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Abstract

Approximating the nearest positive semidefinite Hankel matrix in the
Frobenius norm to an arbitrary data covariance matrix is useful in many
areas of engineering, including signal processing and control theory. In
this paper, interior point primal-dual path-following method will be used
to solve our problem after reformulating it into different forms, first as a
semidefinite programming problem, then into the form of a mixed semidefin-
tie and second-order cone optimization problem. Numerical results, com-
paring the performance of these methods against the modified alternating
projection method will be reported.
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1 Introduction

In some application areas, such as digital signal processing and con-

trol theory, it is required to compute the closest, in some sense, posi-

tive semidefinite Hankel matrix, with no restriction on its rank, to a

given data covariance matrix, computed from a data sequence. This

problem was studied by Macinnes [18]. Similar problems involving

structured covariance estimation were discussed in [15, 12, 24]. Re-

lated problems occur in many engineering and statistics applications

[9].

The problem was formulated as a nonlinear minimization prob-

lem with positive semidefinite Hankel matrix as constraints in [2]

and then was solved by l2 Sequential Quadratic Programming (l2

SQP) method. Another approach to deal with this problem was to

solve it as a smooth unconstrained minimization problem [1]. Other

methods to solve this problem or similar problems can be found in

[18, 12, 15].

Our work is mainly casting the problem: first as a semidefi-

nite programming problem and second as a mixed semidefinite and

second-order cone optimization problem. A semidefinite program-

ming (SDP) problem is to minimize a linear objective function sub-

ject to constraints over the cone of positive semidefinite matrices. It

is a relatively new field of mathematical programming, and most of
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the papers on SDP were written in 1990s, although its roots can be

traced back to a few decades earlier (see Bellman and Fan [7]). SDP

problems are of great interest due to many reasons , e.g., SDP con-

tains important classes of problems as special cases, such as linear

and quadratic programming. Applications of SDP exist in com-

binatorial optimization, approximation theory, system and control

theory, and mechanical and electrical engineering. SDP problems

can be solved very efficiently in polynomial time by interior point

algorithms [29, 31, 10, 5, 20].

The constraints in a mixed semidefinite and second-order cone

optimization problem are constraints over the positive semidefinite

and the second-order cones. Although the second-order cone con-

straints can be seen as positive semidefinite constraints, recent re-

search has shown that it is more effecient to deal with mixed prob-

lems rather than the semidefinite programming problem. Nesterov

et. al. [20] can be considered as the first paper to deal with mixed

semidefinite and second-order cone optimization problems. How-

ever, the area was really brought to life by Alizadeh et al. [4] with

the introduction of SDPPack, a software package for solving op-

timization problems from this class. The practical importance of

second-order programming was demonstrated by Lobo et al. [17]

and many subsequent papers. In [22] Sturm presented implemen-

tational issues of interior point methods for mixed SDP and SOCP
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problems in a unified framework. One class of these interior point

methods is the primal-dual path-following methods. These meth-

ods are considered the most successful interior point algorithms for

linear programming. Their extension from linear to semidefinite

and then mixed problems has followed the same trends. One of the

successful implementation of primal-dual path-following methods is

in the software SDPT3 by Toh et al. [28, 25].

Similar problems, such as the problem of minimizing the spectral

norm of a matrix was first formulated as a semidefinite program-

ming problem in [29, 26]. Then, these problems and some others

were formulated as a mixed semidefinite and second-order cone opti-

mization problems [17, 3, 23]. None of these formulations exploited

the special structure our problem has. For the purpose of exploiting

the Hankel structure of the variable in this problem we will intro-

duce an isometry operator, hvec, taking n×n Hankel matrices into

2n− 1 vectors. We will see later that using this operator gives our

formulations an advantage over the others.

Before we go any further, we should introduce some notations.

Throughout this paper, we will denote the set of all n × n real

symmetric matrices by Sn, the cone of the n × n real symmetric

positive semidefinite matrices by S+
n and the second-order cone of
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dimension k by Qk, and is defined as

Qk = {x ∈ IRk : ‖x2:k‖2 ≤ x1},

(also called Lorentz cone, ice cream cone or quadratic cone), where

‖.‖2 stands for the Euclidean distance norm defined as ‖x‖2 =
√∑n

i=1 x2
i , ∀x ∈ IRn. The set of all n × n real Hankel matrices

will be denoted by Hn. An n× n real Hankel matrix H(h) has the

following structure:

H(h) =




h1 h2 · · · hn

h2 h3 · · · hn+1
...

... . . . ...
hn hn+1 · · · h2n−1



,h ∈ IR2n−1.

It is clear that Hn ⊂ Sn. The Frobenius norm is defined on Sn as

follows:

‖U‖F =
√

U • U = ‖vecT (U)vec(U)‖2, ∀ U ∈ Sn

(1.1)

Here U • U = trace(U · U) =
∑n

i,j U2
i,j and vec(U) stands for the

vectorization operator found by stacking the columns of U together.

The symbols º and ≥Q will be used to denote the partial orders

induced by S+
n and Qk on Sn and IRk, respectively. That is,

U º V ⇔ U − V ∈ S+
n , ∀ U, V ∈ Sn

and

u ≥Q v ⇔ u− v ∈ Qk, ∀ u, v ∈ IRk.

The statement x ≥ 0 for a vector x ∈ IRn means that each com-

ponent of x is nonnegative. We use I and 0 for the identity and
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zero matrices. The dimensions of these matrices can be discerned

from the context.

Our problem in mathematical notation can, now, be formulated

as follows: Given a data matrix F ∈ IRn×n, find the nearest positive

semidefinite Hankel matrix H(h) to F such that ‖F − H(h)‖F is

minimal. Thus, we have the following optimization problem:

minimize ‖F −H(h)‖F

subject to H(h) ∈ Hn,

H(h) º 0.

(1.2)

It is worth describing the alternating projection method briefly;

since this method is the most accurate, and converges to the optimal

solution globally. However, the rate of convergence is slow. That

makes it a good tool to provide us with accurate solutions against

which we can compare the results obtained by the interior point

methods. For these reason we devote Section 2 to the projection

method. A brief description of semidefinite and second-order cone

optimization problems along with reformulations of problem (1.2)

in the form of the respective class will be given in Sections 3 and

4, respectively. Numerical results, showing the performance of the

projection method against the primal-dual path-following method

acting on our formulations, will be reported in Section 5.
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2 The projection Method

The method of successive cyclic projections onto closed subspaces

Ci’s was first proposed by von Neumann [21] and independently

by Wiener [30]. They showed that if, for example, C1 and C2 are

subspaces and D is a given point, then the nearest point to D in

C1 ∩ C2 could be obtained by the following algorithm:

Alternating Projection Algorithm
Let X1 = D

for k = 1, 2, 3, . . .
Xk+1 = P1(P2(Xk)).

Xk converges to the near point to D in C1∩C2, where P1 and P2

are the orthogonal projections on C1 and C2, respectively. Dykstra

[11] and Boyle and Dykstra [8] modified von Neumann’s algorithm

to handle the situation when C1 and C2 are replaced by convex

sets. Other proofs and connections to duality along with applica-

tions were given in Han [16]. These modifications were applied in

[14] to find the nearest Euclidean distance matrix to a given data

matrix. The modified Neumann’s algorithm when applied to (1.2)

yields the following algorithm, called the Modified Alternating Pro-

jection Algorithm: Given a data matrix F , we have:

Let F1 = F
for j = 1, 2, 3, . . .

Fj+1 = Fj + [PS(PH(Fj))− PH(Fj)]
Then {PH(Fj)} and PS(PH(Fj)) converge in Frobenius norm to
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the solution. Here, PH(F ) is the orthogonal projection onto the sub-

space of Hankel matrices Hn. It is simply setting each antidiagonal

to be the average of the corresponding antidiagonal of F . PS(F )

is the projection of F onto the convex cone of positive semidefi-

nite symmetric matrices. One finds PS(F ) by finding a spectral

decomposition of F and setting the negative eigenvalues to zero.

3 Semidefinite Programming Approach

The semidefinite programming (SDP) problem in primal standard

form is:

(P ) min
X

C •X

s. t. Ai •X = bi, i = 1, · · · ,m

X º 0,

(3.3)

where all Ai, C ∈ Sn, b ∈ IRm are given, and X ∈ Sn is the variable.

This optimization problem (3.3) is a convex optimization problem

since its objective and constraint are convex. The dual problem

of (3.3) is

(D) max
y
bTy

s. t.
m∑

i=1
yiAi ¹ C,

(3.4)

where y ∈ IRm is the variable. Although (3.3) and (3.4) seem to

be quite specialized, it includes, as we said before, many important
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problems as special cases. It also appears in many applications.

One of these applications is problem (1.2) as we will show now.

For this purpose, we should introduce the following theorem:

Theorem 3.1 (Schur Complement)

If

M =


 A B

BT C


 ,

where A ∈ S+
n and C ∈ Sn, then the matrix M is positive (semi)definite

if and only if the matrix C −BTA−1B is positive (semi)definite. ¤

This matrix C − BTA−1B is called the schur complement of A

in M .

Letting ‖F −H(h)‖2
F ≤ t, t is a nonnegative real scalar and noting

that:

‖F −H(h)‖2
F = vecT (F −H(h))vec(F −H(h)),

we have:

vecT (F −H(h))vec(F −H(h)) ≤ t

⇔ t− vecT (F −H(h))Ivec(F −H(h)) ≥ 0

⇔

 I vec(F −H(h))
vecT (F −H(h)) t


 º 0.

The last equivalence is a direct application of Theorem 3.1. Thus,
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problem (1.2) can be rewritten as

(SDV ) min t

s.t.



t 0 0
0 H(h) 0
0 0 V


 º 0,

(3.5)

where

V =


 I vec(F −H(h))
vecT (F −H(h)) t




which is an SDP problem in the dual form (3.4) with dimensions

2n and n2 + n + 2, SDP problem (3.5) is very large even for a small

data matrix F . For example, a 50 × 50 matrix F will give rise to

a problem with dimensions 100 and 2552, hence solving (1.2) using

formulation (3.5) is not efficeint. Furthermore, we do not exploit the

structure of H(h) being Hankel. This discussion leads us to think

of another way of formulation that produces an SDP problem with

reasonable dimensions and exploits the Hankel structure of H(h).

This can be done by means of the following isometry operator:

Definition 3.1

Let hvec : Hn −→ IR2n−1 be defined as

hvec(U) = [u1,1
√

2u1,2 · · ·
√

n− 1u1,n−1
√

nu1,n

√
n− 1u2,n · · ·

√
2un−1,n un,n]

T

for any U ∈ Hn.

One can easily show that hvec is a linear operator from the set

of all n× n real Hankel matrices to IR2n−1. The following theorem

gives us some characterizations of hvec.

10



Theorem 3.2

For the operator hvec , defined in (3.1), the following conditions

hold: For any U, V ∈ Hn

1. U • U = hvecT (U)hvec(U).

2. ‖U − V ‖2
F = hvecT (U − V )hvec(U − V ). ¤

Proof:

Part 1 is clear from the definition of the hvec operator. Part 2 is a

consequece of part 1. 4

Part 1 implies that hvec is an isometry. We cannot take any

advantage of this theorem unless F is Hankel. Of course, we can

think of projecting F onto Hn using the orthogonal projection in

Section 2 to get a Hankel matrix, say F̂ . But, is the nearest Hankel

positive semidefinite matrix to F̂ , the nearest to F? The following

proposition gives the answer:

Proposition 3.1 Let F̂ be the orthogonal projection of F onto

Hn and let H(h) be the nearest Hankel positive semidefinite matrix

to F̂ , then H(h) is so for F . ¤

Proof:

If F̂ is positive semidefinite, then we are done. If not, then for any

T ∈ Hn, we have

(F − F̂ )T • (F̂ − T ) = 0
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since F̂ is the orthogonal projection of F . Thus,

‖F − T‖2
F = ‖F − F̂‖2

F + ‖F̂ − T‖2
F .

As a consequence of this proposition, we have the following prob-

lem equivalent to (1.2):

minimize ‖F̂ −H(h)‖F

subject to H(h) ∈ Hn,

H(h) º 0.

(3.6)

3.1 Formulation I (SDH)

From Theorem 3.1, we have the following equivalences (for t ≥ 0 ∈
IR):

‖F̂ −H(h)‖2
F ≤ t

⇔ hvecT (F̂ −H(h))hvec(F̂ −H(h)) ≤ t by Theorem 3.2

⇔ t− hvecT (F̂ −H(h))Ihvec(F̂ −H(h)) ≤ 0

⇔

 I hvec(F̂ −H(h))

hvecT (F̂ −H(h)) t


 º 0 by Theorem 3.1.

Hence, we have the following SDP problem:

(SDH) min t

s.t.



t 0 0
0 H(h) 0

0 0 V̂


 º 0,

(3.7)

where

V̂ =


 I hvec(F −H(h))
hvecT (F −H(h)) t


 .
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This SDP problem has dimensions 2n and 3n+1 which is far better

than (3.5).

3.2 Formulation II (SDQ)

Another way for formulating (1.2) is through the definition of the

Frobenius norm being a quadratic function. Indeed,

‖F −H(h)‖2
F = yTPy + 2qTy + r,

where

y = [h1 h2 · · · h2n−1]
T ,

P = diag([1 2 · · · n · · · 2 1]),

qk = −
n∑

i,j=1
i+j=k+1

F (i, j), k = 1, 2, · · · 2n− 1 and

r = ‖F‖2
F .

Now, we have for a nonnegative real scalar t

‖F −H‖2
F ≤ t

⇔ yTPy + 2qTy + r ≤ t

⇔ (P 1/2y)T (P 1/2y) + 2qTy + r ≤ t

⇔ t− 2qTy− r − (P 1/2y)T I(P 1/2y) ≥ 0

⇔

 I (P 1/2y)

(P 1/2y)T t− 2qTy− r


 º 0.
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Hence, we have the following SDP problem:

(SDQ) min t

s.t.



t 0 0
0 H(h) 0
0 0 Q


 º 0,

(3.8)

where

Q =


 I (P 1/2y)

(P 1/2y)T t− 2qTy− r


 ,

This SDP problem is of dimenstions 2n and 3n+1. Although prob-

lem (3.8) has the same dimentions as problem (3.7), it is less efficient

to solve it over the positive semidefinite cone S+
n , especially when F

is large in size. In practice, as we will see in Section 5, it has been

found that the performance of this formulation is poor. The reason

for that is the matrix P being of full rank and hence the system is

badly conditioned. A more efficient interior point method for this

formulation can be developed by using Nesterov and Nemirovsky

formulation as a problem over the second-order cone (see [19] Sec-

tion 6.2.3). This what we will see in the next section.

The last formulation seems to be straight forward, but it was

found that using this formulation to solve similar problems was not

a good idea. The reasons for that will be discussed in the following

section when we talk about second-order cone programming. This

fact about SDQ formulation will be clear in Section 5 when we use

it to solve numerical examples with n > 50. We think also SDV
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formulation is not good enough to compete with other formulation

even with the projection method. This is simply due to the fact

that the amount of work per one iteration of interior-point methods

that solve SDV fomulation is O(n6), where n in the dimension of F .

This disappointing fact makes using SDV formulation to solve (1.2)

a waste of time. This leaves us with SDH formulation from which

we expect good performance; since it does not have the illness of

SDQ nor the huge size of SDV.

4 Mixed Semidefinite and Second-Order Cone

Approach:

The primal mixed semidefinite, second-order and linear problem

SQLP is of the form:

(P ′) min CS •XS + CT
QXQ + CT

LXL

s.t. (AS)i •XS + (AQ)T
i XQ + (AL)T

i XL = bi, i = 1, · · · ,m

XS º 0, XS ≥Q 0, XL ≥ 0,
(4.9)

where XS ∈ Sn, XQ ∈ IRk and XL ∈ IRnL are the variables.

CS, (AS)i ∈ Sn, ∀i CQ, (AQ)i ∈ IRk ∀i and CL, (AL)i ∈ IRnL

∀i are given data. Each of the three inequalities has a different

meaning: XS º 0 means, as we have seen, that XS ∈ S+
n , XS ≥Q 0

means that XQ ∈ Qk and XL ≥ 0 means that each component

of XL is nonnegative. It is possible that one or more of the three

parts of (4.9) is not present. If the second-order part is not present,
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then (4.9) reduces to the ordinary SDP (3.3) and if the semidefi-

nite part is not present, then (4.9) reduces to the so-called convex

quadratically constrained linear programming problem.

The standard dual of (4.9) is:

(D′) max bTy

s.t.
m∑

i=1
yi(AS)i ¹ CS

m∑

i=1
yi(AQ)i ≤Q CQ

m∑

i=1
yi(AL)i ≤ CL.

(4.10)

Here, y ∈ IRm is the variable.

In our setting, we may drop the third part of the constraints

in (4.9) and its dual (4.10), since we do not have explicit linear

constraints. One natural claim can be made here: In (1.2) the

objective function can be recast as a dual SQLP in three different

ways.

4.1 Formulation III (SQV)

One way to define ‖F −H(h)‖F is

‖F −H(h)‖F = ‖vec(F −H(h))‖2.
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So, if we put ‖F −H(h)‖F ≤ t for t ∈ IR+, then by the definition

of the second-order cone, we have

 t

vec(F −H(h))


 ∈ Q1+n2

Hence, we have the following reformulation of (1.2):

(SQV ) min t

s.t.


t 0
0 H(h)


 º 0


 t

vec(F −H(h))


 ≥Q 0.

(4.11)

4.2 Formulation IV (SQQ)

The second definition is as introduced in Subsection 3.2, i.e.,

‖F −H(h)‖2
F = yTPy + 2qTy + r

Hence, we have the following equivalent problem to (1.2)

min yTPy + 2qTy + r

s.t. H(h) ∈ Hn,

H(h) º 0.

(4.12)

But

yTPy + 2qTy + r = ‖P 1/2y + P−1/2q‖2
2 + r − qTP−1q
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Now, we minimize ‖F −H(h)‖2
F by minimizing ‖P 1/2y+ P−1/2q‖2.

Thus we have the following problem:

(SQQ) min t

s.t.


t 0
0 H(h)


 º 0


 t

P 1/2y + P−1/2q


 ≥Q 0,

(4.13)

where t ∈ IR+ is as before. Again, this problem is in the form of

problem (4.10). Here, the difference between this form and SQV

is in the second-order cone constraint since the SDP part is the

same as SQV. The dimension of the second-order cone in SQV is

1 + n2 and in SQQ is just 2n, which makes us expect less efficiency

in practice when we work with SQV. The optimal value of SQV

is the same as that of problem (1.2), whereas the optimal values

of SQQ (4.13) and (4.12) are equal up to a constant. Indeed, the

optimal value of (4.12) is equal (ρ∗)2 + r − qTP−1q, where ρ∗ is

the optimal value of (4.13). One might notice that we did not talk

about the constraint of H(h) being Hankel. This is because the

Hankel structure of H(h) is embedded in the other constraints.

4.3 Formulation V (SQH)

The last formulation will take advantage of the Hankel structure of

H(h) explicitly. The vectorization operator hvec on Hankel matri-

ces, introduced in Section 3 will be used. From Theorem 3.2, we
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have the following:

‖F̂ −H(h)‖F = ‖hvec(F̂ −H(h))‖2,

where F̂ = PH(F ), so that we have the following problem:

(SQH)min t

s.t.


t 0
0 H(h)


 º 0


 t

hvec(F̂ −H(h))


 ≥Q 0.

(4.14)

The dimension of the second-order cone in this form is 2n, the

same as that of SQQ. Furthermore, the optimal solution is the same

as that of (1.2).

Table 1 shows the dimensions of the semidefinite part (SD part)

and the second-order cone part (SOC part) for each formulation.

For the formulations SDH and SDQ, the second-order cone part is

not applicable, so the cell in the table corresponding to that is left

blank.

In practise, we expect that the mixed formulations are more ef-

fecient than the SDP-only formulations, especially the SQQ and

SQH which have second-order cone constraint of least dimension.

Since, as we have seen, interior point methods for SOCP have better

worst-case complexity than an SDP method. However, SDH has a

less SDP dimension with no illness such as that SDQ has, which

makes SDH a better choise among other SDP. This is due to the
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Formulation SD part SOC part

SDV 2n× (n2 + n + 2)

SDH 2n× (3n + 1)

SDQ 2n× (3n + 1)

SQV 2n× (n + 1) n2 + 1

SQQ 2n× (n + 1) 2n

SQH 2n× (n + 1) 2n

Table 1: Problem dimensions

economical vectorization operator hvec. Indeed, practical experi-

ments show a competitive behaviour of SDH to SQQ and SQH (see

Section 5).

5 Numerical Results

We will now present some numerical results comparing the perfor-

mance of the methods described in Sections 2, 3 and 4. The first is

the projection method and the second is the interior-point primal-

dual path-following method employing the NT-direction. The latter

was used to solve five different formulations of the problem.

A Matlab code was written to implement the projection method.

The iteration is stopped when ‖PS(PH(Fj))− PH(Fj)‖F ≤ 10−8.

For the other methods, the software SDPT3 ver. 3.0 [27, 25]

was used because of its numerical stability [13] and its ability to

exploit sparsity very efficiently. The default starting iterates in
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SDPT3 were used throughout with the NT-direction. The choice

of the NT-direction came after some preliminary numerical results.

The other direction is HKM-direction which we found less accurate,

although, faster than the NT-direction. However, the difference be-

tween the two in speed is not of significant importance.

The problem was converted into the five formulations described

in Sections 3 and 4. A Matlab code was written for each formulation.

This code formulates the problem and passes it through to SDPT3

for a first time. A second run is done with the optimal iterate from

the first run being the initial point. This process is repeated until

no progress is detected. This is done when the relative gap:

P-D

max{1, (P + D)/2}
of the current run is the same as the preceding one. (Here, P and

D denote the optimal and the dual objective values, respectively.)

Our numerical experiments were carried out on eleven randomly

generated square matrices with different sizes, namely: 10, 30, 50,

100 and 200, two for each size and one of size 400. Each matrix is

dense and its entries vary between −100 and 100 exclusive.

All numerical experiments in this section were executed in Mat-

lab 6.1 on a 1.7GHz Pentium IV PC with 256 MB memory running

MS-Windows 2000 Professional.
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Size
Time (sec.)

Pro. SDH SDQ SQH SQQ SQV

10
2 2 1 1 1 1
9 1 1 1 1 1

30
11 5 4 3 4 2
14 5 4 2 2 2

50
117 10 12 5 7 5
30 11 11 4 3 5

100
61 53 64 28 20 28

1003 48 42 22 25 21

200
16239 389 284 324 322 284
4883 355 420 255 268 230

400 36556 4970 3913 3775 4098 2505

Table 2: Performance comparison (time) among the projection method and the
path-following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

Table 2 compares the CPU time. We notice that the consumed

time gets larger more rapidly in the projection method with the

size of the data matrix F . An obvious remark is that the projection

method is the slowest; indeed, it is at least seven times slower than

the slowest of the five formulations of the path-following method.

However, the difference in time between the five formulations is not

big enough to have a significant importance.

Another clear advantage is in terms of number of iterations as

shown in Table 3. Although the amount of work in each iteration

is different for each method, it is still fair to consider it to be a
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Size
Iterations

Pro. SDH SDQ SQH SQQ SQV

10
1253 16 18 14 14 11
6629 18 17 14 14 11

30
1215 34 32 35 47 24
1443 33 33 29 29 20

50
4849 32 41 25 36 24
1295 32 42 22 18 26

100
504 34 45 27 19 26

8310 33 28 23 26 20

200
22672 31 22 33 31 25
6592 28 32 23 27 22

400 7870 28 25 26 26 18

Table 3: Performance comparison (number of iterations) among the projection
method and the path-following method with the formulations SDH, SDQ, SQH,
SQQ and SQV.

comparison factor.

Table 4 shows how close, in Frobenius norm, the optimal solution of

each method, H(h)∗, to the data matrix F . The projection and the

path-following methods with the formulation SDH, SQH and SQQ

gave the same result to some extent. The formulation SDQ couldn’t

cope with the others as the problem size gets larger. The poor per-

formance of this formulation is due to the matrix P being of full

rank. The formulation SQV is less accurate than SDH, SQH and

SQQ which is reasonable especially if we notice that the dimension

of the second-order cone in this formualtion is 1 + n2. (see Table 1)
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Size
Norm

Pro. SDH SDQ SQH SQQ SQV

10
96.6226 96.6226 96.6226 96.6226 96.6226 96.6226
94.8320 94.8320 94.8320 94.8320 94.8320 94.8320

30
307.9339 307.9339 307.9406 307.9339 307.9339 307.9339
327.6784 327.6784 327.6784 327.6784 327.6784 327.6784

50
494.3805 494.3805 494.5038 494.3805 494.3805 494.3805
497.4383 497.4383 497.6330 497.4383 497.4383 497.4383

100
991.8832 991.8832 994.8612 991.8832 991.8832 991.8833
997.4993 997.4993 998.8048 997.4993 997.4993 997.4994

200
1986.9397 1986.9398 1990.0924 1986.9402 1986.9402 1986.9414
1994.8409 1994.8410 1998.6048 1994.8410 1994.8410 1994.8418

400 3998.4967 3998.5047 4001.9242 3998.5007 3998.5007 3998.6166

Table 4: Performance comparison (norm ‖H(h)∗ − F‖F ) among the projection
method and the path-following method with the formulations SDH, SDQ, SQH,
SQQ and SQV.

To summarize the above discussion, we introduce Table 5. This ta-

ble gives a measure to how close the optimal solutions of SDH, SDQ,

SQH, SQQ and SQV from that of the projection method which is

the most accurate. The error is computed simply by evaluating the

difference between the norm ‖H(h)∗−F‖F of the projection and the

norm obtained by the different formulations of the path-following

method.

Conclusion:

We conclude this paper by addressing few remarks. The pro-
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Size
Error

SDH SDQ SQH SQQ SQV

10
6.3× 10−9 3.4× 10−9 6.1× 10−9 6.1× 10−9 1.3× 10−5

6.4× 10−9 3.2× 10−8 3.6× 10−8 3.6× 10−8 1.2× 10−5

30
7.5× 10−10 6.7× 10−3 2.6× 10−8 3.0× 10−8 9.7× 10−8

1.6 ×10−9 9.0× 10−9 2.0× 10−9 2.0× 10−9 1.2× 10−8

50
1.9× 10−9 1.2× 10−1 8.9× 10−9 9.0× 10−9 2.1× 10−5

3.7× 10−9 0.2 7.8× 10−9 8.0× 10−9 2.1× 10−5

100
5.1× 10−10 3.0 1.8× 10−8 1.8× 10−8 1.0× 10−4

9.2× 10−10 1.3 5.8× 10−8 5.8× 10−8 1.5× 10−4

200
6.6× 10−5 3.2 4.4× 10−4 4.2× 10−4 1.6× 10−3

1.1× 10−4 3.8 9.1× 10−5 9.1× 10−5 9.3× 10−4

400 8.0× 10−3 3.4 4.0× 10−3 4.0× 10−3 1.2× 10−1

Table 5: Performance comparison (error)

jection method, despite its accuracy, is very slow. Whereas, the

path-following method with SDH, SQH and SQQ formulations is

very fast, sometimes more than 40 times faster than the projection

method (see table 2 when n = 200), and gives results of accept-

able accuracy. The other is that we did not gain any considerable

advantage out of solving our problem as a mixed semidefinite and

second-order cone problem (SQH, SQQ and SQV). This can be seen

clearly by noticing the good performance of the formulation SDH,

which solves the problem as a semidefinite program. However, it is

well-known that positive definite Hankel matrices are extremely ill-

conditioned; the optimal condition number for these matrices grows

exponentially with the size of the matrix [6]. Therefore, comput-
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ing the spectral decomposition (projection method) or solving the

underlying linear systems (SDP/SOCP methods) might be numer-

ically delicate.
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