in the experimental data and gives the exact
location of each marker with respect to the frame to which it was assigned. In
conclusion, our methods were able to reconstruct orientation for each frame.
Using this quantity directly from markers without correction is an unreliable
process. By fitting each frame to the best EDM, our methods provide a much
more reliable means of finding orientation.
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Figure 1: Shows a side view of the foot and a view from above with all six
of the foot markers labeled to indicate where they would be ideally placed.



20

LONG AXIS OF TiBiA

Figure 2: Shows a front view of the lower leg and a view from above the foot,
with labels indicating where the leg markers are ideally placed in relation to
the foot.
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Figure 4: The best coordinate points for both foot and leg markers
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Figure 5: The best fitting for frame Yig;.

23



(®PcAL

Cran

€mcAL

Figure 6: The best fitting for frame Y33, in the foot.

24



