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Abstract

Methods for solving the educational testing problem are considered. One
approach (Glunt [7]) is to formulate the problem as a linear convex program-
ming problem in which the constraint is the intersection of three convex sets.
This method is globally convergent but the rate of convergence is slow. How-
ever, the method does have the capability of determining the correct rank of the
solution matrix, and this can be done in relatively few iterations. If the correct
rank of the solution matrix is known, it is shown how to formulate the problem
as a smooth nonlinear minimization problem, for which a rapid convergence
can be obtained by /1 SQP method [6]. This paper studies hybrid methods that
attempt to combine the best features of both types of method. An important
feature concerns the interfacing of the component methods. Thus, it has to
be decided which method to use first, and when to switch between methods.
Difficulties such as these are addressed in the paper. Comparative numerical
results are also reported.
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1 Introduction

The problem to be considered in this paper is the educational testing problem. Such
optimization problems arise in many practical situations, particularly in statistics
where we are given a matrix F' which is usually a covariance matrix with varying
elements. The educational testing problem is this: given a real symmetric positive

definite n x n matrix F', how much can be subtracted from the diagonal of F' and still
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retain a positive semi—definite matrix. This can be expressed as

maximize e’0 60 ¢ R"”
subject to F' — diag@ > 0

0; >0 i=1,..,n (1.1)
where e = (1,1,...,1)". An equivalent form of (1.1) is

minimize e’x x € R"
subject to F + diagx > 0

x < v i=1,.,n (1.2)

where F' = F — Diag F, and diagv = Diag F.

An early approach in solving the educational testing problem is due to Bentler [2].
He writes F' — diag @ = CCT, where C is unknown, and minimizes the trace
of (CC™), subject to certain conditions. He found that there are a large number of
variables, and also it does not account for the bounds 6, > 0 V i. Furthermore,
some difficulties in convergence to the optimum solution arise.

Woodhouse and Jackson [14] have given a method for solving the problem by
searching in the space of 6. However, their method does not work efficiently and fails
for particular examples.

Fletcher [5] has solved the problem by reducing the semi-definite constraint to an
eigenvalue constraint, using standard nonlinear programming techniques. However,
some difficulties still arise with the associated rates of convergence. Also, the pre-
sumption that the eigenvalue constraint would be smooth at the solution, except in

rare cases, is not correct; in fact, a majority of such problems are nonsmooth at the
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solution.

In [6], Fletcher has developed a different algorithm for solving the educational
testing problem. He gives various iterative methods for solving the nonlinear pro-
gramming problem derived from the educational testing problem (1.2), using the
Sequential Quadratic Programming (SQP) techniques. One of these algorithms is the
use of the [j-exact penalty function. This algorithm works well with second order
convergence and the function converging to the optimal solution. The only problem
in these algorithms is how to know the exact rank for the matrix A* = F + diag x*
where x* solves (1.2) .

Glunt [7] describes a projection method for solving the educational testing prob-
lem. His idea is to construct a hyperplane and then carry out the method of alter-
nating projections ([12]) between the convex set K and the hyperplane. His method
converges globally but the order of convergence is very slow.

New methods for solving the educational testing problem are introduced. The
methods described here depend upon both the projection and the [;SQP methods
using a hybrid method. The hybrid method works in two stages. During the first
stage, the projection method converges globally and, hence, is potentially reliable
but often converges slowly. During the second stage, the [{SQP method, has a second
order convergence rate if the correct rank r* is given. The main disadvantage of
the [;SQP method is that it requires the correct r*. A hybrid method is one which
switches between these methods and aims to combine their best features. To apply
the [;SQP method requires a knowledge of the rank 7* which can be gained from the
progress of the projection method. Hybrid methods have often been used successfully

in optimization, (e.g. Hald and Madsen [10] and Al-Homidan and Fletcher [1]).
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The statistical background involved in the educational testing problem is described
in Section 2. In Section 3 the educational testing problem is solved using the von
Neumann algorithm. Section 4 contains a brief description of the /;SQP method for
solving (1.2). In Section 5 two new hybrid methods are described. Firstly, there is the
projection—1;SQP method, which starts with the projection method to determine the
rank 7®) and continues with the {;SQP method. Secondly, the I;SQP-projection
method is described which solves the problem by the [;SQP method and uses the
projection method to update the rank. Finally in Section 6, numerical comparisons

of these methods are carried out.

2 The Educational Testing Problem

This section explains the educational testing problem which arises from statistics and
gives rise to the nonlinear programming problem (1.1). The problem is to find lower
bounds for the reliability of the total score on a test (or subtests) whose items are
not parallel using data from a single test administration. The educational testing
problem consists of a number of student (N) taking a test or examination consisting
of (n) subtests. The problem is to find how reliable is the students’s total score in
the sense of being able to reproduce the same total on two independent occasions.
Specifically, it is required to know what evidence about reliability can be obtained
by carrying out a test on one occasion only. The discussion will closely follow that of
Fletcher [5].

The given data for the problem is an N x n table of scores [X;;] (e.g. [5]) such
that X;; gives the observed score of student ¢ on subject j. The student’s total

score is X; = 37; Xj;, and X is the vector of total scores. The mean score for subject j
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is X; = 1/N ¥, X;j, and the mean total score is X = 3°; X;. These observed scores
are regarded as having been sampled from a universe of test, and £[-] denotes the

expected value on this universe. Then it is assumed that
Xij =T+ Eij Vi,j (2.1)

where

E[Ei;l =0 Vi, j. (2.2)
The quantities Tj; represent the hypothetical true scores where T,T;, and T are
defined as for X, and are the expected values of the corresponding quantities for the
true scores.

The variance of the total scores from the expected mean scores is

1
N —

1

2 _
Ox = N —

S E[(X: - E[X]] = = S E(X; ~ T)?] (23)

Reliability of the test may be regarded as the correlation in the student’s total scores

from two indepenent tests. Let X() and X® represent two such tests and XM and

X® be the corresponding total scores. [9] defins the reliability coefficient p by

N_1 o ' '
This is a correlation in the observed scores. In a completely reliable test, X)) = X ()
and it follows from (2.1) that p = 1. Assuming that the errors are uncorrelated such

that E[EY - B = e[EMWIE[E™)] it follows that

2
g
p=— (2.5)
Ox

where 0f = = >;(T; — T)?*. To determine how much information about p can be
deduced from a single set of test scores, one can relate 03 and o4 to certain variance-

covariance matrices. The variance-covariance matrix >y of observed scores from the
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expected mean observed scores is defined as

Sxlp = s DIy — £ (X — EK)

— o7 Ty~ )~ T (26
Similarly for X7 and g
Srlpe = § S0 1) (T~ Th), (27)
and [Ygljx = ﬁ i E[Ei; Eir). If we assume uncorrelated errors in the sense that
E[E; Tl = E[B T Vi gk, (2.8)
and
E|E;Ei) = E|EGIE(By]  Yi, gk, j#F, (2.9)

then it follows from (2.2) that Xy is diagonal and from (2.7) and (2.1) that
Sy = Sr + S, (2.10)

It also follows from (2.3) and (2.7) that o% = X;4x[Xpljx = €'Xre where e =

(1,1,...1)7, and that 0% = e"Sre. So writing 6; = (Xg)s, (2.5) becomes

0,
2o zili 2.11
P12y 2.1)
[9] shows that for large values of N, ¥y may be estimated by
1 — _
fir = [Exlin = N_1 Z(XZJ — X ;) (Xix — Xg). (2.12)

Y7 and X are unknown, but being variance-covariance matrices, they are positive

semi-definite. Using (2.10), these conditions may be written as

Sy —Yp>0,S5 >0, (2.13)
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and may be regarded as constraints on the 6;.
Obviously the 6; satisty
< ‘ )
zi: 0; < max 2,: 0; (2.14)
where the max is taken over all §; satifying (2.13). By (2.11),

PP >1— (2.15)

¢
0%’
So by solving the optimization problem in (2.14) or equivalently (1.1), one obtains a

lower bound on the value of p. This is the best that can be done on the basis of a

single test.
3 A Projection Method

In this section a projection algorithm due to [7] for solving the educational testing
problem is described. The method described here depends on the basic iterated
projection algorithm by [12].

It is convenient to define three convex sets for the purpose of constructing the

probem. The set of all n x n symmetric positive semi—definite matrices
Kp = {A:AcR™™, A" = Aand z"Az > 0 VzcR"} (3.1)

is a convex cone of dimension n(n+1)/2. If F € IR™" is any given symmetric

positive definite matrix, then define
Kog = {A: A€ R, A — Diag A = F}. (3.2)

where ' = F — Diag F. This is the set of matrices whose off-diagonal elements

are equal to those of F'. Also, let diag v. = Diag F' , then define

K, = {A:Ac RV A = A + diagx, z; < v; i=1,2,..n} (3.3)



Educational Testing Problem 8

where A = A — Diag A. This is the set of matrices that is obtained by reducing

the diagonal of A. K.,z and Kj, are subspaces. Then (1.2) can be expressed as

minimize e’x x € R”
X

subject to F 4 diagx € Kr N Ko N K, (3.4)

Let K; and K5 be supspaces of Hilbert space and P, and P, be, respectively, the

orthogonal projections onto K; and K5. Then, the von Neumann method is given by
Algorithm 3.1 Given a point f,

Set x© = f

For k=0,1,2,..

X(k-l—l) — PQPl(X(k))

The sequence in Algorithm 3.1 converges to P, .. (f), which is the orthogonal
projection onto the intersection of K; and K.
Glunt’s idea is to take account of the function e”x by defining the hyperplane
L, = {Y =Y + diagy € R"" e’y = 7}

= {Y € R tr(Y) = 7} (3.5)
where Diag Y = diagy and 7 is chosen such that

7 < mine’x. (3.6)
xeEK

Then the sets K = KrNK.gNKy and L, are disjoint. Given a matrix F© € IR™",

with F' = F 4 diag f and A = A+ diag x, Glunt applies Algorithm 3.1 to the problem

minimize [|f — x|,
X

subject to A € K N L, (3.7)
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which has no feasible solution. Now (3.7) generates the sequences {Y¥)} € L, and
{A®} € K converges to the points Y* € L, ,and A* € K suchthat | Y — A,
attains the minimum distance between K and L, [3]. It can then be deduced from
the relationship of L, and e’x that A* solves (3.4).

The von Neumann algorithm involves computing alternately the projections onto

L. and K. The projection onto L, is straightforward and is given by

T — tr(Y)

n

T

I, (3.8)

see [7]. For (1.2), we need the projection Pg(A) where K = Kg N Ko N K
for any matrix A. The projection on K = (;_; K; is computed using an inner
iteration based on the Dykstra algorithm [4] and is included as an inner iteration
inside Algorithm 3.2, equations (3.9) and (3.10). It follows from [4] that the resulting

method is globally convergent.

Algorithm 3.2 Given any positive definite matrix F,let F© = F

For | =1, 2, .. (3.9)

AY = AD L P PaPRr(AD) — Pr(AD)  (3.10)
F*D — P PaPr(A™)
where A* is the solution for the inner iteration.
The projection map Pgr(A) formula on to Ky is given by [11]

Pr (F) =UATU". (3.11)
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where
A, O
+ T
At = [ o 0] (3.12)
and A, = diag [\, A2, ..., A;] is the diagonal matrix formed from the positive

eigenvalues of F. Since K,z consists of all real symmetric n xn matrices, in which

the off-diagonal elements are fixed to F' (the given matrix), therefore
Pyg (A) = F + Diag A. (3.13)

Also, since K, consists of all real symmetric n x n matrices, in which the diagonal

elements are not greater than diag v = Diag F', we have
P, (A) = A + diag [h1, hgy ...y D), (3.14)

where

h:{hi:aii iof az‘iﬁvi}
hi = vi if ay; > vi)’

4 The [;SQP Method

This section contains a brief description of the [{SQP method for solving the educa-
tional testing problem [6].

Problem (1.2) can be expressed as
minimize e’x x € R"
subject to A + diagx € Kr NKyp, x < v (4.1)

where diagv = Diag A(®). We can follow [6] for full details in solving (4.1). However
in this section we give a summary of what has been given.
The first order necessary conditions can be stated as follows: If x* solves (4.1),

then x* is feasible and there exists a matrix B* € d(Kg N K,zf)(A*) where d(Kg N
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K,fr)(A*) is the normal cone to Kg N Ko at A* and a vector #* > 0(7* € IR") such

that
e +b" + 7 =0 (4.2a)
!l (v—-x*) =0 (4.2b)

where diag b* = Diag B*. This gives a characterization of the first order conditions
for (4.1). However, it does not take into account second order effects, although it may
be important to do this in order to obtain a second order rate of convergence in an
algorithm. It is difficult to deal with the matrix cone constraints in (4.1) since it is not
easy to specify if the elements are feasible or not. Using partial LDL” factorization
of A, this difficulty is rectified. Assume that r, the rank of A*, is known, then for A

sufficiently close to A*, the partial factors A = LDL" can be calculated where

L D A AT
L — |: 11 ,D — |: 1 :|,A — [ 11 21 .
L21 I D2 A21 A22
Then
Dy(A) = Ay — AnAjAj, (4.3)

and Dy(x) = Dy(A + diagx) = Dy(A). Therefore an equivalent problem to (4.1)

with the constraint Dy = 0 is considered and expressed as
minimize ex x € R"
X
subject to Dsy(x) = 0, x < v (4.4)

The Lagrangian for this problem is £(x, A, 7) = eTx — A : Dy(x) + 77 (x — v). To
eliminate the variables z;, i = r+1,...,n, (4.3) is exploited by using the diagonal

elements of Dy(x)

dii(x) = z; — Z Qik; [Aﬁl]kz ayg = 0 i =r+1,...,n (4.5)
k=1
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where a;; and a; are elements in  As;. Therefore the unknown variables are
reduced to x = [z1, 79, ..., 2] € IR". This formulation will enable us to
derive algorithms with a second order rate of convergence. Now, using the constraint
Dy, = 0, will produce an equivalent problem to (4.4). The number of variables in
this new problem can be reduced to r variables which gives the new reduced problem

minimize  f(x) = zr:xk + zn: xi(x)
k=1

i=r+1
subject to d;j(x) = 0, @ # j, x < v. 4,7 =r+1,....n (4.6)

where x;(x) indicates that x; is the function of x determined by

r

xi(x) = Z air[A o i=r+1,...,n.
k=1

. . . od; 02d. . . .
The expressions for the derivatives F'X and 7-5L- are given in [6] which enable
8 8

us to find expressions for V f, V? f and W = V2L(x,A, 7). Then using these

expressions the QP subproblem

minimize f%® + vf®§ + %5TW(’“)5 0 € R
5
subject to dif) + VdfT8 = 0 i £ dj=r+1,...,n
xX® + 8§ < v (4.7)

is defined. Thus the SQP method applied to (4.6) requires the solution of the QP

subproblem (4.7). The matrix W®) is positive semi-definite see [6].

5 Hybrid Methods

In this section, new methods for solving the educational testing problem are intro-

duced. The methods described here depend upon both the projection and [;SQP
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methods using a hybrid method. The hybrid method works in two stages. During
the first stage, the projection method converges globally and, hence, is potentially
reliable but often converges slowly. During the second stage, the [;SQP method and
the method, described in Section 4, has a second order convergence rate if the correct
rank r* is given. The main disadvantage of the [;SQP method is that it requires the
correct 7*. A hybrid method is one which switches between these methods and aims
to combine their best features. To apply the [;SQP method requires a knowledge of
the rank r* which can be gained from the progress of the projection method. This
hybrid method can work well but there is one disadvantage: if the positive definite
matrix has the same rank as the optimal positive semi—definite matrix in which the
[1SQP method works well, then most of the time will be taken up in the first stage,
using the projection method. If this converges slowly, then the hybrid method will
not solve the problem effectively. Thus, it is important to ensure that the second
stage method is used to maximum effect. Hence, in the algorithm of Section 5.2, the

[1SQP method is applied first.
5.1 Projection—/;SQP method

The main disadvantage of the [;SQP method is finding the exact rank r*. Since
it is not known in advance, it is necessary to estimate it by an integer r*). Tt is

(k) is obtained by carrying out

suggested that the best estimate of the matrix rank r
some iterations of the projection method given in Section 3. This is because the

projection method is a globally convergent method.

Considering A, in (3.12), then at the solution, the number of eigenvalues in A, is
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equal to the rank r*. Thus

No. A} =r", (5.1)

where No. A is the number of positive eigenvalues in A. An equation similar to (5.1)

is used to calculate an estimated rank 7*), given by

where A, is given by (3.12). Then, the [;SQP method will be applied to solve the
problem as described in Section 4.
Another consideration is how to choose 7. If 7 is close to the boundary of (3.6),

then the equation No. A®¥) = 7* may be satisfied during the first few iterations.

Experiments have proved this fact as shown in Table 6.1

The projection—/;SQP algorithm can now be described as follows.

Algorithm 5.1 Given any positive definite matrix F = FT € IR™™, let s be a
positive integer. Then the following algorithm solves (1.2)
i. Let FO .= F.
ii. Choose 7 to be close to the boundary of the condition (3.6).

iii. Apply Algorithm 3.2 until

iv. 78 = No. AWK,

v. Use the result vector x from Algorithm 3.2 as an initial vector for the

[1SQP method.
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vi. Apply the [;SQP method to solve the problem with r = 7*),

If |[Dg(x)]] < € for some small ¢, then

F* .= F® .= r® and the algorithm is terminated

vii. Apply one inner iteration of Algorithm 3.2

viii. Go to (iv).

The integer s in Algorithm 5.1 can be any positive number. If s is small, then the

rank 7r*)

may not be accurately estimated, but the number of iterations taken by
projection method is small. On the other hand, if s is large, then a more accurate
rank is obtained but the projection method needs more iterations.

The advantage of using the projection method as the first stage of the projection—
1,SQP method is that if F© is positive semi-definite and singular of rank r*, then
the projection method terminates at the first iteration. Moreover, it gives the best
estimate for 7). The singularity plays an important rule here, for if the matrix F
has rank r, this means there is n — r zeros eigenvalues. So, subtracting a small value

from the diagonal leads to a matrix F' which is indefinite. This implies that F'is the

optimal.
5.2 [;SQP—-Projection method

Starting with the projection method has the advantage that, if the given matrix
is positive semi-definite and singular, the projection method converges in one step.
However, sometimes it takes many iterations before equation (5.2) is satisfied, espe-
cially if 7 is chosen to be small. This means slow convergence since the projection

method is a slowly convergent method. In this method, an algorithm starting with
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the ;SQP method with an estimated rank 7*) is considered. Then, one iteration of
the projection method will be calculated after every stage of the [{SQP-projection
algorithm. The resulting vector x*) will be used as an initial vector for the next

k)

stage; thus the vector x(¥) is updated at every stage from the previous one.

Now the [;SQP-projection algorithm can be described as follows:

Algorithm 5.2 Given any positive definite matrix F = F?T € R" ", the

following algorithm solves the educational testing problem:

i. Let FO = F .
ii. Choose 7 (as small as possible based on one of Section 5.1 strategies).

iii. Apply the [;SQP method. When ||Dy(x)|| < e, for some small e, then
the algorithm is terminated.

k)

iv. Use the result x*) as an initial vector for the projection method (Algo-

rithm 3.2).

v. Choose 7 to be close to the boundary of the condition (3.6),
(r = E:l:z(k)).
vi. Apply one iteration of the projection method.

K = No. A®.

vii. 7 ,
viii. Use the result x(*) as an initial vector for the ;SQP method.
ix. Go to (iii).
Another advantage of this algorithm is that if the rank is not correct, then instead

of adding one to 7*), it goes back to the projection method to provide a better
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estimate to 7).

This will increase or decrease r(*), gives with the resulting value
being nearer to r*; therefore variables will be added to or subtracted from the problem.
The new variables are estimated using the projection method. Another advantage is

that at every stage only one iteration of projection method is used, giving a faster

converging algorithm.

6 Numerical Results and Comparisons

In this section, numerical problems are obtained from the data given by [13]. The
Woodhouse data set is a 64 x 20 data which corresponds to 64 students and 20
subtests. Various selections from the set of subsets of columns are used to give various
test problems to form the matrix A. These subsets are given in the first columns of
Tables 6.2—4, the value of n being the number of elements in each subset. Equation
(2.12) gives the formula for calculating the educational testing problem.

In Algorithm 3.2, 7 must satisfy condition (3.6). Since x* is not known in advance
and with elements f;; S 100, therefore it is clear that the diagonal elements F +
diag x¥) are greater than about 100 so e’x S 100n as F is positive definite.
Therefore from (3.6), the choice 7 = 100 is recommended. In fact, we recommend
this choice since the elements f;; are close to each either in magnitude. However, in
general. the off-diagonal elements can play a role in making a better estimate for
7. If 7 is chosen randomly and does not satisfy the condition (3.6), then the matrix
F — diag x® is indefinite and the method is rerun with a different 7.

[7] and [6] tested their methods on the twelve test problems originally due to
[13]. The same test problems are applied for the methods in this paper. In all the

tables of this section, NOI gives the number of outer iteration. When solved by
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the von Neumann Algorithm, TNII gives the total number of inner iteration used
by von Neumann algorithm in Algorithm 3.2, and (%) gives the number of positive
eigenvalues in the first iteration of Algorithm 3.2.
The projection method is very expensive in the sense that it consumes a large
number of iterations, while the [;SQP method takes a very small number of iterations.
The NAG routine is used to find the eigenvalues and eigenvectors for the matrix
F + diag x®. This matrix is reduced to a real symmetric tridiagonal matrix by
Householder’s method. Then the eigenvalues and eigenvectors are calculated using
the QL algorithm. The amount of work required by these algorithms is approximately
2n® multiplications per one inner iteration ([8]). Again, the NAG routine is used
for solving the QP subproblem (4.7) as one iteration of the SQP method. The NAG
routine is used in our method to solve the QP subproblem which requires the solution
for the system
z® W z®WTpk) = 70T (e 4w x®) (6.1)
where ¢ = Vf and Z®) is a matrix whose columns form a basis for the null space of

k) is a search

A®) (the matrix of coefficients of the bounds and active constraints). p!
direction. The matrix Z®*) is obtained from the TQ factorization of A®) in which
A®) is represented as

A®) [Z(k)} — [0 T®]. (6.2)

The Lagrange multipliers A8 are defined as the solution of the system
AW AB = ¢ 4w x®) (6.3)

Equations (6.1) and (6.2) cost approximately Zn® multiplications to be solved while

(6.3) costs approximately §n3 multiplications to be solved, see [8]. Thus one iteration
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of the SQP method costs approximately %nﬁ multiplications. Hence, one iteration
of the SQP method costs about 7 times as much as one iteration of the projection
method. Nonetheless, the SQP method is much better than the projection method
since the number of iterations taken by the projection method is about 60 times
greater than that taken by the SQP method. However, the Hybrid methods, as
shown in Table 6.4, use even fewer iterations.

Table 6.1 investigates the effect of varying 7. It shows the outcome from Algo-

rithm 3.2 for the following example

0 1 2 —2 9
_ 1 0 3 2 4
F=1s 30 1 A

92 92 1 0 10

with a different 7. From Table 6.1, it is clear that small 7 increases the total number
of iterations performed by the von Neumann algorithm, while a bigger 7 decreases the
total number of inner iterations and increases the number of outer iterations which
are very cheap to calculate using the projection (3.8) which costs approximately
n multiplications while one inner iteration costs approximately §n3 multiplications.
Hence, it is recommended to increase 7 to be close to the boundary of condition (3.6)
which is compatible with the choice in Table 6.1. The results obtained by the new
method of Section 5.1 are tabulated in Table 6.2. In Table 6.2, the columns headed
by NQP give the number of times the [;SQP is solved.

In the projection—; SQP method, 7 needs to be estimated very close to Y~ x;. This
will give us a very good estimate of the rank. Since the average size of the educational
testing problem elements is more than 100, 7 = n x 100 is chosen as an initial value.
In Table 6.2, it is clear that when n > 10, then 7 becomes very small compared with

Y- x;, which makes the projection method estimate r*) very small compared with the
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7 |[NOI|TNII| Sar [7©@ |¢*
2300 | 2 | 2679 15 0 |2
-20.0 | 2 | 2215 15 1 |2
2100 2 | 1734 15 2 |2
5.0 | 2 | 1571 15 2 |2

00 | 2 | 1201 15 2 |2
50 | 3 | 1308 15 2 |2
100 | 3 | 960 15 2 |2
140 | 6 | 787 15 2 |2
149 | 15 | 891 15 2 |2
15.0 | 30 | 792 |15.0051| 2 | 2

Table 6.1: Numerical comparisons for same example with different 7.

correct r*. The results obtained by the new method of Section 5.2 are tabulated in
Table 6.3. In the l;SQP-—projection method, r*) is updated using one iteration of the
projection method. In the projection method, 7 is estimated using the result from the
1,SQP method. In the 1-10 case, the projection method estimates r*) = 10 instead
of r®) = 9. In Tables 6.2 and 6.3, it can be seen that the our results are exactly the
same as those of [6]. Also, one or two of the variables are adjusted so that the matrix
F — diag @ is exactly singular.

Finally, in Table 6.4, the four methods are compared. It clear from the data in
Table 6.4 that the [;SQP—projection method is the best for the problems considered

since it requires fewer iterations in each problem for solving the QP subproblem.

7 Conclusions

In this paper we have studied certain problems involving the positive semi-definite
matrix constraint. Two methods are used for solving the educational testing problem.

One is the [;SQP method [6], and the other is the projection method [7]. The
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Columns which

determine F 7 | INII | 7@ | #* | NQP >0
1,2,5.6 400 4 3 |3 11 |542.77356
1,3,4,5 400 2 2 | 2| 12 |633.15784
1,2,3,6,8,10 600 | 11 4 |5 8 | 305.48170
1,2,4,5,6,8 600 4 4 | 4| 13 | 564.46331
1-6 600 6 4 | 4| 10 |535.36227
1-8 800 | 13 5 | 6| 14 | 641.83848
1-10 1000 | 15 7 1 8| 21 |690.78040
1-12 1200 | 23 9 |9 9 | 747.48921
1-14 1400 | 25 | 10 | 12| 34 | 671.27506
1-16 1600 | 22 | 11 | 14| 44 | 663.46204
1-18 1800 | 20 | 12 | 15| 27 | 747.50574
1-20 2000 | 29 | 14 |18 | 39 | 820.34265

Table 6.2: Results for the educational testing problem from the projection—{;SQP
method of Section 5.1.

hybrid methods developed in Section 5 give a good rate of convergence, especially
the [{SQP-projection method, as compared with the methods of Section 4. The
projection method is not very effective in determining the rank when n > 12. This
is because a small value of s is chosen in Algorithms 5.1 and 5.2. On the other hand,
if s is increased then a large number of iterations are consumed by the projection
method. Hence, a suitable way of chosing the integer s needs further investigation.
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