
Hybrid Methods for Optimization Problems with Positive

Semi–Definite Matrix Constraints

By

Suliman Saleh Al–Homidan

PhD Thesis

Department of Mathematics and Computer Science

University of Dundee

Dundee

December 2003



Contents

0 Introduction 1

0.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Optimization review 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Various results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Cones and normal cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The set of feasible directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 First and second order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Quasi–Newton methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 The l1 SQP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Projection methods 42

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 The Dykstra algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 A projection algorithm for linear convex programming problems . . . . . . . . . 52

3 Algorithms for finding the nearest Euclidean distance matrix 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Euclidean distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The projection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Unconstrained methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 The Elegant algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



4 Hybrid methods for finding the nearest Euclidean distance matrix 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Updating the result from the projection method to the unconstrained method

and conversely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Projection–unconstrained method . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Unconstrained–projection method . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Methods for minimizing least distance functions with semi–definite matrix

constraints 108

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 The Projection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 The l1SQP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 A hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Numerical results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Algorithms for solving the educational testing problem 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 The educational testing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 A projection algorithm for solving the educational testing problem . . . . . . . 137

6.4 The l1SQP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Numerical results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Hybrid methods for solving the educational testing problem 147

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Projection–l1SQP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 l1SQP–Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Numerical results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusions and further work 156

References 158

iii



List of Tables

3.6.1 Numerical comparisons between the three projection algorithms. . . . . . . . . . 91

3.6.2 Results from example (3.6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6.3 Numerical comparisons between unconstrained methods and the projection al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Result from unconstrained–projection Algorithm 4.4.1. . . . . . . . . . . . . . . . 106

4.5.2 Comparing the four methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.1 Results for problem (5.1.2) from projection Algorithm 5.2.2. . . . . . . . . . . . . 130

5.5.2 Numerical comparisons of methods of this chapter. . . . . . . . . . . . . . . . . . 132

6.2.1 The Woodhouse [1976] data which corresponds to 64 students and 20 subtests.137

6.5.1 Results for the educational testing problem from the projection Algorithm 6.3.1 . 143

6.5.2 Results for the educational testing problem from the l1SQP method of Section 6.4.144

6.5.3 Numerical comparisons for same example with different τ . . . . . . . . . . . . . 146

7.4.1 Results for the educational testing problem from the projection–l1SQP method

of Section 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.2 Results for the educational testing problem from the l1SQP–projection method

of Section 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4.3 Comparing the four methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

iv



List of Figures

1.3.1 The normal cone ∂K for a convex cone K at point a. . . . . . . . . . . . . . 12

1.3.2 The positive semi–definite matrix cone K<. . . . . . . . . . . . . . . . . . . . . 15

1.3.3 The positive semi–definite matrix cone KM in M . . . . . . . . . . . . . . . . . 22

2.2.1 This example illustrates the failure of von Neumann algorithm to solve problem

(2.1.1) for general n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Illustrates the success of Dykstra–Han algorithm to solve problem (2.1.1) for

general n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Algorithm 2.3.1 terminates for a nonsmooth convex set. . . . . . . . . . . . . . . 55

2.3.2 Algorithm 2.3.1 converges for a smooth convex set. . . . . . . . . . . . . . . . . . 56

2.3.3 Making τ smaller gives faster convergence. . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Transform the point p1 to the origin in order to reduce the number of variables

from rn to r(n− 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 The location for each point after the translation. . . . . . . . . . . . . . . . . . . 84

3.4.3 Rotate the point p2 around the origin so that it is located on the x-axis. This

removes r − 1 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.4 The location for each point after the first rotation. . . . . . . . . . . . . . . . . . 85

3.4.5 Rotate the point p3 around the x–axis so that it is located on the x,y–axis.

This removes r − 1 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.6 The final location for each point with variables reduced from 9 variables to only

3 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.7 Illustrates the dependence of p1, p2 and p3 which makes D embeddable in

<1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.8 Illustrates the independence of p1, p2 and p3 which makes D irreducibly

embeddable in <2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

v



3.6.1 The Euclidean distance matrix represented in <2. . . . . . . . . . . . . . . . . . 93

5.3.1 The boundary of the restricted cone (K< ∩ Koff )(F̄ + diag x) in (5.3.33)

(contours of x2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Roger Fletcher for his

kind supervision, suggestions and advice throughout the preparation of this thesis. His patience

has been a constant source of inspiration throughout this work.

I would like to thank King Saud University for its financial support.

I would also like to thank the following:

My friends in the Department of Mathematics and Computer Science, University of Dundee,

in particular George Mathai for his help in overcoming language difficulties.

My family and friends, with special regards to my beloved wife for her moral support.

vii



Declaration

I declare that I am the author of this thesis; that I have consulted every reference cited except

those for which I have indicated otherwise; that the work of which this thesis is a record has

been done by myself, and that it has not been previously accepted for a higher degree.

Suliman Saleh Al–Homidan

viii



Certification

This is to certify that Suliman Saleh Al–Homidan has complied with all the requirements for

the submission of his PhD thesis to the University of Dundee.

Professor Roger Fletcher

ix



Abstract

Three problems are handled in this thesis, all of which are involved with the positive semi–

definite matrix as a convex constraint set. One problem is the Euclidean distance problem

and the other two problems are different forms of the educational testing problem. Projection

methods which solves least distance problems subject to the intersection of convex sets are used

to solve these problems. It is found that the methods are globally convergent, but the rate of

convergence is slow. However these methods do have the capability of determining the correct

rank of the solution matrix, and this can be done in relatively few iterations. On the other

hand there are conventional unconstrained and l1 Sequential Quadratic Programming (SQP)

methods which enable rapid convergence to be obtained. However, the correct rank is needed

by these methods. Hence is is the purpose of this thesis to study hybrid methods. These hybrid

methods have two different modes of operation. One is a projection method which provides

global convergence and enables the correct rank to be determined. The other is either a quasi–

Newton method or a nonlinear programming method, depending on the problem. An important

feature concerns the interfacing of these modes of operation. Thus it has to be decided which

method to use first, and when to switch between methods. Also it may not be straightforward,

as we shall see here, to use the output of one method to start the other method. Difficulties

such as these are addressed in the thesis. Many comparative numerical results are reported.

x



Chapter 0

Introduction

This thesis considers methods for solving certain optimization problems in which there are

constraints on the variables. Many advances have taken place in this subject over the last forty

years or so. There are now effective methods for situations in which the objective and constraint

functions are smooth functions. Under reasonable assumptions, these methods can be shown

to converge globally (that is from any starting point) to a point which satisfies optimality

conditions for the problems. Also the rate of convergence can often be shown to be superlinear.

Some progress has also been made for problems in which non–smooth functions occur. If these

functions are a composition of a convex polyhedral function and a smooth function, then again

globally and superlinear convergent methods have been suggested. This thesis addresses a rather

more difficult situation in which some matrix, defined in terms of the problem variables, has to

be positive semi–definite. One way to handle this problem is to impose a functional constraint

in which the least eigenvalue of the matrix is non–negative. However, if there are multiple

eigenvalues at the solution which is usually the case, such a constraint is usually non–smooth,

and this non–smoothness cannot be modelled by a convex polyhedral composite function. An

important factor is the determination of the multiplicity of the zero eigenvalues, or alternatively

the rank of the matrix at the solution. If this rank is known it is usually possible to solve the

problem by conventional techniques.

In this thesis the positive semi–definite matrix constraint is handled in a different way, by

regarding it as a convex set. There are certain methods, known as projection methods, which

can be used to solve least distance problems constrained by the intersection of convex sets.

In this thesis the application of such methods to certain problems with positive semi–definite

1



2

matrix constraint is considered. It is found that the methods are globally convergent, but the

rate of convergence is linearly or slower. It is this latter feature that has probably contributed to

the relatively little interest that has been shown in such methods. However it is demonstrated

here that the methods do have the capability of determining the correct rank of the solution

matrix, and this can be done in relatively few iterations.

Thus we are led to study hybrid methods in this thesis. The hybrid method has two different

modes of operation. One is a projection method which provides global convergence and enables

the correct rank to be determined. The other is either a quasi–Newton method or a conventional

nonlinear programming method, depending on the problem, which enables rapid convergence

to be obtained. An important feature concerns the interfacing of these modes of operation.

Thus it has to be decided which method to use first, and when to switch between methods.

Also it may not be straightforward, as we shall see here, to use the output of one method to

start the other method. Difficulties such as these are addressed in the thesis. Hybrid methods

have often been used successfully in optimization, for example Powell [1970], Hald and Madsen

[1981] and Al–Baali and Fletcher [1985].

There are two main problems that are addressed in this thesis. Firstly, there is the Euclidean

distance matrix problem which arises in many experimental sciences. The problem is to find

the best Euclidean distance matrix which approximates a given non–Euclidean distance matrix.

For solving this problem two methods are given. One is a projection method which is globally

convergent. The other method for solving the Euclidean distance matrix problem is a quasi–

Newton method, in particular the BFGS method. This method is superlinearly convergent but

requires a knowledge of a certain characteristic rank. Hence new methods are established for

solving this problem using the advantage of both methods by switching from one method

to the other in a suitable way.

The second problem we going to study in this thesis is the educational testing problem which

arises in statistics. In this problem there is given a symmetric positive definite matrix and it is

required to determine how much can be subtracted from the diagonal of that matrix and still

retain a positive semi–definite matrix. In the standard form the l1–norm is used to measure the

amount subtacted from the diagonal. Unfortunately this problem is not in the correct format

for projection methods to be used directly. However there is an ingenious device due to Glunt

[1991] which transforms this problem to a related one in which a least distance measure is used.

We are therefore able to study the application of projection methods to the problem with the

least distance measure. Then Glunt’s transformation is used to enable the original educational



3

testing problem to be solved.

These methods are again seen to be typified by being globally and slow convergent. When

the correct rank for the matrix is known we are also able to use the l1 Sequential Quadratic

Programming (SQP) method to solve both problems, and this converges at second order.

Subsequently hybrid methods are investigated to combine the advantageous features of both

methods.

0.1 Outline of the thesis

Chapter 1 provides a general background to the optimization problem. This chapter includes

a brief review of linear algebra and other various results. The concept of convex cones and nor-

mal cones with some important convex sets are also given. This chapter also introduces the

concept of feasibility along with various expressions for feasible directions and describes opti-

mality conditions relating to positive semi–definite matrix constraints. Finally, this chapter is

concluded by a description of the Newton, quasi–Newton and Sequential Quadratic Program-

ming (SQP) methods.

Chapter 2 provides a background about the projection methods for solving certain linear

and least distance convex programming problems in which the feasible region is the intersection

of a convex sets. Such optimization problems potentially arise in many practical situations,

for example in linear programming problems, although projection methods are not the best for

solving such problems. Here we are interested in the case where one of the convex cones is

related to a positive semi–definite matrix cone. This chapter includes a description of the von

Neumann [1950], Dykstra [1983] and Han [1988] projection methods for solving least distance

convex programming problems and Glunt [1991] method for solving linear convex programming

problems.

The aim of Chapter 3 is to find the best Euclidean distance matrix which approximates

a given non–Euclidean distance matrix. Some applications of the above problem are given

along with the definition of the Euclidean distance matrix and its characterization. Various

methods for solving this problem are considered including a projection algorithm described by

Glunt, Hayden, Hong and Wells [1990] and some new unconstrained methods based on using

quasi–Newton methods. Other projection methods are also given and at the end of this chapter



4

numerical comparisons of these methods are described.

In Chapter 4 some new methods for solving the Euclidean distance matrix problem are

considered. These methods are developed from the methods of Chapter 3 using a hybrid

method. A feature of some interest is how to move between the two methods. Numerical

comparisons are also given in this chapter.

Chapter 5 considers a problem in which the objective function is a least distance function

subject to a positive semi–definite matrix constraint where the diagonal of the matrix is allowed

only to change. Two methods are developed for solving this problem. Firstly, a projection algo-

rithm is given for solving this problem which converges globally. Secondly an implementation

of the l1 Sequential Quadratic Programming (SQP) method is used which converges quadrat-

ically. A transformation due to Fletcher [1985] is used to enable this method to be used. This

chapter also includes a hybrid method between the projection method and the l1 SQP method

in a similar way to Chapter 4. Finally, numerical comparisons of these methods are carried out

in the end of the chapter.

The problem to be considered in Chapter 6 is the educational testing problem. Previous

attempts to solve the problem are described. The definition of the educational testing problem

is given. This chapter also contains projection algorithm and l1 SQP methods. At the end of

this chapter numerical comparisons of these methods are given.

In Chapter 7 new methods for solving the educational testing problem are considered. The

methods described here are similar to those in Chapter 4 and depend upon the two methods

of Chapter 6 using a hybrid method. The projection method converges globally but often

converges at very slow order. The l1 SQP method converges quadratically but often requires

the correct rank. Combining these two methods together produces a method with a better

speed of convergence. Therefore this chapter describes two hybrid methods and also gives

numerical comparisons.

The achievements of the thesis are summarized in Chapter 8 and suggestions for further

research are discussed.



5

0.2 Notation

If f(x) is continuously differentiable (C1) then for any point x the vector of first

partial derivatives, or gradient vector is referred to by g(x) = ∇f(x) and ∇ denotes the

gradient operator (∂/∂x1 , . . . , ∂/∂xn)T . If f(x) is twice continuously differentiable (C2)

then there exists a matrix of second partial derivatives, or Hessian matrix, written ∇2f(x)

which is square and symmetric.

Superscript ”k” generally denotes quantities related to the kth iterate. For instance

f (k) = f(x(k)), g(k) = g(x(k)), etc, and f∗ = f(x∗), g∗ = g(x∗), etc.

Throughout this thesis the lower case boldface letters such as x, y,v are used to denote

vectors. Matrices are denoted by capital letters such as A, B, C and sometimes A written as

A = [aij ].



Chapter 1

Optimization review

1.1 Introduction

The purpose of this chapter is to provide a general background to the optimization problem.

This chapter includes some important concepts of optimization theory along with a description

of the quasi–Newton method and the Sequential Quadratic Programming (SQP) method.

Section 1.2 contains a brief review of linear algebra and other various results. The concept of

convex cones is given in Section 1.3. Also in that section two important convex cones are given.

These are the cone of all n×n symmetric positive semi–definite matrices and the convex cone

which is a subset of the positive semi–definite matrix cone. Section 1.3 also includes expressions

for the normal cones of these convex cones. In Section 1.4 the concept of feasibility is described,

along with various expressions for feasible directions. Section 1.5 describes optimality conditions

relating to positive semi–definite matrix constraints. In Section 1.6 some details of how Newton

and quasi–Newton methods work are given together with a proof of second order convergence.

The SQP method is an efficient method for solving nonlinear programming problems when

first and second derivatives are available. This method is Newton’s method applied to find the

stationary point of a Lagrangian function. The SQP method converges locally at second order.

The global properties of the SQP method are improved by associating it with an exact penalty

function. This method is described in Section 1.7.

6



7

1.2 Various results

The analysis of the optimization methods in this thesis requires results from linear algebra

along with some definitions of rates of convergence. These are reviewed below.

Definition 1.2.1 (Inner product)

If A, B ∈ <n×n then their inner product is defined by

〈 A , B 〉 =
n∑

i,j=1

aijbij = tr(ATB).

where tr(ATB) means the trace of the matrix ATB which is the sum of the elements

on the diagonal of ATB.

Here <n×n denotes the space of all real n × n matrices. Also we distinguish between

Diag A which denotes the diagonal matrix whose entries are the diagonal elements of A,

and diag a which is the diagonal matrix whose entries are the elements of vector a. The

null space of A is defined by N(A) = {x ∈ <n : Ax = 0}.

Definition 1.2.2 ( Frobenius norm)

A useful matrix norm in <n×n is the Frobenius norm defined by

‖A‖F = 〈 A , A 〉
1
2 = {

n∑
i,j=1

|aij |2 }
1
2

Definition 1.2.3 (Householder matrix)

A matrix Q ∈ <n×n is said to be orthogonal if QTQ = I. A particular Householder

matrix may be defined by

Q = I − 2
νT ν

ννT , ν = [1, . . . , 1, 1 +
√
n]T . (1.2.1)

This Householder matrix is a special case for which if e = [1, 1, . . . , 1]T then

Qe =

[
0

−‖e‖2

]
=

[
0

−
√
n

]
. (1.2.2)



8

Definition 1.2.4 (Irreducibly embeddable)

If there exist n vectors p1, . . . , pn in <r (r ≤ n − 1) such that

aij = ‖ pi − pj ‖22 (1 ≤ i, j ≤ n). (1.2.3)

for set of vectors in <r but not in <r−1 then the points p1, . . . , pn and the matrix

A = [aij ] are said to be irreducibly embeddable in <r.

Definition 1.2.5 (Positive definite matrices)

An n× n symmetric matrix A is said to be positive definite if

xTAx > 0 ∀x ∈ <n x 6= 0 (1.2.4)

and is denoted by A > 0. If the inequality in (1.2.4) replaced by xTAx ≥ 0 then

A is said to be positive semi–definite and is denoted by A ≥ 0.

Positive definite matrices are an important class of matrices and arise naturally in many appli-

cations. The above definition cannot be checked numerically. Equivalent definitions which can

be checked are the following

i. All eigenvalues of A > 0.

ii. There exists a unique lower triangular L ∈ <n×n such that LLT = A with lii > 0

(Choleski factors).

iii. LDLT factors exist with lii = 1 and dii > 0.

If A is a positive definite matrix, then the largest entry in A is on the diagonal and the

diagonal elements are all positive.

Definition 1.2.6 (First and second order convergence)

Let x∗ be a local minimum point with error defined as

h(k) = x(k) − x∗.

If h(k) → 0 we have convergence. If the errors behave as

‖h(k+1)‖
‖h(k)‖p

→ a



9

where a > 0 then the order of convergence is defined to be p order. The most important

cases are where p = 1 (first order or linear convergence) in which a < 1 must hold,

and p = 2 (second order or quadratic convergence). If ‖h(k+1)‖
‖h(k)‖ → 0 then this is

known as superlinear convergence. Often it is only possible to obtain bounds, for example

‖h(k+1)‖
‖h(k)‖

≤ a

or

h(k+1) = O(‖h(k)‖)

for first order convergence and

‖h(k+1)‖
‖h(k)‖2

≤ a

or,

h(k+1) = O(‖h(k)‖2).

for second order convergence.

1.3 Cones and normal cones

The concept of a convex cone and its properties are very useful when applying convex analysis,

for instance the normal cone is important in the development of optimality conditions. In this

section the notion of cones and normal cones is described.

Definition 1.3.1 (Convex set and convex function)

A subset C of <n is said to be a convex set if

xλ = (1− λ)x1 + λx2 ∈ C

for all x1,x2 ∈ C and 0 ≤ λ ≤ 1. A convex function f(x) on the domain C is

defined by the condition that for any x1,x2 ∈ C it follows that

f(xλ) ≤ (1− λ)f(x1) + λf(x2) ∀ λ ∈ [0, 1]

where xλ = (1− λ)x1 + λx2.



10

Definition 1.3.2 (Convex cone)

A subset K of <n is called a convex cone if and only if x1,x2 ∈ K, α, β ≥ 0

implies that αx1 + βx2 ∈ K.

The set of all n× n symmetric positive semi–definite matrices

K< = {A : A ∈ <n×n, AT = A and zTAz ≥ 0 ∀ z ∈ <n} (1.3.1)

is a convex cone of dimension n(n + 1)/2. The dimension is the number of free parameters

in a symmetric matrix A. Let A, B ∈ K< then zT (αA + βB)z ≥ 0 ∀ z ∈ <n, and

α, β ≥ 0. This is because αzT Az ≥ 0, βzTBz ≥ 0 ∀ z ∈ <n, which implies that

αA + βB ∈ K<. This proves that K< is a convex cone. (The subscript < is used to

distinguish this case from the restricted cone in the next paragraph).

Another convex cone which will be used for the projection method given in Chapter 3 is the

set of all n× n symmetric positive semi–definite matrices with respect to M, where

M = { x ∈ <n : eT x = 0 } (1.3.2)

and e = [1, 1, . . . , 1]T ∈ <n. K< is subset of this set which may be denoted by

KM = {A : A ∈ <n×n, AT = A and xTAx ≥ 0 ∀ x ∈M} (1.3.3)

which is a convex cone. Let A, B ∈ KM then

zT (αA + βB)z ≥ 0 ∀ z ∈ M, α ≥ 0 and β ≥ 0. (1.3.4)

This is because αzT Az ≥ 0, βzTBz ≥ 0 ∀ z ∈ M , which implies that αA + βB ∈ KM .

Thus KM is convex cone.

It is also convenient to define two other convex sets for the purposes of Chapters 5 and 6.

If F ∈ <n×n is any given symmetric positive definite matrix then define

Koff = {A : A ∈ <n×n, A − Diag A = F̄}. (1.3.5)

where F̄ = F − Diag F. This is the set of matrices whose off–diagonal elements are

equal to those of F . Also, let diag v = Diag F then define

Kb = {A : A ∈ <n×n, A = Ā + diag x, xi ≤ vi i = 1, 2, ...n} (1.3.6)



11

where Ā = A − Diag A. This is the set of matrices that is obtained by reducing the diagonal

of A. Koff and Kb are convex subspaces.

Next, the concept of the normal cone, denoted by ∂K, is introduced which is of importance

when deriving optimality conditions for problems which involve any convex set. If a is on the

boundary of K, then a vector x is said to be normal to a convex set K at a, if x does

not make an acute angle with any line segment in K emanating from a. Therefore any vector

x ∈ ∂K(a) must satisfy 〈y − a,x〉 ≤ 0 for every y ∈ K, (see Figure 1.3.1). The set of

all vectors x normal to K at a is called the normal cone to K at a, and denoted by

∂K(a) = {x : x ∈ <n, 〈y − a , x〉 ≤ 0 ∀ y ∈ K}. (1.3.7)

Equivalently the normal cone can be defined by

∂K(a) = {x : x ∈ <n, 〈 x, a〉 = sup
y∈K

〈x, y〉}. (1.3.8)

It is convenient to define ∂K(a) = {0} if a is interior to K, and ∂K(a) = ∅ (the

empty set) if a is exterior to K, this is consistent with (1.3.7) and (1.3.8).

Let K1 and K2 be convex sets in <n whose relative interiors have a point a in common.

Then

∂(K1 ∩K2)(a) = ∂K1(a) + ∂K2(a) (1.3.9)

(see [Rockafellar 1970]).

In this thesis we consider the case of the convex cone in which the elements are matrices

instead of vectors and we use the matrix inner product in Definition 1.2.1. It follows from

(1.3.7) that

∂K(A) = {B : B ∈ <n×n and 〈Z − A , B〉 ≤ 0 ∀ Z ∈ K} (1.3.10)

where K is a matrix cone.

It follows from (1.3.8) that the normal cone for (1.3.1) is

∂K<(A) = {B : B ∈ <n×n, 〈A,B〉 = sup
V ∈K<

〈V,B〉}.

However since unsymmetric matrices in ∂K< are not of interest here it is more convenient to

define ∂K< by restricting it to the symmetric normal cone



12

Figure 1.3.1: The normal cone ∂K for a convex cone K at point a.

∂K<(A) = {B : B ∈ <n×n, B = BT , 〈A,B〉 = sup
V ∈K<

〈V,B〉}. (1.3.11)

The most interesting case concerns the elements of the boundary of K<, since ∂K<(A) = {0}

when A is interior to K< (A > 0).

In the following a theorem due to Fletcher [1985] is given to show how to find the normal

cone ∂K<(A) at A, such that A belongs to the boundary of K<

Theorem 1.3.3

If the columns of Z are an orthonormal basis for the null space of A, and Λ is any

symmetric positive semi–definite matrix, then an equivalent form to (1.3.11) where A

lies on the boundary of K< is the following

∂K<(A) = {B : B ∈ <n×n, B = BT , B = − ZΛZT ,

Λ = ΛT , Λ ≥ 0}. (1.3.12)



13

Proof

Consider supV ∈K<
〈V,B〉 for fixed B, let B = XΩXT be the spectral decomposition of

B with X being the orthogonal matrix of eigenvectors and Ω = diag [ω1, ω2, . . . , ωn] the

diagonal matrix of eigenvalues. Since A is positive semi–definite there exists C = XTV X

which is positive semi–definite. Using Definition 1.2.1 of the inner product it follows that

sup
V ∈K<

〈V,B〉 = sup
C∈K<

〈C,Ω〉

= sup
cii≥0

∑
ciiωi.

This follows because

〈V,B〉 = tr(V B)

= tr(V XXTBXXT )

= tr(XTV XXTBX)

= tr(CΩ).

Hence

sup
V ∈K<

〈V,B〉 = 0 iff ωi ≤ 0 ∀ i (1.3.13)

and this is equivalent to B ≤ 0 since ωi are the eigenvalues of B. Hence an equivalent

form to (1.3.11) is

∂K<(A) = {B : B ∈ <n×n, B = BT , 〈A,B〉 = 0, B ≤ 0}. (1.3.14)

Let A = Y ΛrY
T , with Λr being the diagonal matrix whose elements are the nonzero

eigenvalues of A and the columns of Y are the corresponding orthonormal set of eigenvectors,

so that [Y Z] is an orthogonal matrix. Express B as

B = [Y Z]

[
R S

ST T

]
[Y Z]T . (1.3.15)



14

Since 〈A, B〉 = 0 then tr(ΛrY
TBY ) = 0. The diagonal elements of Y TBY are zero

because Λr is positive definite and diagonal. Also from (1.3.15) Y TBY = R so

it follows that R has zero diagonal elements. Hence from (1.3.14) B ≤ 0 implies

that R = 0, and thus T ≤ 0. Therefore from (1.3.15) B = ZTZT , and (1.3.12) follows

since Λ = − T 2.

Example 1.3.4

If n = 2 then the cone in (1.3.1) becomes

K< = {A : A =

[
x z

z y

]
x ≥ 0, y ≥ 0, xy ≥ z2 and x, y, z ∈ <}

and is illustrated in Figure 1.3.2. Clearly the matrices in the interior of the cone are

positive definite, whereas those on the boundary are singular. For example the matrix[
1 −1

−1 1

]

on the boundary is positive semi–definite. Then Z = [1 1]T and Λ = [α] ≥ 0, so the

normal cone (1.3.12) at this point is

∂K<(

[
1 −1

−1 1

]
) = {B : B = − α

[
1 1

1 1

]
, α ≥ 0}.

The normal cone for Koff ∩Kb is given in the following.

Theorem 1.3.5



15

Figure 1.3.2: The positive semi–definite matrix cone K<.

Let F ∈ <n×n be a given symmetric positive definite matrix and define Koff and

Kb as in (1.3.5) and (1.3.6) respectively. Let A ∈ Koff ∩Kb. Then

∂(Koff ∩Kb) (A) = {B : B ∈ <n×n,{
bii ≥ 0 if xi = vi

bii = 0 if xi < vi

}
i = 1, ..., n}. (1.3.16)

where A = Ā+ diag x.

Proof



16

From the normal cone definition (1.3.10) it is clear that

∂Koff (Ā+ diag x) = {B : B =


0 b21 . . . bn1

b21 0 . . . bn2

...
...

. . .
...

bn1 bn2 . . . 0

} (1.3.17)

because Z̄ = Ā = F̄ implies Z − A = 0 ∀ i 6= j, in (1.3.10) where Z̄ = Z − Diag Z.

Consider

sup
Z∈Koff∩Kb

〈B,Z〉

and assume for some i that bii < 0. Let zii = aii − β then Z ∈ Koff ∩Kb. By

making β sufficiently large we can make 〈B,Z〉 as large as we like. Thus, if bii < 0 for

any i, we have that

〈A,B〉 = sup
Z∈Koff∩Kb

〈B,Z〉 = ∞.

Now suppose bii ≥ 0 ∀ i. Then from the normal cone definition (1.3.8)

∂Koff ∩Kb(Ā+ diag x) = {B : B ∈ <n×n,

〈B, Ā + diag x〉 = sup
Z∈Koff∩Kb

〈B,Z〉}.

Now since Z̄ = Ā, bii ≥ 0 ∀ i and

〈B, diag z〉 =
n∑

i=1

biizii

≤
n∑

i=1

biivi

= 〈B, diag v〉

where diag z = Z − Z̄. Then

sup
Z∈Koff∩Kb

〈B,Z〉 ≤ 〈B, Ā + diag v〉

but since Ā + diag v ∈ Koff ∩Kb then



17

sup
Z∈Koff∩Kb

〈B,Z〉 = 〈B, Ā + diag v〉.

Thus

〈B, Ā + diag x〉 = 〈B, Ā + diag v〉 = 〈A, B〉

Now

sup
Z∈Koff∩Kb

〈B,Z〉 =

{
∞ if bii < 0 for any i

〈A, B〉 otherwise

}
(1.3.18)

this implies from (1.3.8)

∂(Koff ∩Kb) (A) =

{B : B ∈ <n×n, 〈B, Ā + diag x〉 = 〈B, Ā + diag v〉} (1.3.19)

which implies that
n∑

i=1

bii(vi − xi) = 0. (1.3.20)

Therefore if xi < vi then bii = 0 since each term of (1.3.20) is nonnegative. 2

In addition to the normal cone ∂K< another set of interest is the normal cone ∂KM .

This set is important when deriving the optimality conditions for the projection method given

in Chapter 3. A theorem for the expression of the normal cone ∂KM is stated and proved.

Firstly though a theorem used in the proof is given. An example for the convex cone (1.3.3)

when n = 3 is given later on.

The following theorem is based on Hayden and Wells [1988].

Theorem 1.3.6

Let Q be the Householder matrix in (1.2.1). If A = AT ∈ <n×n and M is given in

(1.3.2), then

xTAx ≥ 0 ∀ x ∈ M (1.3.21)

if and only if

QAQ =

[
A1 a

aT α

]
, A1 ≥ 0. (1.3.22)



18

Proof

For all x ∈ M denote y = Qx, and it follows that x = Qy since Q is orthogonal

and symmetric. The condition x ∈ M is equivalent to eT x = 0, or eTQy = 0, and

hence to eT
ny = 0 where eT

n = [0, 0, . . . , 0, 1]. Thus (1.3.21) can be written as

(Qy)TAQy ≥ 0 ∀ y ∈ <n such that yn = 0. (1.3.23)

Thus (1.3.22) follows. 2

In what follows we denote the rank of A1 by r, and hence the spectral decomposition of

A1 can be expressed as

A1 = UΛUT = U

[
Λr 0

0T 0

]
UT (1.3.24)

where U is an orthogonal matrix and Λr > 0 is an r × r diagonal matrix.

A theorem due to Glunt et. al. [1990] will be given to show how to find the normal cone

∂KM (A) at A ∈ KM .

Theorem 1.3.7

Given any A, then the normal cone ∂KM (A) is given by

∂KM (A) = {B : B = Q

[
UGUT 0

0T 0

]
Q, H ≤ 0} (1.3.25)

where

G =

[
0 0

0T H

]
,

U is an orthogonal matrix given by (1.3.24) and H is a symmetric matrix in

<(n−r−1)×(n−r−1) (The partitioning of G reflects that of A1).

Proof



19

Let B ∈ ∂KM (A) and define B1, b and β by

B = Q

[
B1 b

bT β

]
Q.

Now let X1 ∈ <n−1×n−1 be any positive semi–definite matrix. Then for any x, ξ by

Theorem 1.3.6 the matrix

X = Q

[
X1 x

xT ξ

]
Q

is in KM . By (1.3.10)

〈X −A,B〉 ≤ 0

and since Q is orthogonal we have

〈QXQ,QBQ〉 ≤ 〈A,B〉

which implies that

〈X1, B1〉 + 2xT b + ξβ ≤ 〈A,B〉. (1.3.26)

Let either b 6= 0 or β 6= 0. Choose x = λb and ξ = λβ for sufficiently large λ > 0

then (1.3.26) is false (contradiction). This implies that b = 0 and β = 0.

Following a similar strategy as in the previous proof (Theorem 1.3.3), let V ΩV T be the

spectral decomposition of B1 with V being the orthogonal matrix of eigenvectors and

Ω = diag [ω1, ω2, . . . , ωn−1] the diagonal matix of eigenvalues. Since X1 is positive

semi–definite there exists a positive semi–definite matrix C = V TX1V , and using (1.3.26)

〈A,B〉 ≥ 〈X1, B1〉 = 〈V TX1V,Ω〉 = 〈C,Ω〉

=
n−1∑
j=1

cjjωj .

Hence

sup
A∈KM

〈A,B〉 ≥ 0 iff ωi ≤ 0 i = 1, . . . , n− 1 (1.3.27)



20

and this is equivalent to B1 ≤ 0 since ωi are the eigenvalues of B1 and

c11, c22, . . . , cn−1 n−1 are nonnegative scalars since C is positive semi–definite matrix.

Therefore, if B ∈ ∂KM (A) it has the form

B = Q

[
B1 0

0 0

]
Q, B1 ≤ 0. (1.3.28)

From (1.3.28) we have 〈X,B〉 ≤ 0 ∀ X ∈ KM and since 〈X −A,B〉 ≤ 0, then

〈A,B〉 ≤ sup
X∈KM

〈X,B〉 ≤ 0 (1.3.29)

≤ 〈A,B〉. (1.3.30)

from (1.3.27). Thus from (1.3.29) and (1.3.30)

〈A,B〉 = 0. (1.3.31)

Then (1.3.28), (1.3.31) and (1.3.22) imply that

〈A1, B1〉 = 0.

Then from the spectral decomposition A1 in (1.3.24) we have

〈Λr, U
TB1U〉 = 〈Λr, G〉 =

r∑
j=1

λjgjj = 0 (1.3.32)

where G = UTB1U ≤ 0. Now G ∈ <(n−1×n−1) has the following structure

G =

[
N S

ST H

]

where H ∈ <(n−r−1)×(n−r−1) but since λj > 0 and gjj ≤ 0 for 1 ≤ j ≤ r then

from(1.3.32) gjj = 0 for 1 ≤ j ≤ r. Since G is negative semi–definite G has the form

G =

[
0 0

0 H

]
, H ≤ 0.

Therefore



21

B1 = U

[
0 0

0 H

]
UT , H ≤ 0.

and B has the form of (1.3.25).

Conversely, if B is written in the form (1.3.25) then since B ≤ 0 and

X − A ≥ 0 ∀ X ∈ KM , (since A is the nearest positive semi–definite matrix)

then

〈X − A,B〉 ≤ 0 ∀ X ∈ KM

which implies that B ∈ ∂KM (A) 2

In the rest of this section an example of the convex cone (1.3.3) where n = 3 is given.

Example 1.3.8

For the example let n = 3, and

A =


0 x y

x 0 z

y z 0


It is convenient for what follows later to express the Householder matrix Q as

Q =


a− c b− d − c− d

b− d a− c − c− d

−c− d − c− d − c− d


where a = 0.911, b = 0.244, c = 0.122 and d = 0.455 accurate to 3 decimal places.

Then

QAQ =


bz − 1

3x− ay 1
3 (2x− y − z) dz − 1

3x− cy

1
3 (2x− y − z) by − 1

3x− az dy + cz − 1
3x

dz − 1
3x− cy dy + cz − 1

3x
2
3 (x+ y + z)



and the matrix A1 is given by

A1 =

[
bz − ay − 1

3x
1
3 (2x − y − z)

1
3 (2x − y − z) by − 1

3x − az

]
.



22

Figure 1.3.3: The positive semi–definite matrix cone KM in M .

Using (1.3.23) the cone KM in (1.3.3) is defined by the inequalities

bz − ay − 1
3x ≥ 0

by − 1
3x − az ≥ 0

(bz − ay − 1
3x)(by − 1

3x − az) ≥ [ 13 (2x − y − z)]2 (1.3.33)

where inequality (1.3.33) implies that

z2 − 2z(x + y) + (x − y)2 ≤ 0.



23

The matrix

A′ =


0 −1 −1

−1 0 0

−1 0 0



is on the boundary of the cone KM . Then

U =

[
−0.2588 0.966

0.966 0.2588

]
and G =

[
0 0

0 λ

]
,

so the normal cone (1.3.25) at this point is

∂KM (A′) = {λ


0.5 0 −0.5

0 0 0

−0.5 0 0.5

 , λ ≥ 0}.

The cone for this example is illustrated in Figure 1.3.3.

1.4 The set of feasible directions

In this section results are given which are used subsequently to derive optimality conditions.

A feasible point x is a point which satisfies all the constraints in an optimization problem

and the set of all such points is referred to as the feasible region. Here we consider problems

in which the the feasible region is a convex set K ⊂ <n. Let {x(k)} → x where

x(k) 6= x ∀ k is an infinite sequence of feasible points. It is possible to express

x(k) − x = δ(k)s(k) ∀ k (1.4.1)

where δ(k) > 0 is a scalar. The sequence x(k) is said to be a directional sequence if

{s(k)} → s. The limiting vector s(k) is referred to as a feasible direction. Then the set of

feasible directions can be expressed as

F(x) = {s : ∃ {x(k)} such that {x(k)} → x, {s(k)} → s, δ(k) → 0}. (1.4.2)

A related set of feasible directions which is easier to manipulate is the set



24

F (x) = {s : s ∈ <n, sT g ≤ 0 ∀g ∈ ∂K(x)}. (1.4.3)

which is the set of feasible directions for the cone of all supporting hyperplanes at x. For

future reference it is important to prove that F(x) ⊆ F (x).

Let s ∈ F(x) then from (1.4.2) there exists a directional sequence x(k) → x

such that s(k) → s. Using (1.4.1) and dividing by δ(k) > 0 it follows that

s(k)T g =
(x(k) − x)T g

δ(k)
. ∀ g ∈ ∂K(x) (1.4.4)

Now any vector g ∈ ∂K(x) satisfies (z − x)T g ≤ 0 ∀ z ∈ K. Then since x(k) are

feasible points

(x(k) − x)T g ≤ 0.

Hence taking limits in (1.4.4) as k → ∞ and s(k) → s implies that

sT g ≤ 0

or s ∈ F (x). Therefore this proves that F(x) ⊆ F (x) for the general case.

For the positive semi–definite matrix cone (1.3.1) similar definitions to (1.4.2) and (1.4.3)

hold. If S is a symmetric matrix which is equivalent to a feasible direction in (1.4.3), Z is a

basis matrix for the null space of A and Λ is any symmetric positive semi–definite matrix,

then using Theorem 1.3.3, (1.4.3) and the inner product Definition 1.2.1, it follows that

F (A) = {S : S = ST , 〈B,S〉 ≤ 0 ∀ B ∈ ∂K<(A)}

= {S : S = ST , 〈−ZΛZT , S〉 ≤ 0 ∀ Λ ≥ 0}

= {S : S = ST , 〈Λ, ZTSZ〉 ≥ 0 ∀ Λ ≥ 0}

and hence

F (A) = {S : S = ST , ZTSZ ≥ 0}. (1.4.5)

The following theorem is due to Fletcher [1985].

Theorem 1.4.1

For A ∈ K<

F(A) ≡ F (A) (1.4.6)



25

Proof

In general we proved that F(A) ⊆ F (A) above. Now the converse is considered.

Take a direction S ∈ F and let X = [Y Z] be the eigenvector matrix for A which

is described in Theorem 1.3.3 and Λr the diagonal matrix of nonzero eigenvalues.

There are two cases, first when ZTSZ ≥ 0 and singular, consider the trajectory

Aε = A + εS + βε2I (1.4.7)

which gives

XTAεX = [Y Z]TA + εS + βε2I[Y Z]

=

[
Y TAY + εY TSY + βε2Y TY Y TAZ + εY TSZ + βε2Y TZ

ZTAY + εZTSY + βε2ZTY ZTAZ + εZTSZ + βε2ZTZ

]
.

Then, since A = Y ΛrY
T and Z is the basis matrix for the null space of A, it follows that

XTAεX =

[
Λr + εY TSY + βε2 εY TSZ

εZTSY εZTSZ + βε2

]
. (1.4.8)

Now

Λr + εY TSY + βε2 > 0 (1.4.9)

and

εZTSZ + βε2 − ε2Y TSZ(Λr + εY TSY + βε2)−1ZTSY ≥ 0 (1.4.10)

are going to be proved. If β > ‖Λ−1
r ‖‖S‖2 is chosen and for ε sufficiently small, then

clearly (1.4.9) and (1.4.10) are true by strength of Λr > 0 for (1.4.9) and ZTSZ > 0 for

(1.4.10). Hence there exist Choleski factors for (1.4.9) and (1.4.10) which enable us to construct

a Choleski factor for (1.4.8). Therefore XTAεX is positive semi–definite or equivalently Aε

is feasible.

For the second case when ZTSZ > 0 consider the trajectory

Aε = A + εS. (1.4.11)



26

Similar to the first case it gives

XTAεX =

[
Λr + εY TSY εY TSZ

εZTSY εZTSZ

]
, (1.4.12)

hence Aε is feasible since

Λr + εY TSY > 0 (1.4.13)

and

εZTSZ − ε2Y TSZ(Λr + εY TSY )−1ZTSY ≥ 0. (1.4.14)

Thus in both cases a direction S ∈ F(A) is constructed and if we take ε = εk for any

sequence εk → 0 then there exists a feasible directional sequence in F . Therefore F ⊂ F

proving that these sets are in fact equivalent. 2

From this theorem we can deal with F which is easier to operate than F . In this section

expression (1.4.5) provides a characterization of a feasible direction of search. The benefit of

this expression along with the normal cone expression (1.3.12) lies in their application to opti-

mization problems. The expression for the normal cone plays the part of the subdifferential in

the statement of optimality conditions. The expression for the feasible direction accommodates

a characterization of a feasible direction of search which is easily verified.

1.5 First and second order conditions

The content of this section is useful in deriving the methods in Sections 5.3 and 6.4.

This section includes a useful theorem of first order conditions. Also at the end of this

section second order conditions are stated. It is also shown how to compute a basis matrix Z

for the null space of A in connection with the partial LDLT factorization of A.

Consider the following problem

minimize f(A)

subject to A ∈ K<, ci(A) ≤ 0. i = 1, . . . ,m (1.5.1)



27

The problem of minimizing a convex function f(A) on a general convex set K is said to be a

convex programming problem. A special case of (1.5.1) occurs when K = K< ∪ Kc where

Kc = {A : A ∈ <n×n ci(A) ≤ 0. i = 1, . . . ,m}.

is a convex set (this is assured if the functions ci(A) are convex).

A local solution is a point at which, in a neighbourhood about that point, has no feasible

point that gives a smaller value of the objective function.

Theorem 1.5.1

Every local solution x∗ to a convex programming problem is a global solution.

Proof

Let A∗ be a local but not global solution. Then ∃ A ∈ K such that f(A) < f(A∗).

By convexity of K

Aλ = (1 − λ)A∗ + λA.

By convexity of f

f(Aλ) ≤ (1 − λ)f(A∗) + λf(A)

= f(A∗) + λ(f(A) − f(A∗))

< f(A∗). (1.5.2)

Taking λ → 0 in the limit there exists f(Aλ) in the neighbourhood of f(A∗) which

contradictes the local solution property. Thus local solutions are global. 2

In a convex programming problem every local solution is a global solution which has

been proved above. If f(A) and ci(A) i = 1, . . . ,m are convex and nonsmooth then

the first order necessary conditions can be given in the following theorem

Theorem 1.5.2 (First order conditions)



28

If A∗ solves (1.5.1) and if the condition in Theorem 1.4.1 holds then A∗ is feasible and

there exist Lagrange multipliers Λ∗ ≥ 0 and π∗ ≥ 0 satisfying the following

m∑
i=1

π∗i c
∗
i = 0

and

∇A L(A∗,Λ∗,π∗) = G∗ + B∗ +
m∑

i=1

π∗iC
∗
i = 0 (1.5.3)

where G∗ ∈ ∇f∗, B∗ ∈ ∂K∗
< and C∗i = ∇c∗i i = 1, . . . ,m. (Note that the

operator ∇ maps a scalar into a matrix).

Proof (see for example Rockafellar [1981] Chapter 5)

This theorem is related to the usual Kuhn–Tucker (KT) conditions (e.g. see Fletcher [1987])

and the π∗i are KT multipliers. However an additional term derived from ∂K∗
< also occurs.

The conditions in Theorem 1.5.2 are certainly sufficient when all feasible directions are strict

ascent directions. However consider situation in which there exist feasible directions along which

f(A) has a zero directional derivative. Now higher order terms become significant. Second

order information is required in order to provide algorithms that converge rapidly. Also, it

is difficult to deal with the matrix cone constraint in (1.5.1), since it is not in the form of a

functional constraint. An equivalent problem to (1.5.1) with equality and inequality constraints

which are easier to manipulate is considered here. This formulation will enable us to derive

algorithms with a second order rate of convergence.

Assume that r, the rank of A∗, (1 < r < n) is known. Permuting rows and columns

if necessary, then for A sufficiently close to A∗ (which ensure that D1 > 0) the partial

factors

A = LDLT (1.5.4)

can be calculated, where

L =

[
L11

L21 I

]
, D =

[
D1

D2

]
(1.5.5)



29

L11 ∈ <r×r is unit lower triangular, D1 ∈ <r×r is diagonal and positive definite and

D2 ∈ <n−r×n−r. D2 = 0 at the solution, in general we can calculate D2 as follows,

partitioning

A =

[
A11 AT

21

A21 A22

]
(1.5.6)

where A11 ∈ <r×r, from (1.5.5)

LDLT =

[
L11D1L

T
11 L11D1L

T
21

L21D1L
T
11 L21D1L

T
21 + D2

]
(1.5.7)

then

A22 = L21D1L
T
21 + D2 (1.5.8)

and since

L21D1L
T
21 = (L21D1L

T
11)(L

−T
11 D

−1
1 L−1

11 )(L11D1L
T
21)

= A21A
−1
11 A

T
21,

therefore

D2(A) = A22 − A21A
−1
11 A

T
21. (1.5.9)

Thus A is positive semi–definite if and only if D2 = 0, thus the constraint A ∈ K< can

be expressed as

D2(A) = 0 (1.5.10)

This gives a ready expression which can be used to compute both first and second derivatives

of the constraints with respect to the elements of A.

The orthonormal basis matrix Z for the null space of A∗ can be calculated using (1.5.5).

Define

V = L−T =

[
L−T

11 −L−T
11 L

T
21

0 I

]



30

then using (1.5.7)

V =

[
L−T

11 −A−1
11 A

T
21

0 I

]

=

[
V11 V21

0 I

]
. (1.5.11)

Then

Z =

[
V21

I

]
.

From (1.5.9)

D2(A) = A22 − A21A
−1
11 A

T
21

= [−A−1
11 A

T
21 I ]

[
A11 AT

21

A21 A22

] [
−A−1

11 A
T
21

I

]

= ZTAZ = 0. (1.5.12)

Then problem (1.5.1) can be expressed in the equivalent form

minimize f(A)

subject to ZTAZ = 0 ci(A) ≤ 0. i = 1, . . . ,m. (1.5.13)

It is convenient to introduce the Lagrangian function

L(A,Λ,π) = f(A) − 〈Λ, ZTAZ〉 +
m∑

i=1

πici(A) (1.5.14)



31

in which Λ and π are Lagrange multipliers for the constraints (1.5.12) and c(A) ≤ 0

respectively. (Fletcher [1987] (Theorem 9.1.1)). Since 〈Λ, ZTAZ〉 = 〈A,ZT ΛZ〉, then A∗,Λ∗

and π∗ satisfy

∇A L(A∗,Λ∗,π∗) = ∇Af
∗ − ZT Λ∗Z +

m∑
i=1

π∗i∇Ac
∗
i = 0 (1.5.15)

This equation corresponds to (1.5.3). (Note that Λ and π not necessarily the same as the

Λ and π in Theorem 1.5.2).

The matrix Λ that appears in the normal cone expression (1.3.12) can be defined as the

Lagrange multiplier matrix for the constraints D2(A) = 0 relative to the basis Z.

This treatment of second order conditions was given by Fletcher [1985].

1.6 Quasi–Newton methods

In this section the problem of finding a local solution to the problem

minimize
x

f(x), x ∈ <n (1.6.1)

is considered. The function f is smooth and not necessary convex. In the previous section

we dealt with optimization problems which have various types of constraint. However in this

section the optimum value is sought of an objective function of many variables without any

constraint. This type of problem will arise in Chapter 3.

The present section will be devoted to the study of quasi–Newton methods. First, the

Newton method will be discussed in order to show how the quasi–Newton method is derived

from it.

The idea behind Newton’s method is to replace the function f(x) in the equation to be

minimized (f(x) = 0) by a quadratic model that approximates the function. The quadratic

model is obtained from the first three terms of a Taylor series expansion of f(x) about x(k) as

follows



32

f(x(k) + δ) ≈ f (k) + g(k)T δ + 1
2 δTG(k)δ = q(k)(δ) (1.6.2)

where δ = x − x(k), and q(k)(δ) is the resulting quadratic approximation for iteration

k. With the requirement that the first and the second derivatives of f(x) are known at

any point, then the coefficients f (k), g(k) and G(k) are also known. The kth iteration

of Newton’s method can be stated as follows:

Algorithm 1.6.1 (Newton method)

Let G(k) be an n× n positive definite matrix then the following algorithm computes the

local minimum x∗ for f(x)

i. Select initial point x(0) ∈ <n.

ii. Solve G(k)δ = − g(k) for δ = δ(k)

iii. Set x(k+1) = x(k) + δ(k).

iv. If g(k) ≈ 0

stop

else

go to (ii).

The following theorem by Fletcher [1987] gives the rate of convergence for Newton method.

Theorem 1.6.2

If f is twice continuously differentiable, x(k) is sufficiently close to x∗ for some k,

G∗ is nonsingular and G(x) satisfies a Lipschitz condition ‖G(x)−G(y)‖ ≤ ‖x − y‖

in a neighbourhood of a local minimizer x∗, then limk→∞ x(k) = x∗ and Newton’s

algorithm converges at second order.

Proof

Since f is differentiable, a Taylor series for g (x(k) + h ) about x(k) exists and can

be written as



33

g(x(k) + h) = g(k) + G(k)h + O(‖h‖2). (1.6.3)

Denote h(k) = x(k) − x∗. Letting h = − h(k) gives

0 = g∗ = g(x(k) − h(k)) = g(k) − G(k)h(k) + O(‖h(k)‖2). (1.6.4)

Multiplying equation (1.6.4) by G(k)−1 gives

0 = − δ(k) − h(k) + O(‖h(k)‖2) = − h(k+1) + O(‖h(k)‖2) (1.6.5)

Hence, by definition of O(h) (see Definition 1.2.6), there exists a constant c > 0 such that

‖h(k+1)‖ ≤ c ‖h(k)‖2. (1.6.6)

Let x(k) be in a neighbourhood of x∗ with ‖h‖ ≤ α/c, where 0 < α < 1, then

this implies that ‖h(k+1)‖ ≤ α‖h(k)‖. Thus x(k) → x∗ since ‖h(k)‖ → 0 and relation

(1.6.6) shows that Newton’s algorithm converges at second order. 2

The basic Newton method as it stands is not suitable for general purposes because G(k) may

not be positive definite when x(k) is far away from the solution x∗. Sometimes even if G(k) is

positive definite Newton’s method may not converge, and {f (k)} may not even decrease.

Now, the concept of the line search is introduced. The line search algorithms have the

following structure:

given an initial estimate x(0) the basic structure of the kth iteration is

i. determine a direction of search s(k)

ii. find α(k) to minimize f(x(k) + α(k)s(k)) with respect to α(k)

iii. set x(k+1) = x(k) + α(k)s(k).

There are different methods which correspond to different ways of choosing s(k). The line

search subproblem in step (ii) is carried out by repeatedly sampling f(x) and possibly its



34

derivatives for different points x = x(k) + αs(k) along the line. In practice step (ii) is solved

approximately and the aim of the line search is to find a step α(k) which gives a significant

reduction in f on each iteration. (see Fletcher [1987] Sections 2.5 and 2.6 for more about

the line search).

However the main difficulty in Newton’s method arises from supplying the second derivative

matrix G. Methods similar to Newton’s method, and not requiring the second derivative, can be

derived. Quasi–Newton methods are descent methods which approximate G−1 by a symmetric

positive definite matrix H(k). The popularity of the most successful of these methods stems

from the fact that they exhibit a fast rate of convergence while avoiding the second derivative

calculations associated with Newton’s method.

The quasi–Newton algorithm takes the following form.

Algorithm 1.6.3 (quasi–Newton method)

i. Select initial point x(0) ∈ <n.

ii. Set s(k) = −H(k)g(k)

iii. Line search along s(k) giving x(k+1) = x(k) + α(k)s(k)

iv. Update H(k) giving H(k+1) .

v. If g(k) ≈ 0

stop

else

go to (ii).

The initial matrix H(0) is an arbitrary positive definite matrix, H(0) = I is the first choice

if there is no better estimate. There are various possible formulas for updating the positive

definite matrix H. An important formula was suggested independently by Broyden [1970],

Fletcher [1970], Goldfarb [1970] and Shanno [1970], and is known as the BFGS formula

H
(k+1)
BFGS = H(k) + {1 +

γ(k)TH(k)γ(k)

δ(k)T γ(k)
} δ(k)δ(k)T

δ(k)T γ(k)

− δ(k)γ(k)TH(k) + H(k)γ(k)δ(k)T

δ(k)T γ(k)
. (1.6.7)



35

where

γ(k) = g(k+1) − g(k).

and

δ(k) = α(k)s(k) = x(k+1) − x(k).

There is growing evidence that the BFGS formula is the best general purpose quasi–Newton

method currently available and it is an efficient technique for unconstrained optimization.

Therefore, this formula will be used in this thesis. For more discussion about Newton and

quasi–Newton methods with references see Fletcher [1987].

1.7 The l1 SQP method

This section is devoted to constrained optimization in which additional constraints arise while

in the previous section we had only objective functions. The methods in this section deal with

constraints which are easier to handle than the constraints in previous sections. The constraints

here are expressed in terms of equations and inequalities instead of sets and cones. Methods

arising in this section are useful in deriving related methods in Sections 5.3 and 6.4.

This section will be devoted to the study of l1 SQP method. First it will be shown how

the l1 SQP method is derived from the SQP method. The SQP method is also called the

Lagrange–Newton method.

Consider the following equality constraint problem

minimize
x

f(x)

subject to c(x) = 0. (1.7.1)

The idea behind the SQP method is to iterate on the basis of certain approximations to the

problem function f(x) and c(x) using a linear approximation to the constraint function

c(x). This method is Newton’s method applied to find the stationary point of the Lagrangian

function



36

L(x,λ) = f(x) −
∑

i

λici(x) (1.7.2)

The variables in the Lagrangian function are x and λ. The method generates a sequence of

approximations x(k) and λ(k) to the solution vector x∗ and the Lagrange multipliers λ∗.

A Taylor series for ∇x,λ L about x(k), λ(k) gives

∇x,λ L(x(k) + δx, λ(k) + δλ) = ∇x,λ L(x(k), λ(k))

+ [∇2
x,λ L(x(k), λ(k))]

[
δx

δλ

]
+ . . .

where δλ = λ∗ − λ(k), δx = x∗ − x(k). Neglecting higher order terms

∇2
x,λ L(x(k), λ(k))

[
δx

δλ

]
= −∇x,λ L(x(k), λ(k)). (1.7.3)

Since ∇x,λ L(x∗, λ∗) = ∇x,λ L(x(k) + δx, λ(k) + δλ) = 0. Using (1.7.2) to find

∇x,λ L and ∇2
x,λ L, gives the system

[
W (k) −A(k)

−A(k)T 0

] [
δx

δλ

]
=

[
−g(k) + A(k)λ(k)

c(k)

]
(1.7.4)

where g = ∇x f, A is the Jacobian matrix of constraint c(x(k)), and

W (k) = ∇2
xf(x(k)) −

∑
i

λ
(k)
i ∇2

xci(x
(k)) (1.7.5)

is the Hessian matrix ∇2
x L(x(k),λ(k)). The system (1.7.4) is solved to give corrections δx

and δλ.

An equivalent system to (1.7.4) is

[
W (k) −A(k)

−A(k)T 0

] [
δ(k)

λ(k+1)

]
=

[
−g(k)

c(k)

]
(1.7.6)



37

where λ(k+1) = λ(k) + δλ and δ(k) = δx. System (1.7.6)is used to determine δ(k) and

λ(k+1), then x(k+1) is given by

x(k+1) = x(k) + δ(k). (1.7.7)

This method requires initial approximations x(0) and λ(0), and uses (1.7.6) and (1.7.7) to

generate the iterative sequence {x(k), λ(k)}.

Similar to Newton’s method in the previous section it is possible to restate this method

in terms of one in which the subproblem involves the minimization of a quadratic function.

Consider the subproblem

minimize
δ

q(k)(δ) = 1
2 δTW (k)δ + g(k)T δ + f (k)

subject to l(k)(δ) = A(k)T δ + c(k) = 0 (1.7.8)

This problem is the quadratic programming subproblem (QPS). Equations (1.7.6) gives the

first order conditions for problem (1.7.8). If the reduced matrix Z(k)TW (k)Z(k) is positive

definite then δ(k) minimizes (1.7.8), where Z(k) is the null matrix for A(k). Hence the

following algorithm is suggested.

Algorithm 1.7.1

Given initial estimate x(0),λ(0)

For k = 1, 2, . . .

i. Solve (1.7.8) to determine δ(k) and λ(k+1) the vector of Lagrange multipliers of

the linear constraints.

ii. Set x(k+1) = x(k) + δ(k).

This algorithm is known as the SQP algorithm.

Algorithm 1.7.1 suggests a generalization for solving the nonlinear inequality constraint

problem

minimize
x

f(x)



38

subject to c(x) ≥ 0. (1.7.9)

Replacing c(x) by l(k)(δ) and f(x) by q(k)(δ) leads to the subproblem

minimize
δ

q(k)(δ) = 1
2 δTW (k)δ + g(k)T δ + f (k)

subject to l(k)(δ) = A(k)T δ + c(k) ≥ 0. (1.7.10)

This QPS can be used in an iterative scheme like Algorithm 1.7.1 in a similar way using (1.7.10)

instead of (1.7.8) in step i.

The second order convergence of iteration (1.7.6) and (1.7.7) follows by using the technique

of Theorem 1.6.2 applied to the system of n + m equations ∇x,λ L(x, λ) = 0. The

convergence of this method at a rapid rate can be proved when x(0) and λ(0) are sufficiently

close to x∗ and λ∗ for some k. In fact a stronger result is given by Fletcher [1987] in the

following theorem.

Theorem 1.7.2

If x(0) is sufficiently close to x∗, the Lagrangian matrix

[
W (k) −A(k)

−A(k)T 0

]

is non–singular, and if second order sufficient conditions hold at x∗,λ∗ with A∗ having

full rank, then the QPS iteration (1.7.6) and (1.7.7) converges at second order. If λ(k)

is sufficiently close to λ∗, λ(0) is suitably chosen and if (1.7.8) is solved uniquely by

δ(0) then the SQP method converges at second order.

Proof (see Fletcher [1987] Chapter 12)

Globally the SQP method may not converge, especially when x(0) is remote from x∗.

However the SQP method is usually modified by the l1 exact penalty function. The l1 exact

penalty function associated with (1.7.9) is



39

φ(x) = µf(x) +
∑
i∈E

|ci(x)| +
∑
i∈I

max(−ci(x), 0) (1.7.11)

where E is the set of equality constraints and I the set of inequality constraints. For

sufficiently small µ local solutions of the nonlinear programming problem (1.7.9) are equivalent

to local solutions of (1.7.11) under wide asssumptions.

Various algorithms based on the use of (1.7.11) have been tried. The function (1.7.11) is

not differentiable so it cannot be minimized by conventional methods. The most simple is Han’s

[1977] method which uses the solution of SQP subproblem (1.7.10) as a search direction, and

the next point is accepted only if it significantly reduces the value of φ(x). An algorithm with

better convergence properties is suggested by Fletcher [1981a] in which a different subproblem

to (1.7.10) is solved, which takes into account the structure of (1.7.11), but uses the same

approximating functions as in (1.7.10). The l1 SQP method is a direct and efficient approach to

nonlinear programming. Fletcher [1981a] shows how to use a step restriction (or trust region)

so that the difficulties mentioned above are removed. The method can be explained easily

as follows: instead of substituting the Taylor series approximations (1.7.10) into the nonlinear

programming problems they are substituted directly into the l1 exact penalty function (1.7.11),

giving a piecewise quadratic approximating function ψ(k)(δ) and hence a QP subproblem

minimize
δ

ψ(k)(δ)

subject to ‖δ‖ ≤ ρ(k) (1.7.12)

where

ψ(k)(δ) = q(k)(δ) +
∑
i∈E

|l(k)
i (δ)| +

∑
i∈I

max(−l(k)
i (δ), 0). (1.7.13)

The subproblem (1.7.12) is solved on each iteration which is of a similar to the QP subproblem

(1.7.10). Subproblem (1.7.12) differs from (1.7.10) in that there are no explicit constraints

derived from the linear approximations l(k)(δ). Thus there are no difficulties with an infeasible

subproblem. The use of a trust region guarantees boundedness of the subproblem. The norm

in (1.7.12) is arbitrary but either the ‖ · ‖∞ or the ‖ · ‖2 is most likely choice since the

subproblem (1.7.12) can then be solved by QP methods.

The radius ρ(k) is the step restriction which is adjusted adaptively in a customary way to

be as large as possible subject to reasonable agreement between φ(x(k) +δ) and ψ(k)(δ), thus

ensuring a significant decrease in the function φ(x). The ratio measures the extent to which

φ and ψ(k) agree in neighbourhood of x(k) is defined by



40

r(k) =
∇φ(x(k))

∇ψ(k)(δ(k))
(1.7.14)

where

∇φ(x(k)) = φ(x(k)) − φ(x(k) + δ(k)) (1.7.15)

is the actual reduction and

∇ψ(k) = φ(x(k)) − ψ(k)(δ(k)). (1.7.16)

is the predicted reduction.

These features can be observed in the following algorithm from problem (1.7.9) given by

Fletcher [1981a].

Algorithm 1.7.3

This algorithm solves problem (1.7.9)

i. Given x(k),λ(k) and ρ(k), calculate f (k), g(k), c(k), A(k) and W (k) which

determine φ(x(k)) and ψ(k)(δ(k)).

ii. Find a global solution δ(k) to (1.7.12).

iii. Evaluate φ(x(k) + δ(k)) and calculate ∇φ(x(k)),∇ψ(k) and r(k).

iv.

If r(k) < 0.25 set ρ(k+1) = ‖δ(k)‖/4

if r(k) > 0.75 and ‖δ(k)‖ = ρ(k) set ρ(k+1) = 2ρ(k)

otherwise set ρ(k+1) = ρ(k).

v.

If r(k) ≤ 0 set x(k+1) = x(k), λ(k+1) = λ(k)

else x(k+1) = x(k) + δ(k)

λ(k+1) = multipliers from (1.7.12).



41

The iteration based on (1.7.12) is guaranteed to converge to a Kuhn–Tucker point of (1.7.11)

(Fletcher [1987]). Therefore, this algorithm will be used in this thesis (Chapters 5 and 6). For

more about SQP and l1 SQP methods see Fletcher [1987] Sections 12.4 and 14.5.



Chapter 2

Projection methods

2.1 Introduction

The purpose of this chapter is to provide a background about the projection methods for

solving certain linear and least distance convex programming problems in which the feasible

region is the intersection of a finite number of convex sets. The following least distance convex

programming problem which arises in Chapters 3 and 5 is studied.

For a given point f find the point x∗ which is the unique solution to the least distance

problem

minimize ‖ f − x ‖2

subject to x ∈
m⋂

i=1

Ki (2.1.1)

where
⋂m

i=1Ki is the intersection of a finite number of convex sets K1 , K2 , ..., Km.

This minimization problem is one of a wide class of problems which arises in many applications.

Projection methods for solving this kind of problem were first given by von Neumann

[1950], later improved by Dykstra [1983] and independently by Han [1988].

First some definitions relating to projections are introduced. If K is a subspace in Hilbert

space H then define

K⊥ = {x ∈ H : 〈x,y〉 = 0 ∀ y ∈ K}.

42



43

K⊥ called the orthogonal complement of the set K.

Definition 2.1.1

If K is a subspace in Hilbert space, then the projection of x ∈ H onto K is x1

where x = x1 + x2 and x1 ∈ K and x2 ∈ K⊥. The projection is denoted by

PK(x) = x1 and x1 is unique.

To show that x1 is a unique point, let x = x1 + x2 = y1 + y2 with y1 ∈ K and

y2 ∈ K⊥.

Now since 〈x1, x2〉 = 0, it follows that 〈x1, y1 + y2 − x1〉 = 0 and hence

〈x1,y1 − x1〉 = 0

since 〈x1,y2〉 = 0. Likewise from 〈y1,y2〉 = 0 it follow that

〈y1,x1 − y1〉 = 0.

These two equations show that 〈x1 − y1,x1 − y1〉 = 0 and hence

x1 = y1.

Theorem 2.1.2

A necessary and sufficient condition that P be a projection onto K is that

i. 〈PK(x),y〉 = 〈x, PK(y)〉 ∀ x,y ∈ H

ii. P 2
K(x) = PK(x) ∀ x ∈ H

Proof (see von Neumann [1950]).

If y ∈ H then the projection map is completely characterized by the condition

〈x − y,x − z〉 ≤ 0 ∀ z ∈ K. (2.1.2)

where x = PK(y). Clearly we can observe from the normal cone definition (1.3.7) that



44

y − x ∈ ∂K(x). (2.1.3)

Also in this chapter the following linear convex programming problem is considered.

minimize eT x x ∈ <n

subject to x ∈
m⋂

i=1

Ki (2.1.4)

where e = [1, 1, . . . , 1]T ∈ <n.

Such optimization problems come up in many practical situations, for example in linear

programming problem where K is the set of linear constraints, although projection methods

are not the best for solving such problems. Here we are interested in the case where one of

the Ki is a positive semi–definite matrix cone. An example of this is the educational testing

problem in statistics.

In Section 2.2 the algorithms of von Neumann [1950], Dykstra [1983] and Han [1988] are

described. The von Neumann algorithm simply iterates using succesive projections on to each

Ki, while in the Dykstra and Han algorithms a more complex calculation is made. This section

also includes some other important results. In Section 2.3 Glunt [1991] describes a projection

method for solving the linear convex programming problem (2.1.4). His idea is to construct a

hyperplane in <n and then carry out the method of alternating projections (von Neumann’s

method) between the convex set K and the hyperplane. His method converges globally. The

general theory of Glunt’s method for minimizing the linear function subject to a convex set in

Hilbert space is given in that section.

2.2 The Dykstra algorithm

In this section the least distance convex programming problem given by (2.1.1) is considered.

The basic idea of the iterated projections was first discussed by von Neumann [1950]. He

showed that if m = 2, K1 and K2 are subspaces of Hilbert space H and P1 and

P2 are respectively the orthogonal projections onto K1 and K2, then the sequence of

alternating projections is generated by the following algorithm:



45

Algorithm 2.2.1 (von Neumann algorithm)

Given a point f , in each subsequent iteration 2 vectors are computed as follows :

Set x(0)
2 = f

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

2

For i = 1, 2

x(k)
i = Pi(x

(k)
i−1)

End

End. (2.2.1)

The sequence in Algorithm 2.2.1 converges to P
K1∩K2

(f), which is the orthogonal projection

onto the intersection of K1 and K2.

The von Neumann algorithm can be generalised for m subspaces in the following form

Algorithm 2.2.2

Given a point f , subspaces K1, K2, . . . , Km and the corresponding projections

P1, P2, . . . , Pm . In each subsequent iteration m vectors are computed as follows :

Set x(0)
m = f

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

m

For i = 1, 2, . . . ,m

x(k)
i = Pi(x

(k)
i−1)

End

End. (2.2.2)

Deutsch [1983] showed that the rate of convergence in Algorithm 2.2.1 decreases with the

angle θ between the two subspaces, where θ ∈ [0, π
2 ] and is defined by



46

θ = cos−1{ sup
a∈K1,b∈K2

| 〈a− P
K1∩K2

a, b− P
K1∩K2

b〉 |
‖a‖ ‖b‖

}

where P
K1∩K2

is the orthogonal projection on to K1 ∩K2. This result is derived for the case

m = 2 and nothing is said about the rate of convergence in the general case. Also it is not

easy to find the angle between the two subspaces in order to get the rate of convergence.

Cheney and Goldstein [1959] prove some important results. In one of these they showed

that if in Algorithm 2.2.1 the subspaces are replaced by convex sets K1 and K2, and

P1 and P2 are respectively the orthogonal projections onto K1 and K2, then they gave

the following theorem

Theorem 2.2.3

Let K1 and K2 be two convex sets in Hilbert space H. Let P1 and P2 represent,

respectively, the projections onto K1 and K2. Given any point f ∈ H, then algorithm

(2.2.1) generate sequences {x(k)
1 }, {x(k)

2 }. If one of the sets is compact or finite

dimensional and if the distance between them is attained, then the sequences {x(k)
1 } and

{x(k
2 } converge to points x1 and x2 respectively such that

‖x1 − x2‖2 = inf
y1∈K1, y2∈K2

‖y1 − y2‖2 (2.2.3)

Proof (See Cheney and Goldstein [1959])

This result is useful in the next section.

Dykstra [1983] pointed out that if K1 and K2 are not subspaces then the von Neumann

algorithm does not necessarily converge. Likewise, Han [1988] stated that the von Neumann

algorithm cannot be applied successfully to problem (2.1.1) for general n. This can be seen

from the following simple example in <2.

Example 2.2.4



47

Figure 2.2.1: This example illustrates the failure of von Neumann algorithm to solve problem
(2.1.1) for general n.

Let

K1 = {(x, y) : y ≤ 0)}

and

K2 = {(x, y) : x+ y ≤ 0)},

then the straightforward projection method does not work for any point f outside K1 and K2

with x 6= 0 and x 6= y. For example if x(0)
2 = f = (1, 1.5) then x(1)

1 = P1((1, 1.5)) = (1, 0)

and x(1)
2 = P2P1((1, 1.5)) = P2((1, 0)) = (0.5,−0.5) hence P2P1((0.5,−0.5)) = (0.5,−0.5)

and Algorithm 2.2.1 stops at P2P1(f) = (0.5,−0.5) while x∗ = (0, 0) (see Figure 2.2.1).

Dykstra’s algorithm is based on an ingeniously simple modification of Algorithm 2.2.2. Han



48

[1988] independently discovered the same algorithm. In both algorithms the outer normal vector

y(k)
i of the set Ki at x(k)

i is calculated and the previous outer normal y(k−1)
i is added to

x(k)
i−1 before projecting it to the set Ki. Therefore, by each projection an old outer normal

vector is replaced by a new one and the sequence of normal vectors are intended to converge

to a solution of a dual problem of (2.1.1). In the case when all Ki are subspaces then the

addition of the normal is unneccessary for the corresponding projection and Algorithm 2.2.2 is

recovered (Boyle et. al. [1986]). Dykstra’s and Han’s algorithm can be described as follows:

Algorithm 2.2.5 (Dykstra–Han algorithm)

Given a point f , convex sets K1, K2, ..., Km and the corresponding projections

P1, P2, ..., Pm. Set

y(0)
1 = y(0)

2 = ... = y(0)
m = 0

and

x(0)
m = f

Each subsequent iteration will compute 2m vectors

x(k)
1 , x(k)

2 , . . . , x(k)
m

y(k)
1 , y(k)

2 , . . . , y(k)
m

as follows:

set x(k)
0 = x(k−1)

m

For k = 1, 2, ...

For i = 1, 2, ..., m

z(k)
i = x(k)

i−1 + y(k−1)
i

x(k)
i = Pi(z

(k)
i )

y(k)
i = z(k)

i − x(k)
i

End

End. (2.2.4)



49

The following theorem by Dykstra [1983] gives the convergence result.

Theorem 2.2.6

The vectors x(k)
i converge to the solution x∗ of (2.1.1) as k → ∞ for i = 1, 2, . . . , m.

Proof (See Dykstra [1983])

The above algorithm is not easy to deal with and an algorithm which is easier to program

and cheaper to run is the following

Algorithm 2.2.7

Given a point f , convex sets K1, K2, ..., Km and the corresponding projections

P1, P2, ..., Pm.

Let f (0) = f

For k = 1, 2, . . .

f (k+1) = f (k) + Pm . . . P1(f (k)) − P1(f (k))

End

A proof of how Algorithm 2.2.7 derived from Algorithm 2.2.5 using mathematical induction

is now given.

First, we going to denote for f (0) = f and f (k−1) = z(k)
1 . Then for k = 1

z(1)
1 = f (0), x(1)

1 = P1(f (0)), y(1)
1 = f (0) − P1(f (0)),

for i > 1

z(1)
i = x(1)

i−1 + y(0)
i = Pi−1 . . . P1(f (0))

x(1)
i = Pi(z

(1)
i ) = Pi . . . P1(f (0))

y(1)
i = z(1)

i − x(1)
i = Pi−1 . . . P1(f (0)) − Pi . . . P1(f (0)).



50

Then for k = 2

f (1) = z(2)
1 = x(1)

m + y(1)
1 = Pm . . . P1(f (0)) + f (0) − P1(f (0)).

Assume it is true for some k > 2, where

f (k−1) := z(k)
1 = Pm . . . P1(f (k−2)) + f (k−2) − P1(f (k−2))

and

z(k)
i = x(k)

i−1 + y(k−1)
i

where

y(k−1)
i :=

k−2∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l))}.

Then for k + 1, it is clear that

Pi(y
(k−1)
i ) = 0

then

x(k)
1 = P1(z

(k)
1 ) = P1(f (k−1))

x(k)
i = Pi(x

(k)
i−1 + y(k−1)

i ) = Pi(x
(k)
i−1)

= Pi . . . P1(f (k−1)). for i ≥ 2

Also

y(k)
i = z(k)

i − x(k)
i

= x(k)
i−1 + y(k−1)

i − x(k)
i

= Pi−1 . . . P1(f (k−1)) +
k−2∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l))} −

Pi . . . P1(f (k−1))

=
k−1∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l)).



51

Therefore

f (k) = z(k+1)
1 = x(k)

m + y(k)
1

= Pm . . . P1(f (k−1)) + z(k)
1 − x(k)

1

= Pm . . . P1(f (k−1)) + f (k−1) − P1(f (k−1)).

Which is Algorithm 2.2.7. 2

In Algorithm 2.2.7 the vectors yi for i > 1 are not used and saved from calculation which

makes it cheaper. Using Boyle and Dykstra [1986] convergence result, we have the following

theorem.

Theorem 2.2.8

Given f and the sequence {f (k)} generated by Algorithm 2.2.7 then

Pi . . . P1(f (k)) → d∗ the optimal solution of (2.1.1), for any i ≥ 1.

Proof (See Boyle and Dykstra [1986])

In Example 2.2.4 Figure 2.2.2 shows how Algorithm 2.2.7 works successfully. In Figure

2.2.2 f (k) is projected onto K1 then onto K2 and then subtracting P1(f (k)) from

f (k) + P1P2(f (k)) produces the new f (k+1). It is clear from Figure 2.2.2 that P1(f (k))

converges to the optimal solution 0 on the x–axis. Also P1P2(f (k)) converges to 0 on the

x = − y axis. Clearly f (k) converges to f∗ 6= 0.

Dykstra [1983], shows that if the Ki are convex cones, then the xi converge to the nearest

point to the initial point f in the intersection of the Ki. This result has been extended by

Boyle et. al. [1986] to the case where some of the Ki are convex sets. Han [1988] has shown

that the algorithm works for general convex sets Ki given that the intersection has nonempty

interior. Gaffke and Mathar [1989], show that the interior point condition may be omitted. The

result of Boyle et. al. [1986] is enough for our application of projection method in Chapters 3,

5 and 6.



52

Figure 2.2.2: Illustrates the success of Dykstra–Han algorithm to solve problem (2.1.1) for
general n.

2.3 A projection algorithm for linear convex program-

ming problems

This section describes a projection method due to Glunt [1991] for solving the linear convex

programming problem (2.1.4). He uses a particular choice of convex sets in an ingenious way.

One important linear convex programming problem is the educational testing problem which

will be solved by the method of this section in Chapter 6.

Glunt’s idea is to take account of the function eT x by defining the hyperplane



53

Lτ = {y ∈ <n| f(y) = τ} (2.3.1)

where f(y) = eT y. If τ is chosen such that

τ < min
x∈K

f(x) (2.3.2)

then the sets K and Lτ are disjoint. Given f ∈ <n Glunt then applies the von Neumann

Algorithm 2.2.1 to the problem

minimize
x

‖f − x‖2

subject to x ∈ K ∩ Lτ (2.3.3)

which has no feasible solution. It follows from the Theorem 2.2.3 of Cheney and Goldstein

[1959] that the iterates x(k)
1 and x(k)

2 will converge to points x∗1 ∈ Lτ and x∗2 ∈ K

such that ‖x1 − x2‖2 attains the minimum distance between K and Lτ . It can then be

deduced from the relationship of Lτ and eT x (2.3.1), that x∗2 solves problem (2.1.4).

The von Neumann algorithm involves computing alternately the projections onto Lτ and

K. That onto Lτ is straightforward. Glunt suggests that the projection on the K =
⋂m

i=1Ki

is computed by using an inner iteration based on the Dykstra algorithm. It follows from

Theorem 2.2.6 that the resulting method is globally convergent.

The following is a statement of the outer (von Neumann) algorithm.

Algorithm 2.3.1

Given an arbitrary g ∈ <n, convex sets K1, K2, ..., Km and the corresponding

projections P1, P2, ..., Pm .

Set x(0)
2 = g

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

2

x(k)
1 = PLτ

(x(k)
0 )

x(k)
2 = PK(x(k)

1 ) (2.3.4)

End



54

where K =
⋂m

i=1Ki

In this algorithm in every outer iteration PK(x(k)
1 ) is calculated by solving the following

problem

minimize
x

‖PLτ
(x(k)

0 ) − x‖2 x ∈ <n

subject to x ∈ K =
m⋂

i=1

Ki. (2.3.5)

where f (in problem (2.1.1)) = PLτ
(x(k)

0 ) = x(k)
1 which is an initial point in every outer

iteration. Problem (2.3.5) is solved using Algorithm 2.2.7.

The following three figures show how Algorithm 2.3.1 works under different circumstances.

In Figure 2.3.1 the convex set K is nonsmooth at the solution and it is seen that Algorithm

2.3.1 terminates in 2 iterations with the point x∗2 as solution. In Figures 2.3.2 and 2.3.3 K is

smooth at the solution and it seen that the solution point x∗2 is the limit point of the sequence

{x(k)
2 }. It can also be observed that if we make τ smaller (as in Figure 2.3.3 (τ = − 3))

then a more rapid rate of convergence is obtained. However a study of the numerical results

indicates that the order of convergence is linear or slower. Similar features are observed when

Glunt’s method is applied to the educational testing problem as described in Chapter 6.

The following theorem, due to Glunt [1991], gives the convergence result for the linear convex

programming problems.

Theorem 2.3.2

For any g ∈ <n, the sequences {x(k)
1 } and {x(k

2 } generated by Algorithm 2.3.1

converge to x1 and x2 respectively. Also the sequence {x(k)
2 } converges to the

solution of the problem

minimize f(x) = eT x x ∈ <n

subject to x ∈ K. (2.3.6)

The function values f(x(k)
2 ) decrease strictly monotonically to the minimal value.



55

Figure 2.3.1: Algorithm 2.3.1 terminates for a nonsmooth convex set.



56

Figure 2.3.2: Algorithm 2.3.1 converges for a smooth convex set.



57

Figure 2.3.3: Making τ smaller gives faster convergence.

Proof (Glunt [1991])

The convergence of the two sequences {x(k)
1 } and {x(k

2 } follows from Theorem 2.2.3.

Set

x∗1 = lim
k→∞

x(k)
1

x∗2 = lim
k→∞

x(k)
2 .

Let x2 = PK(x1) then from the characterization of the projection map (2.1.2)



58

〈x2 − x1, x2 − z〉 ≤ 0. ∀ z ∈ K (2.3.7)

Now x1 = PLτ
(x2), and Lτ is a hyperplane with the unit vector e, so PLτ

(.) is easy

to compute

PLτ (x2) = x2 +
τ − eT x2

‖e‖2
e. (2.3.8)

So from (2.3.7)

〈x2 − (x2 +
τ − eT x2

‖e‖2
e, x2 − z〉 ≤ 0 ∀ z ∈ K

⇒ 〈(eT x2 − τ)e, x2 − z〉 ≤ 0 ∀ z ∈ K

⇒ (eT x2 − τ) 〈(e, x2 − z〉 ≤ 0 ∀ z ∈ K

But

τ < min
z∈K

eT z

hence eT x2 − τ ≥ 0. Therefore

〈e, x2 − z〉 ≤ 0. ∀ z ∈ K

or

eT x2 ≤ eT z. ∀ z ∈ K

Thus x2 solves (2.3.6).

To demonstrate that f(x(k)
2 ) for k = 1, 2, . . . is monotonically decreasing, consider

x(k)
2 and write

x(k)
1 = PLτ

(x(k−1)
2 )

x(k)
2 = PK(x(k)

1 ).

Thus x(k)
2 is the nearest point in K to x(k)

1 . Therefore unless x∗2 = x(k−1)
2 = x(k)

2 ,

‖x(k)
2 − x(k)

1 ‖ < ‖x(k−1)
2 − x(k)

1 ‖. (2.3.9)



59

Similarly, x(k)
1 is the nearest point in Lr to x(k−1)

2 , so unless x∗1 = x(k−1)
1 = x(k)

1 ,

‖x(k)
2 − x(k+1)

1 ‖ < ‖x(k)
2 − x(k)

1 ‖. (2.3.10)

Thus from (2.3.9) and (2.3.10)

‖x(k)
2 − x(k+1)

1 ‖ < ‖x(k−1)
2 − x(k)

1 ‖. (2.3.11)

But

x(k)
2 − x(k+1)

1 = x(k)
2 − PLτ

(x(k)
2 )

= x(k)
2 − (x(k)

2 +
τ − eT x(k)

2

‖e‖2
e)

=
eT x(k)

2 − τ

‖e‖2
e.

Similarly

x(k−1)
2 − x(k)

1 =
eT x(k−1)

2 − τ

‖e‖2
e.

Hence from (2.3.11)

eT x(k)
2 − τ

‖e‖2
e <

eT x(k−1)
2 − τ

‖e‖2
e.

or

eT x(k)
2 < eT x(k−1)

2

proving that f(x) is monotonically decreasing. 2



Chapter 3

Algorithms for finding the

nearest Euclidean distance

matrix

3.1 Introduction

Symmetric matrices that have nonnegative offdiagonal elements and zero diagonal elements

arise as data in many experimental sciences. This occurs when the values are measurements

of distances between points in a Euclidean space. Such a matrix is referred to as a Euclidean

distance matrix. Because of data errors such a matrix may not be exactly Euclidean and it

is desirable to find the best Euclidean matrix which approximates the non–Euclidean matrix.

The aim of this chapter is to study methods for solving this problem.

This chapter contains the projection algorithm described by Glunt, Hayden, Hong and

Wells [1990]. This algorithm converges linearly or slower and globally using Algorithm 2.2.7.

The disadvantage of the projection algorithm is the slow rate of convergence. This can be

increased by using a quasi–Newton method which converges at superlinear order. Therefore,

new unconstrained methods based on using quasi–Newton methods are described here.

Some applications of the above problem are given in Section 3.2 along with the definition

of the Euclidean distance matrix and its characterization. The projection algorithm is given in

60



61

Section 3.3. In Section 3.4 various iterative schemes for an unconstrained programming problem

are considered. In Section 3.5 other projection methods for solving the nearest Euclidean

distance matrix problem are discussed. In Section 3.6 numerical comparisons of projection

methods are carried out. Also numerical comparisons between the projection algorithm in

Section 3.3 and unconstrained methods in Section 3.4 are carried out. In addition an example

is given which gives more illustration of the unconstrained methods.

In Chapter 4 hybrid methods are considered. These methods take the advantage of both

the above methods.

3.2 Euclidean distance matrix

Definition 3.2.1 (Euclidean distance matrix)

A matrix D is called a Euclidean distance matrix if it satisfies the following conditions:

i. D is a symmetric matrix : dij = dji ∀ i, j = 1, . . . , n

ii. Diagonal elements are all zero: dii = 0 ∀ i = 1, . . . , n

iii. There exist n points : p1, . . . ,pn in <r (r ≤ n − 1) such that

dij = ‖ pi − pj ‖22 (1 ≤ i, j ≤ n).

The elements of D are the squared distances between pairs of points in r–dimensional

Euclidean space. Now the Euclidean distance matrix problem can be expressed in the following

form

Given a real symmetric matrix F ∈ <n×n, find the Euclidean distance matrix D ∈ <n×n

that minimizes

‖ F − D ‖F . (3.2.1)

The distance between A and B is defined by ‖ A − B ‖F .

A matrix F is an n×n symmetric data matrix with zero diagonal elements whose elements

are regarded as approximate squared distances between pairs of points in a r–dimensional



62

Euclidean space. F is usually a distance matrix of squared distances fij between n points,

e.g. atoms, stars, cities. Therefore, F must have certain obvious properties regardless of how

distances are calculated, and how many spatial dimensions are allowed. The properties

can be described as follows:

Definition 3.2.2 (distance matrix)

A matrix F is called a distance matrix if it satisfies the following conditions:

i. F is a symmetric matrix: fij = fji ∀ i, j = 1, . . . , n

ii. Diagonal elements are all zero: fii = 0 ∀ i = 1, . . . , n

iii. All off–diagonal elements are strictly greater than zero:

fij > 0, ∀ i 6= j.

The motivation for this study arises from the statistical problems of multidimensional scaling

and ordination. In multidimensional scaling, an observed matrix is to be approximated by a

Euclidean distances in a specified dimension. The differences between observed and fitted

distances are minimized. A discussion of types of multidimensional scaling may be found in

De Leeuw et. al. [1980]. An application of multidimensional scaling has been applied in

geography Colledge and Rushton [1972], cartography Gilbert [1974], genetics Lalouel

[1977], archeology Kendall [1971] and biochemistry Crippen [1977,1978]. A broader review

of scaling with application and algorithms is given by Young [1984]. A book by Meulman

[1986] gives additional related applications in multivariate analysis.

Other applications arise in the conformation of molecular structures from nuclear magnetic

resonance data. For a given data matrix a Euclidean distance matrix can be minimized to

generate a molecular model in <3 (see Havel et. al. [1983] and Crippen [1977,1978]). In

conformation calculations Euclidean distance matrices are used to represent the squares of

distances between the atoms of a molecular structure. Attempts to determine such a structure

by nuclear–magnetic–resonance experiments give rise to a distance matrix F which because of

data errors, may not be Euclidean.

Important characterizations for the Euclidean distance matrix which are used in the follow-

ing sections are given in the following.



63

Schoenberg [1935] gave a modern characterization of Euclidean distance matrices. Young

and Householder [1938] independently obtained similar result given in the following theorem.

Schoenberg uses the fact that the first vector p1 in the Euclidean distance matrix definition

can be translated to the origin.

Theorem 3.2.3

The distance matrix D ∈ <n×n is a Euclidean distance matrix if and only if the

n− 1× n− 1 symmetric matrix A defined by

aij = 1
2 [ d1i + d1j − dij ] (2 ≤ i, j ≤ n) (3.2.2)

is positive semi–definite, and D is irreducibly embeddable in <r (r < n) where

r = rank(A).

Moreover, consider the spectral decomposition

A = UΛUT . (3.2.3)

Let Λr be the matrix of non–zero eigenvalues in Λ and define X by

X = UrΛ1/2
r , then A = XXT (3.2.4)

where Λ1/2
r ∈ <r×r and Ur ∈ <n−1×r comprises the corresponding columns of U.

Then the columns of XT furnish coordinate choices for p2, p3, . . . , pn with p1 = 0.

Proof

First let D be Euclidean distance matrix and we aim to prove that A is positive semi–definite.

Let x ∈ <n−1 then

xTAx = 1
2

n∑
i,j=2

(d1i + d1j − dij)xi−1xj−1

=
n∑

i=2

d1ix
2
i−1 +

n∑
i,j=2
i<j

(d1i + d1j − dij)xi−1xj−1. (3.2.5)



64

Also

d1i + d1j − dij = ‖p1 − pi‖2 + ‖p1 − pj‖2 − ‖pi − pj‖2

=
r∑

k=1

p2
ik +

r∑
k=1

p2
jk −

r∑
k=1

(pik − pjk)2

= 2
r∑

k=1

pik pjk (3.2.6)

where pT
i = [pi1, . . . , pir]. Hence from (3.2.5) and (3.2.6)

xTAx =
n∑

i=2

x2
i−1

r∑
k=1

p2
ik + 2

n∑
i,j=2i

i<j

xi−1xj−1

r∑
k=1

pikpjk

=
r∑

k=1

(x1 p2k + x2 p3k + . . . + xn−1 pnk)2

=
r∑

k=1

(
n∑

i=2

xi−1pik)2

which is always nonnegative.

Conversly, let A be positive semi–definite, we shall prove that D is a Euclidean distance

matrix. Let X be the orthogonal matrix defined by (3.2.4). Denote p1 = 0 and

pi = Xei−1 i = 2, . . . , n

where ei denotes columns of the unit matrix. Now

‖p1 − pi‖2 = ‖pi‖2 = eT
i−1Aei−1 = aii = d1i.

Note that A ∈ <n−1×n−1 such that

A =


a22 . . . a2n

...
. . .

...

a2n . . . ann

 .
Also,

‖pi − pj‖2 = (ei−1 − ej−1)TA(ei−1 − ej−1)

= aii + ajj − 2aij

= d1i + d1j − 2[ 12 (d1i + d1j − dij)]

= dij



65

which shows that p1, p2, . . . , pn are the n points satisfing the condition 3iii in Definition

3.2.1. Since e′is are independent and rank X = r then the p′is are irreducibly embeddable

in <r. 2

Now we want to gives an alternative characterization for the Euclidean distance matrix in

the following theorem and corollory. This will be used later in Section 3.3.

Theorem 3.2.4

Let D ∈ <n×n be a distance matrix; then D is a Euclidean distance matrix if and

only if

xT (−D)x ≥ 0 ∀ x ∈ M

where

M = { x ∈ <n : eT x = 0 }. (3.2.7)

Thus −D ∈ KM .

Proof

Define

P = I − eeT
1 (3.2.8)

where

eT
1 = [ 1 0 0 . . . 0 ]

then

P =



0 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1



which implies that



66

P (−D)PT =



0 0 0 . . . 0

0 2 d21 d21 + d31 − d32 . . . d21 + dn1 − dn2

0 d21 + d31 − d32 2 d31 . . . d31 + dn1 − dn3

...
...

...
. . .

...

0 d21 + dn1 − dn2 d31 + dn1 − dn3 . . . 2 dn1



=

[
0 0T

0 A

]
. (3.2.9)

Now we show that P (−D)PT ≥ 0 if and only if −D is positive semi–definite in

M. First let P (−D)PT be a positive semi–definite then we have

xT (P (−D)PT ) x ≥ 0 ∀ x.

Then when xT e = 0 we have

0 ≤ xT (P (−D)PT ) x = (xT − xT eeT
1 )(−D)(x − eT

1 eT x)

= xT (−D)x

which implies that −D is positive semi–definite in M .

Conversly, let −D be a positive semi–definite in M then we have

yT (−D) y ≥ 0 ∀ yT e = 0.

We can express x = λ u + y where u is any vector such that uT e 6= 0. Take u = e1

then

x = y + λ eT
1

this implies that eT x = λ eT e1 = λ since yT e = 0 and eT e1 = 1. It then follows

that

y = x − λ u

= x − eT x e1

= (I − e1eT )x

= PT x.



67

For an arbitrary x, this gives

xT (I − e1eT )T (−D) (I − e1eT )x ≥ 0 ∀ x

xTP (−D)PT x ≥ 0. ∀ x.

Using Theorem 3.2.3 the proof is established. 2

Corollory 3.2.5

Let Q be the Householder matrix in (1.2.1) then the distance matrix D = DT ∈

<n×n is a Euclidean distance matrix if and only if the n− 1× n− 1 block D1 in

Q(−D)Q =

[
D1 d

dT δ

]
(3.2.10)

is positive semi–definite.

Proof

Follows from Theorem 1.3.6 2.

The advantage of the formulation in (3.2.10) over that given in (3.2.9) is that it provides

the basis for the construction of a projection algorithm.

In the rest of this section other characterizations for the Euclidean distance matrix are given.

The problem of characterizing the Euclidean distance matrices among the distance matrices

was first solved by Menger [1931] who based his analysis on the determinant of the form:

Ak = det



0 1 1 . . . 1 1

1 0 d12 . . . d1 k−1 d1k

1 d21 0 . . . d2 k−1 d2k

...
...

...
. . .

...
...

1 dk−1 1 dk−1 2 . . . 0 dk−1 k

1 dk1 dk2 . . . dk k−1 0


(k = 2, 3, . . . , n) (3.2.11)



68

now known as Cayley–Menger determinant. The Menger result is given in a theorem due to

Blumenthal [1953, pp99–100] Four years later, Schoenberg [1935] gave his result in Theorem

3.2.3. Another characterization is given by Hayden et. al. [1988], who show that a distance

matrix D ∈ <n×n is a Euclidean distance matrix if and only if the bordered matrix:

A =

[
−D e

eT 0

]

=



0 −d12 . . . −d1n 1

−d21 0 . . . −d2n 1
...

...
. . .

...
...

−dn1 −dn2 . . . 0 1

1 1 . . . 1 0


. (3.2.12)

has exactly one negative eigenvalue. Further, the n points represented by the matrix D (see

Definition 3.2.1iii) are irreducibly embeddable in <r(r ≤ n − 1) if and only if

r = n − 1 − dim N(D)

where N(D) is the null space of D.

Other characterizations of the Euclidean distance matrix are also given in the literature.

3.3 The projection algorithm

Glunt et. al. [1990] give a description of an algorithm for computing the nearest Euclidean

distance matrix, using the alternating projection method of Dykstra [1983] which guarantees

convergence to the solution of problem (3.2.1). First an equivalent problem to (3.2.1) is given.

This section includes a projection algorithm based on Dykstra’s algorithm. The projection

algorithm requires formulae, which are also given, for calculating the projection maps on to

Kd (see (3.3.1)) and on to KM . However in the first stage a formula for Kd and the normal

cone of the intersection of Kd and KM is given. The latter is used in problem (3.3.3) below.



69

Define

Kd = {A : A ∈ <n×n, AT = A, aii = 0, i = 1, 2, . . . , n}, (3.3.1)

then KM ∩Kd is a convex cone.

The normal cone ∂KM (A) at A ∈ KM is given in (1.3.25).

Let A ∈ Kd then it is clear that

∂Kd(A) = {B : B = diag [b1, b2, . . . , bn]}. (3.3.2)

A general result for the normal cone of the intersection of two sets has been given in (1.3.9).

Using this we have the following theorem.

Theorem 3.3.1

If A ∈ KM ∩Kd then

∂(KM ∩Kd)(A) = ∂KM (A) + ∂Kd(A)

Proof (this is a special case of Rockafellar [1970])

Clearly from Theorem 3.2.4 D ∈ KM ∩ Kd if and only if −D is Euclidean distance

matrix. Further, the matrices in KM are characterized by (3.2.10). Thus, the minimization

problem (3.2.1) is a special case of the following problem:

Given a distance matrix − F ∈ <n×n

minimize ‖ F − D ‖F

subject to D ∈ KM ∩ Kd. (3.3.3)

Note that in problem (3.2.1) F and D are different from F and D in this problem. Now

∂KM (A) and ∂Kd(A) are given in (1.3.25) and (3.3.2) respectively. From Theorem 3.3.1 and

(2.1.3) we can deduce that D∗ solves problem (3.3.3) if and only if

F −D∗ = Q

U
[
0 0

0 H

]
UT 0

0T 0

Q + B. (3.3.4)



70

Then (3.3.4) is equivalently to

F = Q

U
[

Λr 0

0 H

]
UT d

dT δ

Q + B

since

D∗ = Q

U
[

Λr 0

0 0

]
UT d

dT δ

Q (3.3.5)

this is true from Theorem 1.3.6 and (1.3.24) and D∗ ∈ KM from (3.3.3).

Dykstra’s algorithm depends crucially upon the computational complexity of the relevant

projections. The minimization problem (3.3.3) is solved by applying Algorithm 2.2.7 to it.

Problem (3.3.3) is to find the projection of a matrix to the intersection of two convex sets by

a sequence of projections to the individual set successively. First we need definition for the

projection maps Pd(·) and PM (·), later formulae for them are obtained.

Definition 3.3.2

Let

K = {A : A ∈ <n×n, A = AT },

then define the projection map PM (A) from K on to KM and the projection map

Pd(A) from K on to Kd.

Since Kd is the subspace consisting of all real symmetric n×n matrices with zero diagonals

then Pd (F ) is straightforwardly given by

Pd (F ) = F − Diag (F ) (3.3.6)

i.e., Pd maps F to the matrix obtained by replacing each diagonal element by zero.

The projection map PM (A) formula on to KM is now introduced but first a

theorem due to Higham [1988] is given which is used in proving the formula.



71

Theorem 3.3.3

Let F1 ∈ <n−1×n−1 be a symmetric matrix and F1 = UΛUT be its spectral

decomposition, then D1 = UΛ+UT solves the following problem

minimize ‖F1 − D1‖F

subject to D1 ≥ 0

where

Λ = diag [λ1, λ1, . . . , λn−1]

and

Λ+ = diag [λi : λi =

 λi, λi ≥ 0

0, λi < 0

 i = 1, . . . , n− 1 ].

Proof

Take any D1 ≥ 0 express D1 = UY UT where Y ≥ 0 then

‖F1 − D1‖2F = ‖Λ − Y ‖2F

=
n−1∑
i,j=1
i6=j

y2
ij +

n−1∑
i=1

(λi − yii)2

≥
∑
λi<0

(λi − yii)2.

It then follows because Y is positive semi–definite and λi < 0 that − 2λiyii ≥ 0 which

implies that

‖F1 − D1‖2F ≥
∑
λi<0

λ2
i .

This lower bound is attained uniquely for the matrix Y = Λ+ because



72

‖F1 − D1‖2F = tr(F1 − D1)(F1 − D1)

= (Λ − Λ+)(Λ − Λ+)

=
n−1∑
i=1

λi −
n−1∑
i=1

λ+
i

=
∑

i:λi<0

λ2
i .

that is D1 = UΛ+UT . 2

Now for calculating PM (F ) we need to solve the following problem

minimize ‖F − D‖F

subject to D ∈ KM . (3.3.7)

Let

F = Q

[
F1 f

fT ζ

]
Q and D = Q

[
D1 d

dT δ

]
Q

then ‖F − D‖F is minimized by minimizing

‖F1 − D1‖F (3.3.8)

since

‖F − D‖F = ‖Q(F − D)Q‖F =

∥∥∥∥∥F1 − D1 f − d

fT − dT ζ − δ

∥∥∥∥∥
F

.

Therefore from Theorem 3.3.3

PM (F ) = Q

[
UΛ+UT f

fT ζ

]
Q, (3.3.9)

is the solution of problem (3.3.7). Here Λ+ corresponds to

[
Λr 0

0 0

]
in (3.3.5) such that

[
Λr 0

0 0

]
≡ Λ+



73

In Chapter 2 von Neumann’s algorithm was given which solves problem (3.3.3) in Algorithm

2.2.1. However, Example 2.2.4 illustrates the failure of von Neumann algorithm in solving

problem (3.3.3) for general n. Moreover Algorithm 2.2.7 was given which successfully solves

problem (3.3.3) for general n.

In particular, we have a matrix projections PM and Pd given by (3.3.9) and (3.3.6)

respectively. Using Algorithm 2.2.7 in case m = 2 with the projections P1 = PM and

P2 = Pd we have the following algorithm

Algorithm 3.3.4 (projection algorithm)

Given any distance matrix − F ∈ <n×n, let F (0) = F

For k = 1, 2, . . .

F (k+1) = F (k) + [PdPM (F (k)) − PM (F (k))] (3.3.10)

This algorithm is given by Glunt et. al. [1990]. The convergence of this algorithm follows

from Theorem 2.2.8 in which P1 = Pd and P2 = PM . Given any distance matrix

−F = −FT ∈ <n×n, then the sequences {PM (F (k))} and {PdPM (F (k))} generated by

Algorithm 3.3.4 converge in the Frobenius norm to the solution D∗ of (3.3.3).

It is important to realize whether a distance matrix − F is a Euclidean distance matrix

or not before solving problem (3.3.3). This is because if − F is a Euclidean distance matrix

then D∗ = F and there is no problem to solve. In the following a test is given to indicate if

the matrix −D(k) is Euclidean distance matrix or not.

It follows by induction that off–diagonal elements of F (k), k = 1, 2, . . . in Algorithm 3.3.4

are the same as F (0)(= F ). Denote

∆(k) = F (k) − F (3.3.11)

which is diagonal. Then (3.3.10) can now be written

∆(k+1) = ∆(k) − Diag (D(k)) (3.3.12)

where D(k) = PM (F + ∆(k)). Therefore given any F (k) (or ∆(k)), the test

Diag (D(k)) = 0 (3.3.13)



74

where D(k) = PM (F (k)) = PM (F + ∆(k)) determines whether the matrix − D(k) is

Euclidean distance matrix or not. This test is useful in Chapter 4.

3.4 Unconstrained methods

In this section we shall consider a different approach to the problem (3.3.3). The main idea is

to replace the problem (3.3.3) by an unconstrained optimization problem in order to use the

superlinearly convergent quasi–Newton methods. Three methods for solving problem (3.3.3)

will be given along with an example showing how the points p′is are represented in the space

with different methods. In the end of this section a strategy is described of how to choose the

initial matrix X and the rank r.

Schoenberg [1935] and Young et. al. [1938] independently formulated a characterization

of the Euclidean distance matrix in Theorem 3.2.3. Using this theorem problem (3.2.1) can be

expressed as:

minimize
D

φ

subject to A ≥ 0 (3.4.1)

where

φ = ‖F − D‖2F ,

−F is a distance matrix and A is a function of D given by (3.2.2). ( Note that the matrix

−D is the Euclidean distance matrix).

In the following analysis an equivalent unconstrained problem to (3.4.1) is derived.

From Definition 3.2.1 −D is represented in the space <r by the following vectors

p1, p2, . . . , pn. (3.4.2)

It is always possible to put the first vector p1 at the origin by transforming each vector pi to

pi − p1 i = 1, 2, . . . , n. Assume that the rank of A is known to be r ( 1 ≤ r < n ).

The columns of XT are the vectors p2, p3, . . . , pn (see Theorem 3.2.3). For quasi–Newton



75

methods it will be convenient to store the matrix X as a one vector with r(n− 1) variables

as follows

XT =


x1 x2 . . . xn−1

xn xn+1 . . . x2(n−1)

...
...

. . .
...

xt1 xt2 . . . xr(n−1)

 . (3.4.3)

where t1 = (r − 1)(n− 1) + 1 and t2 = (r − 1)(n− 1) + 2. Hence

pT
2 = [x1 xn . . . xt1 ]

pT
3 = [x2 xn+1 . . . xt2 ]

...

pT
n = [xn−1 x2(n−1) . . . xr(n−1)] (3.4.4)

and

XT = [p2 p3 . . . pn]. (3.4.5)

The constraint A ≥ 0 is equivalent to A = XXT , which can be expressed as

A = XXT =


pT

2 · p2 . . . pT
2 · pn

...
. . .

...

pT
n · p2 . . . pT

n · pn

 . (3.4.6)

Therefore satisfying the constraint in problem (3.4.1) is equivalent to expressing the elements

of the matrix D as a function of X. Hence from Definition 3.2.1iii and using (3.4.4)

dij = dji = ‖pi − pj‖2 i, j = 2, . . . , n

=
r−1∑
k=0

(xi+km−1 − xj+km−1 )2, i, j = 2, . . . , n (3.4.7)

and

d1i = d1j =
r−1∑
k=0

x2
i+km−1. i, j = 2, . . . , n (3.4.8)



76

where m = n − 1 and r = rank X (through out this section). Thus there exists a matrix

X that satisfies (3.4.6) and hence the constraint A ≥ 0 in problem (3.4.1).

An alternative way of deriving these expressions is the following, since A = XXT

then

aij =
r∑

k=1

xi+km−1 · xj+km−1

=
r∑

k=1

(x2
i+km−1 + x2

j+km−1 − (xi+km−1 − xj+km−1 )2)

= 1
2 [ d1i + d1j − dij ],

d1i =
r−1∑
k=0

x2
i+km−1 and d1j =

r−1∑
k=0

x2
j+km−1 i, j = 2, . . . , n (3.4.9)

and

dij = dji =
r−1∑
k=0

(xi+km−1 − xj+km−1 )2, i, j = 2, . . . , n (3.4.10)

which is equivalent to (3.4.8) and (3.4.7).

Therefore, problem (3.4.1) above can be expressed in unconstrained form as follows:

minimize
X

φ (3.4.11)

where φ = ‖F − D‖2F , − F is a distance matrix and the elements of the matrix D are

given by (3.4.9) and (3.4.10).

Now three methods for solving problem (3.4.11) will be given. The quasi–Newton method

(Algorithm 1.6.3) is used to solve problem (3.4.11) and the BFGS formula is used to

update the Hessian matrix H(k+1). Quasi–Newton methods require only the function

f and the first derivative g where f is φ and g = ∇φ. However some difficulties

arise, one of these is that the index r (= rank(A)) used in partitioning A (= XXT ) is

not known in advance. Fortunately it can be shown that by solving a sequence of problems

for different r, each of which is well behaved, the correct value of r can be located.

Excluding the function φ and the derivative ∇φ which differ from one method to

another, the procedures in the three methods are the same.

Method 3.4.1



77

Consider the matrix X with the vector p1 untranslated to the origin. Thus the vectors

p1, p2, . . . , pn are all vectors of variables, so that

pT
1 = [x1 xn+1 . . . x(r−1)n+1]

pT
2 = [x2 xn+2 . . . x(r−1)n+2]

...

pT
n = [xn x2n . . . xrn ]. (3.4.12)

Then

XT =



x1 x2 . . . xn

xn+1 xn+2 . . . x2n

x2n+1 x2n+2 . . . x3n

...
...

. . .
...

xt3 xt4 . . . xrn


. (3.4.13)

where t3 = (r− 1)n+ 1 and t4 = (r− 1)n+ 2. So the elements of the matrix D ∈ <n×n

take the form

dij = dji =
r−1∑
k=0

(xi+kn − xj+kn )2 (3.4.14)

then

φ =
n∑

i,j=1

(dij − fij)2

=
n∑

i,j=1

{
r−1∑
k=0

(xi+kn − xj+kn )2 − fij)2

= 2
n∑

i,j=1
i<j

{
r−1∑
k=0

(xi+kn − xj+kn )2 − fij)2 (3.4.15)

and

∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xrn

]T



78

where

∂φ

∂xs
= 2

n∑
j=1

{2[
r−1∑
k=0

( xl+kn − xj+kn )2 − flj ] 2( xs − xj+tn )}

= 8
n∑

j=1

{[
r−1∑
k=0

( xl+kn − xj+kn )2 − flj ]( xs − xj+tn )} (3.4.16)

for all s = 1, . . . , rn where t = (s−l)
n and l = mod (s, n) and if l = 0 then l = n.

Method 3.4.2

In this method, as explained earlier the first vector p1 is transformed to the origin (see Figures

3.4.1 and 3.4.2), so the number of variables is reduced from rn to r(n − 1). The matrix

XT is given in (3.4.3). The elements of the matrix D take the form

di1 = d1j =
r−1∑
k=0

x2
i+km−1 i = 2, . . . , n (3.4.17)

dij = dji =
r−1∑
k=0

(xi+km−1 − xj+km−1 )2 i, j = 2, . . . , n (3.4.18)

where r = rank X and m = n− 1. Hence

φ =
n∑

i,j=1

(dij − fij)2

= 2{
n∑

i=1

(di1 − fi1)2 +
n∑

i,j=2
i>j

(dij − fij)2}

= 2{
n∑

i=1

(
r−1∑
k=0

x2
i+km−1 − fi1)2 +

n∑
i,j=2
i>j

(
r−1∑
k=0

(xi+km−1 − xj+km−1 )2 − fij)2} (3.4.19)

and



79

∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xr(n−1)

]T .

where

∂φ

∂xs
= 8xs{

r−1∑
k=0

x2
l+km − fl+1 1}

+ 8{
m∑

j=1

[
r−1∑
k=0

( xl+km − xj+km )2 − fl+1 j+1]( xs − xj+tm )} (3.4.20)

for all s = 1, . . . , r(n − 1) where t = (s − l)
m and l = mod (s,m) and if l = 0 then

l = m.

Method 3.4.3

In this method translation and rotation are used. First, the vector p1 transformed to the

origin so the number of variables will be reduced to r(n− 1) as in the second method. Since

−D is a Euclidean distance matrix, it is always possible to make rotation about the origin,

axes, planes and spaces depending on the dimension of r (e.g. if r = 3 2 rotations, r = 4

3 rotations etc.). Make a rotation in the second vector p2 around the origin until the vector

p2 is located on one of the axes. Then the components of p2 are zeros except one, assume

it is the first component. Similarly, rotate the vector p3 but this time around the axis where

p2 located until p3 is located in one of the planes. Then the components of p3 are

zeros except two; assume they are the first two.

Figures 3.4.1–6 shows an example of translation then rotation of vectors p1, p2 and p3

in the space <3.

If we continue likewize with the rest of the vectors p4, p5, . . . , pr then matrix XT

has the following form

XT =



x1 x2 x3 . . . . . . . . . xn−1

0 xn xn+1 . . . . . . . . . x2n−3

0 0 x2n−2 . . . . . . . . . x3n−6

...
...

...
. . .

...

0 0 0 . . . xp . . . xq


(3.4.21)



80

where p = (r− 1) m − r(r−1)
2 and q = rm − r(r+1)

2 . Then the vectors p1, p2, . . . , pn

have the form

pT
1 = [0 0 0 . . . 0 0]

pT
2 = [x1 0 0 . . . 0 0]

pT
3 = [x2 xn 0 . . . 0 0]
...

pT
r = [xr−1 xn+r−3 x2n+r−4 . . . xp+r−m 0]

pT
r+1 = [xr xn+r−2 x2n+r−5 . . . xp+r−m+1 xp]
...

pT
n = [xn−1 x2n−3 x3n−6 . . . xp−1 xq] (3.4.22)

In this method, the number of variables is reduced to rm − r(r + 1)
2 where m = n− 1.

Thus the number of variables is reduced by r(r+1)
2 from Method 3.4.2. The elements of the

matrix D ∈ <n×n (−D is the Euclidean distance matrix) take the form

di1 = d1j =
p−1∑
k=0

x2
i+t i = 2, 3, . . . , n (3.4.23)

with p = min (i− 1, r) and t = km − k(k + 1)
2 − 1

dij = dji =
l−2∑
k=0

(xi+t − xj+t)2 +
p−1∑

k=l−1

x2
j+t

for i = 2, . . . , r and j = i+ 1, . . . , n (3.4.24)

where l = min (i, j), p = min (j − 1, r), t = km − k(k + 1)
2 − 1 and m = n− 1.

Also

dij = dji =
r−1∑
k=0

(xi+t − xj+t)2 ∀ i, j = r + 1, , .. , n (3.4.25)



81

Thus

φ =
n∑

i,j=1

[dij − fij ]2

= 2{
n∑

i=2

[di1 − fi1]2

+
r∑

i=2

n∑
j=i+1

[dij − fij ]2

+
n∑

i,j=r+1
i>j

[dij − fij ]2}

= 2{
n∑

i=2

[
p∑

k=0

x2
i+t − fi1]2

+
r∑

i=2

n∑
j=i+1

[
l−2∑
k=0

(xi+t − xj+t)2 +
p−1∑

k=l−1

x2
j+t − fij ]2

+
n∑

i,j=r+1
i>j

[
r−1∑
k=0

(xi+t − xj+t)2 − fij ]2} (3.4.26)

and the gradient vector ∇φ can be calculated from Algorithm 3.4.4 where

∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xq

]T

with q = rm− r(r−1)
2 .

Algorithm 3.4.4 (gradient calculation : ∇φ)

q = 0

is = rm− r(r − 1)
2

For s = 1, 2, . . . , is

q = (s − 1 +
q(q + 1)

2
)/m



82

l = s − qm +
q(q + 1)

2

For k = 1, 2, . . . , n

bk = dl+1 k − fl+1 k

p = min ( r, q + 1 )

If k ≤ p Then

bk = 8 bkxs

Else

t = mq − q(q + 1)
2

− 1

bk = 8 bk ( xs − xk+t)

End If

End For

∂φ

∂xs
=

n∑
k=1

bk

End For

Example 3.4.5

As an example illustrating translation and rotation for Method 3.4.2 and Method 3.4.3, let

XT =


2 6 4

3 5 4

2 4 5

 .

First transform p1 = (2, 3, 2) to the origin then

X
′T =


0 4 2

0 2 1

0 2 3

 .



83

Figure 3.4.1: Transform the point p1 to the origin in order to reduce the number of variables
from rn to r(n− 1).

Rotating p2 around the origin (see Figures 3.4.4 and 3.4.5) gives

X
′′T =


0 4.99 3.26

0 0 1.58

0 0 1.41


whilst a second rotation around the x–axis of p3 located in the plane of y,z–axes (see Figures

3.4.5 and 3.4.6) gives

X
′′′T =


0 4.99 3.26

0 0 1.83

0 0 0

 .



84

Figure 3.4.2: The location for each point after the translation.

An important consideration is the choice of the initial matrix X. In the following a proce-

dure is given for finding a suitable initial matrix X. Let − F be the given distance matrix,

and let r(0) be the estimated rank. The initial matrix X for Method 3.4.2 can be calculated

using Theorem 3.2.3 as follows:

Define the elements of A from F by

aij = − 1
2 [ f1i + f1j − fij ] (2 ≤ i, j ≤ n). (3.4.27)



85

Figure 3.4.3: Rotate the point p2 around the origin so that it is located on the x-axis. This
removes r − 1 variables.

Figure 3.4.4: The location for each point after the first rotation.



86

Figure 3.4.5: Rotate the point p3 around the x–axis so that it is located on the x,y–axis. This
removes r − 1 variables.

Figure 3.4.6: The final location for each point with variables reduced from 9 variables to only
3 variables.



87

Consider the spectral decomposition

A = U Λ UT ,

then the initial matrix X for the unconstrained Method 3.4.2 is given by

X = U Λ1/2
r (3.4.28)

where Λr = diag [λ1, λ2, . . . , λr], are the r largest eigenvalues in Λ.

The above equations can be used to form an initial matrix X for Method 3.4.1 and Method

3.4.3. However, the initial matrix X can be any independent vectors. The independence is

important because if one of the vectors is dependent on the other vectors, error will occur in

the minimizer of φ(X), and D will be embeddable in <r−1 when it should be irreducibly

embeddable in <r. For example if

XT = [p1, p2, p3]

and D∗ is irreducibly embeddable in <2, choose p3 such that it is dependent on p2 and p1

then the resultant matrix will be embeddable in <1 which is not correct (see Figure 3.4.7–8).

Another important consideration for the unconstrained method is how the integer

r∗ = rank(D∗1) = X∗ (D1 given in (3.2.10)) can be identified correctly. Since

r∗ is not known in advance it is necessary to estimate it by an integer denoted by r(k). Any

change to r(k) causes a change to φ(X), and the number of variables in φ(X). It is

important to consider the effect of making a fixed incorrect estimate r to r∗. If r(k) < r∗

then the methods described so far converges satisfactorily and ultimately at a superlinear rate

of convergence to a minimizer of φ(X). Since r is too small the minimizer of φ(X) is not a

solution of (3.4.11), however the matrix −D(k) is a Euclidean distance matrix but it is not

the nearest Euclidean distance matrix to F (0). On the other hand if r(k) > r∗ then the

methods converges to the minimizer of φ(X), which is the solution of (3.4.11) but the

rate of convergence is very slow because the number of variables in φ(X) are increased.

It seems to be difficult to find an estimate of the rank r∗ from the structure of the

distance matrix − F .



88

Figure 3.4.7: Illustrates the dependence of p1, p2 and p3 which makes D embeddable in
<1.

Figure 3.4.8: Illustrates the independence of p1, p2 and p3 which makes D irreducibly
embeddable in <2.



89

A strategy has been selected to estimate r∗. The above observations suggest we should

choose r(0) arbitrarily as a small integer. Subsequently r(k) is increased by one and φ(X)

is minimized by the methods described above for each r(k). Let −D(k) denote the resulting

Euclidean distance matrix. If D(k) = D(k+1) then the algorithm terminates. Otherwise

r(k) is increased by one which adds n − 1 new variables to problem (3.4.11), and it is

necessary to add a new vector to the matrix X. This vector is determined randomly. It is

important that the independence mentioned above is satisfied by the new vector. In Chapter

4 an alternative approach is studied in which the projection method is used to give a better

estimate of the new vector. After adding one to r(k) the problem (3.4.11) is minimized again

using one of the unconstrained methods and the above procedures are repeated. As r(k)

can only be increased, the correct value r∗ will be identified after a few repetitions of the

iterative process.

Finally, an advantage of unconstrained method is that it allows the spatial dimensions to be

chosen by the user. This is useful where the rank is already known. For example if the distance

matrix are distances between cities then the dimension will be no more than r = 2. Likewize

if the distance matrix are distances between atoms in a molecule or stars in space, then the

maximum dimension is r = 3.

The disadvantage of Methods 3.4.1–3 is if the rank is unknown. The algorithm may have

to be repeated many times before we find the correct rank. This makes convergence very slow.

Therefore in Chapter 4 new methods will be introduced for solving problem (3.4.11) (or

equivalently problem (3.3.3)) which avoid this disadvantage.

3.5 The Elegant algorithm

In the previous sections a complete description of the projection method and unconstrained

methods have been given. The projection method along with Method 3.4.2 described in the

previous section are used to construct the methods in Chapter 4.

In this section another method for solving problem (3.3.3) is given. The Elegant algorithm

is described by Takane [1977] using a method related to the alternating least squares

approach, later modified by Browne [1987].

Their methods are based on computing the gradient of



90

φ = ‖F − D‖. (3.5.1)

It is then found that if

P = I − eeT

n

and

S(F ) = diag [
n∑

j=1

f1j , . . . ,
n∑

j=1

fnj ]

then

∂φ

∂D
= (F − D − S(F ) + S(D)) PDP = 0

which is a necessary condition for minimality.

Let −F be a distance matrix, then this matrix can be transformed into a n×n matrix

A = − 1
2 PFP.

Now let Λr = diag [λ1, λ2, . . . , λr] be the diagonal matrix formed from the r positive

eigenvalues of A, and Ur the n× r matrix of corresponding eigenvectors, and define

Y = UrΛ1/2
r . (3.5.2)

Now the Elegant algorithm can be expressed as

Algorithm 3.5.1 (Elegant algorithm)

Given any distance matrix − F ∈ <n×n, choose α, 0 < α < 1, let F (0) = F

For k = 1, 2, . . .

F (k+1) = α(F − S(F ) + S(F (k))) + (1− α)Y (k)Y (k)T

where Y is given in (3.5.2).

To improve the rate of convergence, Browne [1987] added a penalty function to (3.5.1) and

introduced an intermediate Newton–Raphson step, he called this method the Newton–Raphson

method.



91

NRA EA PA
n NI CPU NI CPU NI CPU
4 18 0.12 21 0.17 26 0.16
8 31 0.25 17 0.29 19 0.22
16 71 1.94 16 1.62 30 0.78
32 175 32.0(0.05) 14 17.64(2.3) 36 5.01(0.08)
64 367 2189.4(5.23) 14 233.23(17.4) 56 53.46(2.9)
100 708 3095.0(540) 13 948.11(529.8) 68 241.56(16.0)

Table 3.6.1: Numerical comparisons between the three projection algorithms.

PA: Projection Algorithm 3.3.4.
EA: Elegant Algorithm 3.5.1.
NRA: Newton–Raphson algorithm.
NI: Average number of iteration.
CPU: Average CPU time in seconds.
(): Standard deviation in CPU time.

3.6 Numerical results

In this section numerical examples are given for unconstrained methods. First an example

of order 4 is given in some detail and then another six examples are given showing how the

unconstrained methods behave.

However in the first part comparisons between the projection algorithm and methods of

Section 3.5 are considered. In Chapter 4 larger examples for both Algorithm 3.3.4 and Method

3.4.2 are given.

Table 3.6.1 given by Glunt et. al. [1990] compares the three algorithms: the projection

Algorithm 3.3.2, the Elegant Algorithm 3.5.1 and the Newton–Raphson algorithm. In Elegant

Algorithm α = 1
2 as long as F (k) is monotonically decreasing and then reducing α by a

factor of 1
2 at non–decreasing. All three algorithm converge to essentially the same values.

The matrices in Table 3.6.1 were randomly generated distance matrices. Table 3.6.1 shows

that the projection method consumes less CPU time than the other methods. Therefore it will

be used in Chapter 4.

In the rest of this section the numerical result for the quasi–Newton methods of Section 3.4

are discussed. A Fortran program has been written to solve problem (3.4.11) on a Sun computer.

The results in this section are accurate to 7–8 decimal places in the distance between the given

matrix and the Euclidean distance matrix.



92

Initial Optimal no. of no. of Distance
Methods X X variables line search

3.4.1 1 0 1.8104 0.5052 8 15 0
0 1 0.4601 0.9253
0 0 0.0400 -0.4253
0 0 -1.3105 -0.0052

3.4.2 1 0 -1.3682 -0.3581 6 19 0
0 1 -1.7261 1.0100
0 0 -3.0943 0.6523

3.4.3 1 -1.4142 5 22 0
0 1 -1.4142 1.4142
0 0 -2.8284 1.4142

Table 3.6.2: Results from example (3.6.1).

In the following an example is given in which −F is a 4 × 4 Euclidean distance matrix

given by

−F =


0 2 4 10

2 0 2 4

4 2 0 2

10 4 2 0

 . (3.6.1)

This matrix is embedded in <2 and F1 is of rank 2 see Figure 3.6.1. Table 3.6.2 shows

the results from the three methods of Section 3.4. They confirm that the programs work since

the three distances are zero (see Table 3.6.2). In Table 3.6.2, Method 3.4.1 gives the optimal

solution X which implies that the matrix D is the optimal matrix and it turns out to be the

same as the matrix − F in (3.6.1) since − F is already a Euclidean distance matrix. This

is also true for Methods 3.4.2 and 3.4.3. The distances in Figure 3.6.1 are squared before being

stored in the matrix − F .

Another thing which is worth noting is that the matrix X is not unique. For example, X

for Method 3.4.3 in Table 3.6.2

XT =

[
−1.41421 −1.4142 −2.8284

1.4142 1.4142

]



93

Figure 3.6.1: The Euclidean distance matrix represented in <2.

can be replaced by the matrix

XT =

[
1.41421 1.4142 2.8284

1.4142 1.4142

]

which gives the same result.

Finally the initial matrix X is chosen to be [e1, e2, 0] , but using equations (3.4.27–28)

to reform the given distance matrix − F to an initial matrix X for Method 3.4.2 reduces

the number of line searches to zero. The superlinear convergence turns out to be true in this

example.

In Table 3.6.3 six examples are chosen randomly to show how the three methods behave.



94

The initial matrix

XT = [e1, e2, . . . , er, 0, . . . , 0]

is used for all three methods. Probably the best method when n is large (n ≥ 9) is Method

3.4.2 because it has the least number of line searches. On the other hand, Method 3.4.1 is

better when n is sufficiently small (n < 9).

Method 3.4.3 is the worst because it takes the greatest number of line searches. Also, it

fails with certain initial matrices and different initial matrix is needed to solve the problem.

Specially when the given matrix is already a Euclidean distance matrix (see Table 3.6.3 n = 11

).

In the first example ( n = 11) the given matrix is a Euclidean distance matrix and Method

3.4.3 fails to find the optimal solution for many given initial vectors when r > 5 (marked

by (*)). In the other methods sometimes the above initial matrix does not find the optimal

solution and a different initial matrix is used (marked by (**)). Perhaps, the reason behind

this is that Method 3.4.1 and Method 3.4.2 have more freedom to choose the optimal vectors

pi’s near the initial vectors(The optimal vectors pi’s are not unique). In Method 3.4.3 because

of rotation, the initial vectors have to search further for the optimal vectors because they are

more specific. One can see this from Table 3.6.3, when r is small, where very few rotations

occur, the number of line searches is almost similar with the other methods. When r is bigger

the difference in the number of line searches becomes greater. It is clear that Method

3.4.2 is better than 3.4.1 because its number of variables is less than those of Method 3.4.1

by r variables.

In Table 3.6.3 there are two columns for Method 3.4.2. The first column for 3.4.2

has the above initial matrix as initial data every time we increase r(k). This make it

comparable with the other methods. In the second column for Method 3.4.2 the initial matrix

is reformed from F using equations (3.4.27–28), updating the initial matrix every time we

increase r(k) using the previous result. This gives faster convergence for the method.



95

NL NL NL NL NIP Dist–
n r(k) 3.4.1 3.4.2 3.4.2(+) 3.4.3 method ance
11 1 23 23 14 23 25.573

2 40 38 32 33 16.449
3 49 50 59 63 10.090
4 63 71 48 86 7.026
5 80 84 50 198 5.289
6 91 79 62 109(*) 3.967
7 90 77 69 81(*) 2.638
8 92 78 52 83(*) 1.684
9 70 79 70 99(*) 0.961
10∗ 66 72 58 72(*) 3 0

10 1 30 25 17 26 149.63
2 41 37 31 43 71.407
3∗ 45 41 37 47 62.3131
4 52 51 38 65 47 62.3131

10 1 21 21 17 21(**) 856.302
2 39 38 26 43 785.213
3∗ 42 55 13 66 785.190
4 55 62 16 79 56 785.190

10 1 29 30(**) 16 43 8107.56
2 66(**) 48 40 62 6767.53
3 53 59 47 76 6061.81
4∗ 179(**) 77 26 103 5904.95
5 84 113 52 141 64 5904.95

10 1∗ 29 35 5 35 990.88
2 37 48 18 37 125 990.88

10 1 25 26 19 27(**) 34.021
2 33 30 27 30 26.021
3 43 40 34 41 24.172
4∗ 46 48 40 62 23.973
5 55 54 45 82 30 23.973

Table 3.6.3: Numerical comparisons between unconstrained methods and the projection algo-
rithm.

(+): Using equations (3.4.27–28). Then updating the initial matrix
every time we increase r(k).

NL: Number of line searches.
NIP: Number of iterations for projection method.



Chapter 4

Hybrid methods for finding the

nearest Euclidean distance

matrix

4.1 Introduction

In this chapter new methods for solving problem (3.3.3) are considered. The methods described

here depend upon both projection and unconstrained methods using a hybrid method. The

hybrid method works in two stages. First stage is the projection method which converges

globally so is potentially reliable but often converges only at first order or slower which can

be slow. Meanwhile in the second stage there is quasi–Newton method, in particular Method

3.4.2, which converges superlinearly if the correct rank r∗ is given. The main disadvantage

of the unconstrained methods are that they require the correct r∗. A hybrid method is one

which switches between these methods and aims to combine their best features. To apply an

unconstrained method requires a knowledge of the rank r∗ and this knowledge can also be

gained from the progress of the projection method. Hybrid methods can work well but there is

one disadvantage. If the distance matrix have the same rank as the Euclidean distance matrix

in which Method 3.4.2 works well, then most of the time will be taken up in the first stage,

using the projection method. If this converges slowly then the hybrid method will not solve

the problem effectively. Thus it is important to ensure that the second stage method is used

96



97

to maximum effect. Hence in the algorithm of Section 4.4 the quasi–Newton method is applied

first.

In Sections 4.3 and 4.4 two new methods are described. Firstly, there is the projection–

unconstrained method, which starts with the projection method to determine the rank r(k)

and continues with the unconstrained method. Secondly, the unconstrained–projection method

is described, which solves the problem by the unconstrained method and uses the projection

method to update the rank. In Section 4.2 a procedure of how to move from one method to

another is given. A modified projection algorithm is given in this section, which involves an

initial matrix to create a good starting point for the method. Also in this section a method is

given, showing how to obtain an initial matrix for the unconstrained method from the result

matrix from the projection method. Finally numerical results and comparisons between these

hybrid methods and methods of Chapter 3 are given in Section 4.5.

4.2 Updating the result from the projection method to

the unconstrained method and conversely

The methods in this chapter are constructed from both the projection method and uncon-

strained method, starting from one method and then alternating between the two methods at

a specific iteration. These alternating methods perform without losing any information. This

is because for every result coming from one method will be used to form the initial data for the

other method at every alternation. This section shows how this can be done.

Since the rank in the unconstrained method is unknown, it is important to know if D(k)

is a Euclidean distance matrix or not every time we rerun the unconstrained algorithm. To do

this (3.3.13) is used to test if the matrix D(k) is Euclidean distance matrix or not.

First, consider updating the result data from the unconstrained method to obtain initial

data for the projection method.

Let − D(k) be the Euclidean distance matrix obtained from the unconstrained

method. If D(k) is a solution to (3.3.3) then there exists some ∆(k) in

D(k) = PM (F (k)) = PM (F + ∆(k)) (4.2.1)

for some ∆(k) and ∆(k) in general is given by (3.3.11). Denote



98

F (k) = Q

[
F

(k)
1 f (k)

f (k)T ζ(k)

]
Q, (4.2.2)

and let F
(k)
1 = U (k) Λ(k) U (k) be the spectral decomposition of F

(k)
1 . By (3.3.9)

D(k) = PM (F (k)) = Q

[
U (k)Λ(k)+U (k) f (k)

f (k)T ζ(k)

]
Q. (4.2.3)

Hence

(D(k) − F (k))e = Q

[
X(k) 0

0T 0

]
Qe

= Q

[
X(k) 0

0T 0

]
en = 0. (4.2.4)

Since F (k) = ∆(k) + F from (3.3.11), it follows from (4.2.4) that

( D(k) − ∆(k) − F )e = 0 (4.2.5)

or

∆(k)e = (D(k) − F )e (4.2.6)

Because ∆(k) is diagonal, (4.2.6) can be used to compute ∆(k) from D(k). Now if −D(k)

from unconstrained algorithm does have the correct rank, and ∆(k) is computed from (4.2.6),

then

Diag PM (F + ∆(k)) = 0 (4.2.7)

and ∆(k) can be identified as the solution to problem (3.3.3). If it does not have the correct

rank then

Diag PM (F + ∆(k)) 6= 0

and further iterations of the projection algorithm will take place. In this case the diagonal

matrix ∆(k) is used as starting matrix for the projection algorithm. Thus rewriting Algorithm

3.3.4 with this initial matrix gives



99

Algorithm 4.2.1

Let − F ∈ <n×n be any distance matrix

F (0) = F + ∆(k) (4.2.8)

For s = 1, 2, ...

F (s+1) = F (s) + [PdPM (F (s)) − PM (F (s))]

Conversely, let − D(k) be a Euclidean distance matrix obtain during the projection

method. Let r be the rank of the matrix D
(k)
1 , (D1 is given in (3.2.10)). The initial matrix

X for Method 3.4.2 can be calculated using Theorem 3.2.3 as follows:

Define the elements A from D(k) by

aij = − 1/2[ d1i + d1j − dij ] (2 ≤ i, j ≤ n) (4.2.9)

(the minus in (4.2.9) is because − D(k) is the Euclidean distance matrix). If the spectral

decomposition of A is

A = U Λ UT

then the initial matrix XT for Method 3.4.2 is given by

XT = Λ1/2
r UT

r (4.2.10)

where Λr = diag [λ1, λ2, . . . , λr], the r largest eigenvalues in Λ and Ur ∈ <n−1×r

comprises the corresponding columns of U.

4.3 Projection–unconstrained method

The main disadvantage of the unconstrained method is finding the exact rank r∗, since it

is not known in advance it is necessary to estimate it by an integer r(k). It is suggested that

the best estimate of the matrix rank r(k) is obtained by carrying out some iterations of the

projection method. This is because the projection method is a globally convergent method.



100

Consider Λr in (4.2.10), then at the solution the number of eigenvalues in Λr is equal to

the rank r∗. Thus

No. Λ∗r = r∗ (4.3.1)

where No. Λ is the number of positive eigenvalues in Λ. A similar equation to (4.3.1) is

used to calculate an estimated rank r(k) given by

No. Λ(k)
r = r(k).

where Λr is given by (4.2.10). The range of error is relatively small. Then the unconstrained

method will be applied to solve the problem as described in Section 3.4.

The projection–unconstrained algorithm can be described as follows.

Algorithm 4.3.1

Given any distance matrix − F, let s be a positive integer. Then the following

algorithm solves problem (3.3.3).

i. Let F (0) = F

ii. Apply the projection method until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s (4.3.2)

iii. r(k) = No. Λ(k)
r

iv. Find the initial matrix X for the unconstrained method from the result matrix

D(k) (see(4.2.10)).

v. Minimize φ in (3.4.11) using Method 3.4.2 to find D(k).

vi. Use (4.2.6) to calculate ∆(k) from D(k).

If

Diag PM (F + ∆(k)) = 0

Then

D∗ = D(k) and terminate

Endif



101

vii. Apply one iteration of the modified projection method (Algorithm 4.2.1).

viii. Go to (iii).

The integer s in Algorithm 4.3.1 can be any positive number. If it is small then the rank

r(k) may not be accurately estimated, however the number of iterations taken by projection

method is small. In the other hand if s is large then a more accurate rank is obtained but the

projection method needs more iterations.

The advantage of using the projection method as a first stage of the projection–

unconstrained method is that if − F (0) is already a Euclidean distance matrix then the

projection method terminates at the first iteration. Moreover it gives the best estimate to r(k).

Sometimes using Method 3.4.1 instead of Method 3.4.2 for n < 10 gives fewer line searches.

The test (4.2.7) is used to test if the matrix −D(k) is the nearest Euclidean distance matrix

or not. If −D(k) is not the nearest Euclidean distance matrix then the rank r(k) 6= r∗

and r(k) is updated using the projection algorithm. The problem (3.4.11) needs to be solved

again using Method 3.4.2, also the initial matrix X is calculated from the matrix D(k) using

(4.2.10).

Example 4.3.2

An example of this algorithm for n = 4

−F =


0 1 4 36

1 0 9 16

4 9 0 25

36 16 25 0

 .

After two iteration of the projection method equation (4.3.2) is satisfied with s = 2 and the

number of positive eigenvalues in Λr is 2, therefore r(2) = 2. The unconstrained method

is then applied with initial matrix

XT =


0.8367 1.8100

−1.9001 1.2859

0.1567 5.8974





102

Method 3.4.2 gives the optimal matrix

−D∗ =


0 3.9965 5.2387 34.8097

3.9965 0 7.7810 17.1714

5.2387 7.7810 0 25.4842

34.8097 17.1714 25.4842 0



and the test (4.2.7) is satisfied with

Diag PM (F + ∆∗) = 0.

Thus the matrix −D∗ is the nearest Euclidean distance matrix.

4.4 Unconstrained–projection method

Starting with the projection method has the advantage of knowing if the given matrix is a

Euclidean distance matrix or not, and it gives the best estimate for the matrix rank r(k).

However sometimes it takes many iterations before equation (4.3.2) is satisfied, since the pro-

jection method is a slowly convergent method. Also, in many distance matrices − F with

large n the rank r(k) estimated by the projection method is bigger then r∗, which mean slow

convergence in the unconstrained method. In this method an algorithm starts with the uncon-

strained method with an arbitrary rank r(k). Then one iteration of the projection method

will be calculated after every stage of the unconstrained–projection algorithm. In every stage

of this algorithm the resulting matrix D(k) will be used as an initial matrix to the next stage,

thus the matrix D(k) is updated at every stage from the previous one.

Now the unconstrained–projection algorithm can be described as follows.

Algorithm 4.4.1

If − F is any distance matrix then the following algorithm solves problem (3.3.3)

i. Let F (0) = F.

ii. Choose r(k).



103

iii. Minimize φ in (3.4.11) using Method 3.4.2 to find D(k).

iv. Calculate Diag PM (F + ∆(k)) using (4.2.6) to calculate ∆(k) from D(k) then

If

Diag PM (F + ∆(k)) = 0

Then

D∗ = D(k) terminate

Endif

v. Calculate the diagonal matrix ∆(k).

vi. Apply one iteration of the modified projection method (Algorithm 4.2.1).

vii. r(k) = No. Λ(k)
r .

viii. Find the initial matrix X for the unconstrained method from the result matrix

D(k) (see(4.2.10)).

ix. Go to (iii).

r(k) in stage ii can be chosen using projection method or from the given distance matrix

− F (0) using Λr in (4.2.10).

Another advantage of this algorithm is that if the rank is not correct then instead of adding

one to r(k) it goes back to the projection method to provide a better estimate to r(k). This

will increase or decrease r(k) nearer to r∗, therefore variables will be added to or subtracted

from the problem. The new variables are estimated using the projection method. Another

advantage is that at every stage only one iteration of projection method is used giving a faster

converging algorithm.

Example 4.4.2

An example of this algorithm for n = 5

−F =



0 1 2 4 2

1 0 1 2 4

2 1 0 1 2

4 2 1 0 1

2 4 2 1 0


.



104

If we choose r(0) = 2, and minimize φ, we find that Diag PM (F + ∆(k)) 6= 0 and we

have

∆(k) =



−0.02140

−0.09230

0.7068

−0.09230

−0.31140


.

Apply one iteration of Algorithm 4.2.1 with starting diagonal matrix ∆(k). This implies

that r(k) = 3. Finally minimize φ with starting matrix X derived from D(k) given by

Algorithm 4.2.1. We find that

−D∗ =



0 1.33 2 3.67 2.33

1.33 0 1 2.33 3.67

2 1 0 1 2

3.67 2.33 1 0 1.33

2.33 3.67 2 1.33 0



and hence we find that Diag PM (F + ∆(k)) = Diag PM (F + ∆∗) = 0.

4.5 Numerical results

The algorithms of the Sections 4.3 and 4.4 are applied to solve problem (3.3.3). The numerical

tests are a set of randomly generated distance matrices with values distributed between 10−3

and 103. The numerical result for unconstrained–projection method is given in Table 4.5.1

in more detail. Table 4.5.2 compares the four methods projection method, unconstrained

Method 3.4.2, projection–unconstrained method and unconstrained–projection method

using ‖F (k) − F (k−1)‖ < 10−5 as a stopping criterion. All four algorithms converge to

essentially the same values. A Fortran program has been written for these methods to solve

problem(3.3.3). The eigenvalues for the projection method are solved using the NAG library.



105

The computations have been carried out on a Sun computer. In the unconstrained method, for

most cases it is observed that fewer iterations are required to solve (3.3.3) as r increases.

For the unconstrained–projection method it is observed that fewer iterations are required

as r is increased. This is because it has a good starting matrix updated from the projection

method every time r increases. In the unconstrained method for large n we may increase

r by 2 or more, this will reduce number of minimizing φ in (3.4.11) to half or more. The

disadvantage is slow convergence when r exceeds r∗. The projection–unconstrained method

and unconstrained–projection method are both very good, and need only a small number of

iterations as is shown in both Table 4.5.1 and Table 4.5.2. In the projection–unconstrained

method for example the unconstrained method converges very fast (with n = 50 only 13 line

searches are used), this is because of the good starting initial matrix given by the projection

method. Also in the unconstrained–projection method for n = 50 only 17 line searches are

needed. In Table 4.5.2 for the unconstrained method r(0) is the initial rank then r is

increased by one and unconstrained method is repeated until we find the correct rank r∗.



106

UPA
n r(0) NL r(k) NL

in from in
UA OPA UA

5 2∗ 12

10 3 33 4∗ 11

15 4 63 5∗ 13

20 5 70 7∗ 11

25 6 94 8∗ 12

30 6 42 9∗ 10

35 6 98 9∗ 11

40 6 22 10∗ 16

45 6 46 11∗ 18

50 5 125 13∗ 17

Table 4.5.1: Result from unconstrained–projection Algorithm 4.4.1.

OPA: One iteration from projection Algorithm 4.2.1.
UA: Unconstrained algorithm (Method 3.4.2).
NL: Number of line searches.



107

PA UA PUA UPA
n r∗ NI r(0) TNL NV NI r(k) NL r(0) TNL

5 2 21 2∗ 12 8 2 2∗ 7 2∗ 12

10 4 46 3 80 36 2 4∗ 15 3 44

15 5 64 4 140 70 4 6(5∗) 22 4 76

20 7 101 5 176 133 4 7∗ 18 5 81

25 8 85 6 221 192 4 8∗ 14 6 106

30 9 129 6 144 261 4 10(9∗) 19 6 52

35 9 115 6 382 306 8 9∗ 23 6 109

40 10 168 6 161 390 7 11(10∗) 21 6 38

45 11 136 6 246 484 9 11∗ 17 6 64

50 13 171 6 288 637 7 13∗ 13 5 142

Table 4.5.2: Comparing the four methods.

PA: Projection Algorithm 3.3.4.
UA: Unconstrained algorithm (Method 3.4.2).
PUA: Projection–Unconstrained Algorithm 4.3.1.
UPA: Unconstrained–Projection Algorithm 4.4.1.
NI: Number of iteration in projection algorithm.
NL: Number of line searches in unconstrained algorithm.
TNL: Total number of line searches in unconstrained algorithm.
NV: Number of variables in unconstrained algorithm.



Chapter 5

Methods for minimizing least

distance functions with

semi–definite matrix constraints

5.1 Introduction

Minimizing a general function subject to semi–definite matrix constraint is a problem which

arises in many practical situations, particularly in statistics where the semi–definite matrix

constraint is usually a covariance matrix with varying elements. We are interested here in

problems in which only the diagonal of the matrix is allowed to change, in the following way.

Given a symmetric positive definite matrix F ∈ <n×n then we consider the problem

minimize f(x)

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.1)

where F̄ = F − Diag F, diag v = Diag F and f is real valued function of x. In

Chapters 6 and 7, such problems are studied in which the objective function is linear.

In this chapter a least distance problem of the following type is solved. Given a symmetric

108



109

positive semi–definite matrix F ∈ <n×n then we consider

minimize xT x x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.2)

where diag v = Diag F. This kind of problem is important by itself and it is also used

subsequently in Chapters 6 and 7. Problem (5.1.2) can be more general if we express it as

minimize ‖a − x‖22 x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.3)

where a is an initial point and then we have a different problem with every different a.

Problems of this type can be solved in a similar way to methods of this chapter.

Two methods are developed for solving problem (5.1.2). Firstly, a projection algorithm

is given for solving problem (5.1.2) using Algorithm 2.2.7 which converges linearly or slower

and globally. This method is described in Section 5.2. Subsequently this method is also used

in Chapter 6. Secondly an implementation of the l1 SQP method is used. Fletcher [1985]

developed an algorithm for solving problem (5.1.1) in the case f(x) is linear. It is the purpose

of this chapter to follow his method but to apply it to problem (5.1.2). Various methods of this

type are investigated in Section 5.3.

In Section 5.4 a hybrid method is described, which starts with the projection method to

estimate the rank r(k) and continues with the l1SQP method in a similar way to Section 4.3.

Finally in Section 5.5 numerical comparisons of these methods are carried out.

5.2 The Projection algorithm

In this section we give a description of a projection algorithm for solving problem (5.1.2), using

the alternating projection method of Algorithm 2.2.7. The constraints in problem (5.1.2) can

be expressed as F̄ + diag x ∈ K< ∩ Koff ∩ Kb which gives an equivalent problem to

(5.1.2) and can be expressed as



110

Given a symmetric positive definite matrix F = FT ∈ <n×n

minimize ‖F̄ − A‖

subject to A ∈ K< ∩Koff ∩Kb. (5.2.1)

The matrix norm here means the Frobenius norm given in Definition 1.2.2.

Then we follow Algorithm 2.2.7 with m = 3 and K1 = K<, K2 = Koff and

K3 = Kb as given in (1.3.1), (1.3.5) and (1.3.6) respectively. Algorithm 2.2.7 is the projection

algorithm used in this section, and guarantees global convergence to the solution of problem

(5.1.2). The projection algorithm requires formulae, which are also given, for calculating the

projection maps on to Koff , Kb and on to K<. Subsequently two examples are given for

solving problem (5.1.2) using the projection algorithm. Finally an interesting result relating

normal cone of the intersection of Koff , Kb and K< to the solution of problem (5.2.1) is

given.

Dykstra’s algorithm depends crucially upon the computational complexity of the relevant

projections. The minimization problem (5.2.1) is solved by applying Algorithm 2.2.7 to it.

Problem (5.2.1) is to find the projection of a matrix to the intersection of three convex sets by

a sequence of projections to the individual set successively. First we need definitions for the

projection maps P<(·), Poff (·) and Pb(·), later formulae for them are obtained.

Definition 5.2.1

Let

K = {A : A ∈ <n×n, A = AT },

then define the projection map P<(A) from K on to K<, the projection map Poff (A)

from K on to Koff and the projection map Pb(A) from K on to Kb.

The projection map P<(A) formula on to K< for solving the following problem

minimize ‖F − A‖F

subject to A ∈ K< (5.2.2)

is



111

P< (F ) = UΛ+UT . (5.2.3)

where

Λ+ =

[
Λr 0

0 0

]
(5.2.4)

and Λr = diag [λ1, λ2, . . . , λr] is the diagonal matrix formed from the positive eigenvalues

of F . The proof has been given in Theorem 3.3.3.

Since Koff consists of all real symmetric n × n matrices, in which the off–diagonal

elements are fixed to F (the given matrix) then

Poff (A) = F̄ + Diag A. (5.2.5)

Also, since Kb consisting of all real symmetric n × n matrices, in which the diagonal

elements are not greater than diag v = Diag F , we have

Pb (A) = Ā + diag [h1, h2, ..., hn]. (5.2.6)

where

h =

{
hi = aii if aii ≤ vi

hi = vi if aii > vi

}

We can now use projections P<, Poff and Pb given by (5.2.3), (5.2.5) and (5.2.6)

respectively to implement Algorithm 2.2.7 giving the following algorithm

Algorithm 5.2.2 (projection algorithm)

Given any positive definite matrix F, let F (0) = F

For k = 0, 1, 2, . . .

F (k+1) = F (k) + [PbPoffP<(F (k)) − P<(F (k))]

The convergence of this algorithm follows from Theorem 2.2.8 in which the sequences

{P<(F (k))}, {Poff P<(F (k))} and {Pb Poff P<(F (k))} generated by Algorithm 5.2.2 con-

verge in the Frobenius norm to the solution A∗ of (5.2.1).



112

Example 5.2.3

An example of Algorithm 5.2.2 for n = 3, let

F̄ =


0 2 3

2 0 2

3 2 0

 v =


4

5

6

 .

The solution is x∗ = (3, 4/3, 3), no bounds are active, the rank of F ∗ = F̄ + diag x∗

is r = 1.

Example 5.2.4

Another example for n = 4, let

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10

 .

The solution is x∗ = (2, 2.6505, 4.1209, 6.3537). The bound x1 ≤ v1 is active. If v1 is

increased to v1 = 5 then the bound x1 ≤ v1 is not active and the new solution for this

modified problem is

x∗ = (3.4555, 3.1833, 3.1833, 3.4555).

The rank of F ∗ = F̄ + diag x∗ is r = 2 in both cases.

In the rest of this section another result is developed giving conditions under which A∗

solves (5.2.1). The normal cone ∂K<(A) at A ∈ K< is given in (1.3.12). Also the normal

cone for Koff ∩Kb is given in Theorem 1.3.5. This is based on normal cones for the relevant

convex sets. A general result for the normal cone of the intersection of two sets has been given

in (1.3.9). Therefore, as in Theorem 3.3.1, if A ∈ K< ∩Koff ∩Kb then

∂(K< ∩Koff ∩Kb)(A) = ∂K<(A) + ∂(Koff ∩Kb)(A) (5.2.7)

Now ∂K<(A) and ∂(Koff ∩Kb(A))(A) are given in (1.3.12) and (1.3.16) respectively and

we let Z, Λ and B denote the matrices that arise. From (5.2.7) and (2.1.3) we can deduce

that A∗ solves problem (5.2.1) if and only if



113

F −A∗ = −Z Λ Z + B = U

[
0 0

0 −Λ

]
UT + B (5.2.8)

where U = [Y Z] as in (1.3.15). Then (5.2.8) is equivalently to

F = U

[
Λr 0

0 −Λ

]
UT + B

since

A∗ = U

[
Λr 0

0 0

]
UT , (5.2.9)

from the spectral decomposition of A∗ since A∗ ∈ K< from (5.2.1) and U is the same as

U in (5.2.8) from Theorem 1.3.7.

5.3 The l1SQP method

The main idea in this section is to find an algorithm which is globally convergent at a second

order rate for solving problem (5.1.2). The idea of transforming the semi–definite matrix con-

straints in to the form D2(A) = 0 given in (1.5.10) is used. The SQP methods in Section 1.7

are used in order to have the benefit of the ready availability of second derivatives of (1.5.10)

which enables a second order rate of convergence to be achieved. At the end of this section a

strategy is described of how to choose the rank r needed to determine D2. Also two examples

for solving problem (5.1.2) are given which are similar to Examples 5.2.3 and 5.2.4. However in

the first part of this section we consider the normal cone and the feasible directions sets for the

special case in which the positive semi–definite matrix cone K< is restricted to the diagonal

elements of A (i. e. A ∈ K< ∩ Koff ).

Now problem (5.2.1) can be expressed as

minimize
x

xT x x ∈ <n

subject to Ā + diag x ∈ K< ∩Koff (A), x ≤ v (5.3.1)



114

where diag v = Diag F (the given matrix).

A useful form of ∂(K< ∩Koff )(A) can be deduced using (1.3.12), let B̄ = B − Diag B

then

∂(K< ∩Koff )(A) =

{B́| Diag B́ = B − B̄, B = − ZΛZT , Λ = ΛT , Λ ≥ 0} (5.3.2)

that is the set of the vectors that are diagonal elements of all matrices of the form − ZΛZT ,

where Λ is any symmetric positive semi–definite matrix and Z is the null space matrix.

Furthermore feasible directions for the set K< ∩ Koff (A) can be deduced using

(1.4.5)

F(A) = F (A) = {Ā + diag s| ZT [diag s]Z ≥ 0}. (5.3.3)

Optimality conditions follow using Theorem 1.5.2. The first order necessary conditions for

x∗ to solve (5.3.1) are that x∗ is feasible and there exist a matrix B́∗ ∈ ∂(K< ∩Koff )(A∗)

and a vector π∗ ≥ 0 (π∗ ∈ <n) such that

2x∗ + b∗ + π∗ = 0 (5.3.4a)

π∗T (v − x∗) = 0 (5.3.4b)

where diag b∗ = Diag B́∗.

Now we going to use the second derivatives of (1.5.10) to solve problem (5.3.1).

Assume that the rank of A∗ is known to be r (1 ≤ r < n). Permute the variables so

that the bounds xi ≤ vi are inactive for i = r+1, . . . , n, then (5.3.1) can be expressed as

minimize
x

xT x x ∈ <n

subject to D2(x) = 0, x ≤ v (5.3.5)

where

D2(x) = D2(Ā + diag x) = D2(A)

and D2(A) is given by (1.5.9). The Lagrangian for problem (5.3.5) is

L(x,Λ,π) = xT x − < Λ, D2(x) > + πT (x − v). (5.3.6)



115

Also, the first order conditions for this problem are given by (5.3.4a) and (5.3.4b). From

(5.3.2) Diag B́ is a diagonal matrix which has the same elements as the diagonal of the matrix

− ZT Λ∗Z where Λ∗(= [λ∗ij ] i, j = r + 1, . . . , n) is the matrix of Lagrange multipliers

for the constraints D2(x) = 0 and Z is the null space matrix for A∗. The elements of the

Lagrange matrix Λ are indexed from r+ 1, . . . , n to correspond to the elements dij of D2.

Then using (1.5.9) in (5.3.6)

∂L
∂xi

= 2xi − λii + πi = 0. i = r + 1, . . . , n (5.3.7)

The assumption that the bounds are inactive at the solution for i > r i.e. πi = 0 implies

that

λii = 2xi. i = r + 1, . . . , n (5.3.8)

To eliminate the variables xi, i = r + 1, . . . , n (1.5.9) is utilized by using the diagonal

elements of D2(x)

dii(x) = xi −
r∑

k,l=1

aik [A−1
11 ]kl ail = 0 i = r + 1, . . . , n (5.3.9)

where aik and ail are elements in A21. Therefore the unknown variables are reduced to

x = [x1, x2, . . . , xr]T ∈ <r. Then (5.3.5) reduces to

minimize
x

f(x) =
r∑

k=1

x2
k +

n∑
i=r+1

x2
i (x)

subject to dij(x) = 0, i 6= j, i, j = r + 1, . . . , n

x ≤ v (5.3.10)

the alternative unknown vector is determined by (5.3.9). xi(x) denotes that xi is the

function of x given by

xi(x) =
r∑

k,l=1

aik [A−1
11 ]kl ail i = r + 1, . . . , n (5.3.11)



116

where Diag A11 = diag x.

In (5.3.10) the constraints dij(x) = 0 and dji(x) = 0 are both equivalent, therefore

in practice the constraints should be presented only for i > j with 2λij as the Lagrange

multiplier for each constraint in this system. However in the rest of this section it is more

convenient to refer to (5.3.10).

If

Λ =


2xr+1(x) . . . . . . λr+1 n

...
. . .

...
...

λn−1 r+1 . . . . . . λn+1 n

λn r+1 . . . λn n−1 2xn(x)



then (5.3.6) is the Lagrangian function for (5.3.10).

In the following expressions for ∇dij and ∇2dij will be derived where ∇

denotes the gradient operator (∂/∂x1, . . . , ∂/∂xr)T . Differentiating A11A
−1
11 = I gives

∂A11

∂xs
A−1

11 + A11
∂A−1

11

∂xs
= 0 s = 1, . . . , r

⇒ A11
∂A−1

11

∂xs
= − ∂A11

∂xs
A−1

11

then

∂A−1
11

∂xs
= − A−1

11

∂A11

∂xs
A−1

11 ,

but since

∂A11

∂xs
= eseT

s

where es = (0, 0, . . . , 0, 1, 0, . . . , 0) with one in the sth component, then

∂A−1
11

∂xs
= − A−1

11 eseT
s A−1

11 . (5.3.12)

Hence from (1.5.9)



117

∂D2

∂xs
=

∂

∂xs
(A22 − A21A

−1
11 A

T
21)

= 0 − A21
∂A−1

11

∂xs
AT

21

= A21A
−1
11 eseT

s A−1
11 A

T
21

Using (1.5.11) gives

∂D2

∂xs
= V T

21 eseT
s V21

and hence

∂dij

∂xs
= vsi vsj . (5.3.13)

Furthermore differentiating (5.3.12)

∂2A−1
11

∂xs∂xt
=

∂

∂xt
(− A−1

11 eseT
s A−1

11 )

= −[(−A−1
11 eteT

t A−1
11 ) eseT

s A−1
11 + A−1

11 eseT
s (−A−1

11 eteT
t A−1

11 )]

= A−1
11 (eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )A−1

11 .

So from (1.5.9)

∂2D2

∂xs∂xt
= − A21A

−1
11 (eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )A−1

11 A
T
21

= − V T
21(eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )V21

hence

∂2dij

∂xs∂xt
= − (vsi vtj + vti vsj)[A−1

11 ]st. (5.3.14)

where [A−1
11 ]st means the element of A−1

11 in st position.



118

For the SQP method the solution of the QP subproblem (1.7.8) is needed. In (1.7.8)

ci = dij and ∇ci = aT
i = ∇dT

ij , which are given in (5.3.13). From (5.3.9), (5.3.10)

and (5.3.11)

∇ f = 2x + 2
n∑

i=r+1

xi(x) ∇xi(x)

then

∇ f = 2x − 2
n∑

i=r+1

xi(x) ∇dii (5.3.15)

and

∇2 f = 2I − 2
n∑

i=r+1

[xi(x) ∇2dii − (∇dii)(∇dii)T ] (5.3.16)

Now in the QP subproblem (1.7.8) W = ∇2L(x,Λ,π) then from (5.3.6) and (5.3.16)

W (k) = ∇2L(x(k),Λ(k),π(k))

= 2I − 2
n∑

i=r+1

[xi(x(k)) ∇2dii(x(k)) (5.3.17)

− (∇dii(x(k)))(∇dii(x(k)))T ] −
n∑

i,j=r+1
i6=j

λ
(k)
ij ∇

2dij(x(k)). (5.3.18)

Including term (5.3.17) in the diagonal of the last term of (5.3.18) with λ
(k)
ii = 2xi(x(k))

(from (5.3.8)) gives

W (k) = 2I + 2
n∑

i=r+1

[(∇dii(x(k)))(∇dii(x(k)))T ] −
n∑

i,j=r+1

λ
(k)
ij ∇

2dij(x(k)). (5.3.19)

Now

n∑
i=r+1

[(∇dii(x(k)))(∇dii(x(k)))T =


∑

i v
2
1iv

2
1i . . .

∑
i v

2
1iv

2
ri

...
. . .

...∑
i v

2
riv

2
1i . . .

∑
i v

2
riv

2
ri


= UUT (5.3.20)



119

since ∂dii/∂xs = v2
si, where U = [V12][V12] and [ ][ ] means the componentwise

product. Rearranging (5.3.19) using (5.3.20) and (5.3.14) gives

[W (k)]st = [2I]st + 2[UUT ]st + 2[V12Λ(k)V T
12]st[A−1

11 ]st

= [2I]st + 2[UUT ]st + 2[V12Λ(k)V T
12]st[V11D

−1
1 V T

11]st (5.3.21)

where s, t = 1, . . . , r. V and D in (5.3.21) are calculated using (1.5.11) and (1.5.4–5).

From the above expressions the QP subproblem (1.7.8) can be expressed as

minimize
δ

f (k) + ∇f (k)δ + 1
2 δTW (k)δ δ ∈ <r

subject to d
(k)
ij + ∇ d

(k)T
ij δ = 0 i 6= j i, j = r + 1, . . . , n

x(k) + δ ≤ v (5.3.22)

giving a correction vector δ(k), so that x(k+1) = x(k) + δ(k). Further the Lagrange multipliers

of the equations in (5.3.22) become the elements λ
(k+1)
ij for the next iteration.

The matrix W ∗ is positive semi–definite. This can be proved using (5.3.21) because

zTW ∗z = 2zT z + 2zTUUT z + 2zT [V12Λ∗V T
12][V11D

−1
1 V T

11]z. (5.3.23)

Since zTUUT z ≥ 0 and from (5.3.2) Λ∗ ≥ 0 then

zTW ∗z = 2zT z + 2zTUUT z + 2 tr(V12Λ∗V T
12[diag z]V11D

−1
1 V T

11[diag z])

= 2zT z + 2zTUUT z

+ 2 tr(D−1/2
1 V T

11[diag z]V12Λ∗V T
12[diag z]V11D

−1/2
1 )

≥ 0 (5.3.24)

since

{D−1/2
1 V T

11[diag z]V12} Λ∗ {V T
12[diag z]V11D

−1/2
1 }T

is symmetric and positive semi–definite. Therefore if x(k) is sufficiently close to x∗ the basic

SQP method converges and the rate is second order (see Section 1.7).

It is shown in Section 1.7 that the SQP method may not converge globally and it is usually

modified by the l1 exact penalty function. An equivalent form to (1.7.11) for problem (5.3.10)

is



120

φ(x) =
r∑

k=1

x2
k +

n∑
i=r+1

x2
i (x)

+ σ{
n∑

i,j=r+1
i6=j

|dij(x)| +
n∑

i=r+1

max(vi − xi, 0)}. (5.3.25)

Since the bounds are inactive for i > r, πi is zero, implying that the max terms are zero if

x(k) is sufficiently close to x∗. To guarantee that the minimizer x∗ of (5.3.25) satisfies first

order conditions for (5.3.10), the penalty parameter σ in (5.3.25) must satisfy

σ ≥ max
ij

|λ∗ij |. i, j = r + 1, . . . , n

Now since Λ∗ ≥ 0 and λ∗ii = 2x∗i i = r + 1, . . . , n then

max
ij

|λ∗ij | ≤ 2 max
i

x∗i . i, j = r + 1, . . . , n

Hence σ ≥ 2 maxi x∗i must hold. However, since it is advantageous to choose σ

as small as possible, the choice σ = 2 maxi x∗i is recommended. In practice if the

unnecessarily redundant form of (5.3.10) is used with summation over indices i > j, then a

similar summation is used in (5.3.25) and the choice σ = 4 maxi x
∗
i is recommended.

To ensure the descent property, it may be necessary to choose larger values of σ than

σ = 4 maxi x
∗
i the choice

σ > max
ij

|λ(k+1)
ij | i, j = r + 1, . . . , n

is sufficient. Unfortunately it has been observed that the resulting values of σ are

very large and no successful algorithm of this type has been obtained. For more about how to

choose the penalty parameter σ see Fletcher [1987] Chapter 12.

Algorithm 1.7.3 which has better convergence properties is now recommended. This differs

from the formulation given in (5.3.25). An equivalent form to (1.7.12) is the following

minimize
δ

ψ(k)(δ)

subject to x(k) + δ ≤ v

‖δ‖∞ ≤ ρ(k) (5.3.26)

where



121

ψ(k)(δ) = f (k) + ∇f (k)T δ + 1
2 δTW (k)δ + σ{

∑n
i,j=r+1

i6=j
|d(k)

ij + ∇ d
(k)T
ij δ|} (5.3.27)

giving a correction vector δ(k), so that x(k+1) = x(k) + δ(k). Also the Lagrange

multipliers associated with each of the modulus terms in (5.3.27) become the elements of the

matrix Λ(k+1) for the next iteration. The subproblem (5.3.26) can be solved by methods

similar to those used in QP. The two methods (5.3.22) and (5.3.26) are equivalent when

x(k),Λ(k) are sufficiently close to x∗,Λ∗ and σ is large enough.

In Han’s method [1977] it is necessary for ∇2L(k) ≥ 0 to hold, which excludes the

possibility of an unbounded solution to (5.3.22). However in (5.3.26) it is not necessary to force

∇2L(k) ≥ 0 to hold, and the choice σ = 2 maxi x
(k)
i can be used.

The terms |dij(x)| in (5.3.25) are not smooth and can cause slow convergence in practice.

The second order correction is included to alleviate these difficulties. Let δ(k) be the solu-

tion of (5.3.26), then the second order correction is obtained by repeating (5.3.26) with some

modification to (5.3.26), giving the subproblem

minimize
δ

ψ(k)(δ(k))

subject to x(k) + δ ≤ v

‖δ‖∞ ≤ ρ(k) (5.3.28)

where

ψ(k)(δ(k)) = f (k) + ∇f (k)T δ + 1
2 δTW (k)δ + σ{

∑n
i,j=r+1

i6=j
|d(k)

ij + ∇ d
(k)T
ij δ + γ(k)|}

and

γ(k) = 1
2 δ(k)T∇2 d

(k)
ij δ(k) (5.3.29)

and δ(k) calculated from (5.3.26). The solution to (5.3.28) is denoted by δ̃
(k)

. The modified

algorithm solves (5.3.26) as before to get δ(k) then calculates γ(k) using (5.3.29) then recalcu-

lates δ̃
(k)

using (5.3.28) and revised Lagrange multipliers Λ̃(k+1). Now x(k+1) = x(k) + δ̃
(k)

and Λ̃(k+1) is used in place of Λ(k+1). Using the second order correction takes advantage of

the readily available second derivative matrices ∇2 dij i, j = r + 1, . . . , n.

An important constraint has been neglected up till now, that is the variables x ∈ <r

must permit the matrix Ā + diag x to be factorized as in (1.5.4) with D1 > 0.

Therefore the restriction D1(x) > 0 on the feasible region of (5.3.10) is enforced. Also



122

certain degenerate cases must be excluded. However if x(k) is sufficiently close to x∗ and r

is identified correctly this restriction will usually be inactive at the solution. If x(k) is remote

from the solution then two constraints are introduced to avoid these disadvantages. Firstly

the linearization of the constraint dii(x) ≥ 0

d
(k)
ii + ∇ d

(k)T
ii δ ≥ 0. i = r + 1, . . . , n (5.3.30)

are added to the subproblems (5.3.22),(5.3.26) or (5.3.28). Secondly the linearization of the

constraint D1(x) > 0 about x(k)

d(k)
ss + ∇ d(k)T

ss δ > 0. s = 1, . . . , r (5.3.31)

However it is advisable not to allow dss(x(k) + δ) to become too close to zero, especially for

small s which causes the factorization to fail (D1 6> 0). As a result the constraints

s d(k)
ss /r + ∇ d(k)T

ss δ ≥ 0. s = 1, . . . , r (5.3.32)

are also included to the subproblems (5.3.22),(5.3.26) or (5.3.28).

Even with these extra conditions it might be difficult to find a partial factor for the matrix

Ā + diag x in the form (1.5.5) for some iterates x(k). In this case smaller radius for the trust

region is chosen with ρ(k+1) = ρ(k)/4, x(k+1) = x(k) and Λ(k+1) = Λ(k) are chosen for

the next iteration.

Another restriction on the variables x ∈ <r of (5.3.10) is that the bounds

xi ≤ vi, i = r + 1, . . . , n must remain inactive. This can be done by permuting

the variables, although an acceptable permutation is not known in advance. Therefore the

following procedure has been adopted. In the beginning of an iteration every variable is

tested individually to reorganize the variables so that the active variables is first. As result

of that the active bounds are those on variables x
(k)
s , s = 1, . . . , p where p is number

of active bounds. This permutation makes a complete change to the factorization (1.5.9) so

that the matrix D2 and the basis matrix Z are redefined. The Lagrange multipliers are

reset to zero since they are not suitable to the redefined basis. Also the function φ(x) in

(5.3.25) is redefined. The number of permutations made during the course of the

algorithm must be finite, this is because the above procedures conflict with the global

convergence strategy of reducing φ(x(k)) monotonically if the number of permutations are

not finite.



123

Another important consideration for the l1 SQP method is how the integer r∗ can be

identified correctly. Since r∗ is not known in advance it is necessary to estimate it by an

integer denoted by r(k). Any change to r(k) causes a change to φ(x), and the number of

variables in φ(x). It is important to consider the effect of making a fixed incorrect estimate r

to r∗. If r(k) < r∗ then the l1 SQP method converges satisfactorily at a second order rate

to a minimizer φ(x). Since r is too small this minimizer is not a solution to (5.3.10) because

dij(x) 6= 0 for some indices i 6= j i, j = r + 1, . . . , n, and also because Λ ≥ 0 does

not usually hold. On the other hand if r(k) > r∗ then the l1 SQP algorithm converges to

the minimizer of φ(x), which is the solution of (5.3.10) but the rate of convergence is very slow

because the number of variables in φ(x) are increased. The slow rate of convergence indicates

that the nonsmooth nature of the problem is not accounted for. The initial idea is to increase

or decrease r(k) as the iteration proceeds, using the fact that Λ(k) 6≥ 0 to increase r(k),

and the existence of an active constraint for s = r in (5.3.31) to decrease r(k). The above

idea by Fletcher [1982] was not in fact investigated, which it may be necessary to do for large

problems. However the more simple strategy described in Section 5.5 below proved to be very

reliable and reasonably efficient, especially for n ≤ 20.

Two examples for problem (5.3.1) are given which are similar to Examples 5.3.2 and 5.3.3.

Example 5.3.1

Consider problem (5.3.1) where

F̄ =


0 2 3

2 0 2

3 2 0

 v =


4

5

6

 .

The solution is x∗ = (3, 4/3, 3), no bounds are active i.e. π∗ = 0, and the set

K< ∩ Koff (F̄ + diag x) = {F̄ + diag x|


x1 2 3

2 x2 2

3 2 x3

 ≥ 0} (5.3.33)

is illustrated in the neighbourhood of x∗ in Figure 5.3.1



124

It can be observed that K< ∩ Koff (F̄ + diag x) is convex but not a cone and is

nonsmooth at x∗. The rank of F ∗ = F̄ + diag x∗ is r = 1, and its partial factors

are

D =


3

0

0

 L =


1

2/3 1

1 0 1



L−1 = V =


1

... −2/3 −1

... 1 0

... 1

 .

thus

Z =


−2/3 −1

1 0

0 1



The vector b∗ = − 2x∗ = (−6, − 8/3, − 6) satisfies (5.3.4a) and the corresponding

B∗ ∈ ∂K< is generated by the matrix

Λ∗ =

[
8/3 −8/9

−8/9 6

]

(Λ∗ > 0 as required), and

B∗ = − ZΛ∗ZT = −


6 −8/9 −146/27

−8/9 8/3 −8/9

−146/27 −8/9 6

 .

Example 5.3.2

Another example for n = 4, let



125

Figure 5.3.1: The boundary of the restricted cone (K< ∩ Koff )(F̄ + diag x) in (5.3.33)
(contours of x2).

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10

 .

The solution is (2, 2.6505, 4.1209, 6.3537)T . The rank of F ∗ = F̄ + diag x∗ is r = 2,

and its partial factors are

D =


2

2

0

0

 L =


1

0.5 1

1 1 1

−1 1.5 0 1





126

L−1 = V =


1 −0.5

... −2/3 −1

1
... −1 −1.5
... 1 0
... 1

 .

thus

Z =


−2/3 −1

−1 −1.5

1 0

0 1

 .

The bound x1 ≤ v1 is active and has a Lagrange multiplier π∗1 = 55.37079. The vector

b∗ + π∗ = − 2x∗ satisfies (5.3.4a) and the corresponding B∗ ∈ ∂K< is generated by the

matrix

Λ∗ =

[
8.2418 −10.5108

−10.5108 12.7074

]

If the bound v1 is increased to v1 = 4 for example, then the bound x1 ≤ v1

becomes inactive and the vector (2, 2.6505, 4.1209, 6.3537)T is feasible but not optimal

with
√

xT x = 8.269. This time the conditions (5.3.4a) and (5.3.4b) do not hold. The

optimal solution to this modified problem is

x∗ = (3.4555, 3.1833, 3.1833, 3.4555)T

with
√

xT x = 6.644 and r = 2. Second order conditions are used in this modified problem.

5.4 A hybrid method

In this section a new method for solving problem (5.1.2) is considered. The method described

here depends upon both projection and l1 SQP methods using a hybrid method. The



127

projection method which converges globally but often converges at very slow order. Meanwhile

in the l1 SQP method which converges at second order if the correct rank r∗ is given. The

main disadvantage of the l1 SQP method are that they require the correct r∗. The projection–

l1 SQP method starts with the projection method to determine the rank r(k) and continues

with the l1 SQP method.

The method in this section follows a similar strategy to that in Section 4.3. Since r∗ is not

known in advance it is necessary to estimate it by an integer r(k). It is suggested that the best

estimate of the matrix rank r(k) is obtained by carrying out some iterations of the projection

method. This is because the projection method is a globally convergent method.

Consider Λr from (5.2.4) then at the solution the number of eigenvalues in Λr is equal

to the rank of A∗. Thus

No. Λ∗r = rank(A∗) = r∗ (5.4.1)

where No. Λ is the number of positive eigenvalues in Λ. A similar equation to (5.4.1) is

used to calculate an estimated rank r(k) and is given by

No. Λ(k)
r = r(k).

where Λr is given by (5.2.4). The range of error is relatively small. The l1 SQP method

will be applied to solve the problem as described in Section 5.3.

The projection–l1 SQP algorithm can be described as follows.

Algorithm 5.4.1

Given any matrix F = FT ∈ <n×n, let s be a positive integer. Then the following

algorithm solves problem (5.1.2)

i. Let F (0) = F

ii. Apply the projection method until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s (5.4.2)

iii. r(k) = No. Λ(k)
r

iv. Use the result vector x from projection method as an initial vector for the l1 SQP

method



128

v. Apply the l1 SQP method for solving problem (5.1.2).

The integer s in Algorithm 5.4.1 can be any positive number. If it is small then the rank

r(k) may not be accurately estimated, however the number of iterations taken by the projection

method is small. In the other hand if s is large then a more accurate rank is obtained but the

projection method needs more iterations.

The advantage of using the projection method as the first stage of the projection–l1

SQP method is that if F (0) is positive semi–definite (singular) then the projection method

terminates at the first iteration. Moreover it gives the best estimate to r(k).

It has been found difficult to produce an algorithm starting with l1SQP method and then

using the projection method to update the rank, in contrast to the method in Section 4.4.

A way of finding a lower bound on the rank r(k) is suggested by Fletcher [1985]. The

number of free variables in problem (5.1.2) are at most n, and this can be reduced to n − p

if there are p active bounds at the solution. Since D2 ∈ <(n−r)×(n−r) and symmetric then

the equation D2 = 0 introduces 1/2 (n − r + 1)(n − r) conditions, so except in degenerate

cases it follows that

n − p ≥ 1/2 (n − r + 1)(n − r) (5.4.3)

which imposes a significant restriction on the dimensions of D2. For example if n − p = 20

and n = 21 then r can be no smaller than 14.

5.5 Numerical results and comparisons

In this section numerical examples are given for the projection algorithm l1 SQP algorithm

and Algorithm 5.4.1. First numerical examples for Algorithm 5.2.2 are given in some detail in

Table 5.5.1 then the same numerical examples for l1 SQP algorithm and Algorithm 5.4.1 are

given in Table 5.5.2.

The numerical test problems are obtained from the data given in Table 6.2.1, by Woodhouse

[1976].

The projection Algorithm 5.2.2, l1 SQP algorithm and Algorithm 5.4.1 are applied to solve

problem (5.1.2). The Woodhouse data set is a 64×20 data which corresponds to 64 students



129

and 20 subtests. Various selections from the set of subsets of columns are used to give various

test problems to form the matrix A. These subsets are those given in the first columns of Tables

5.5.1 and 5.5.2, the value of n is the number of elements in each subset.

The results obtained by the Algorithm 5.2.2 are tabulated in Table 5.5.1. Using

‖x(k+1)‖ − ‖x(k)‖ < 10−8 as a stopping criterion it is estimated that the xi are ac-

curate to 4− 5 decimal places and ‖x‖2 is accurate to 6− 7 decimal places. In Table 5.5.1

the column headed by NI gives the number of iterations used by the projection method. It is

clear from Table 5.5.1 that when the bounds are active the number of iterations becomes very

large. The x∗i elements marked by (∗) are the active elements.

Moreover Table 5.5.1 gives the correct rank r∗ for each particular problem.

The order of convergence is very slow as can be seen from Table 5.5.1. Also in Table 5.5.1 the

optimal x∗i for i = 1, 2, ..., n and ‖x∗‖2 are given. Finally, the eigenvalues for the projection

method are solved using the NAG library.

At the end of Section 5.3 a difficult strategy had been described for applying the l1 SQP

method. A more simple strategy has been adopted. Initially choosing r(k) as the smallest

integer compatible with (5.4.3). Starting from x(0) = v, Λ(0) = 0 and ρ(0) supplied by

the user then φ(x) is minimized by the iteration based on (5.3.26) as described in Section

5.3. Thus if ‖D2(x)‖ ≤ ε for some small ε, at the solution then the algorithm terminates.

If not then r(k) is increased by one. Then a new variable xr+1 is adding to problem (5.3.10).

This variable is estimated by adding the value of the l1 norm of the first column of D2 to

the current value of xr+1 as given by (5.3.9). Then the partial factors of the new matrix are

well–determined. Also increases in r(k) reduce the dimension of D2. The Lagrange multiplier

matrix is changed by deleting all the elements in the first row and column. The radius ρ(k)

is reinitialized and finally the iteration based on (5.3.26) is used to solve this problem. After a

few repetitions r∗ will be identified.

In Table 5.5.2 three methods are compared: projection method (PM), l1SQP

algorithm and projection–l1SQP algorithm (Pl1SQP). The stopping criterion is

‖x(k+1)‖ − ‖x(k)‖ < 10−8 = ε. It is estimated that xi are accurate to 4 − 5 decimal

places and ‖x‖ is accurate to 6 − 7 decimal places. In Table 5.5.2 the columns headed

by NI give the number of iterations used by the projection method and the columns headed by

NQP gives the number of times that the major l1SQP problem (5.3.26) is solved. r(0) in

the column headed by l1SQP gives the initial rank for F using equation (5.4.3) and r(0) in

the column headed by Pl1SQP gives the initial rank for F using Algorithm 5.4.1. The three



130

Columns which
determine F r∗ NI x∗i i = 1, 2, .., n

√∑
(x2∗

i )
1,2,5,6 3 63 182.7042 146.9628 69.6629 45.8211 248.8602
1,3,4,5 2 115 235.0096 88.4015 189.1918 67.6986 321.5913

1,2,3,6,8,10 5 141 367.4156 273.0114 279.8192 50.4784 616.2334
228.0582 193.2790

1,2,4,5,6,8 4 881 317.4348 146.2721 244.8117 65.6893 491.7348
4.1061 235.3253

1–6 5 336 222.2243 282.8910 262.8245 238.0719 510.3758
71.5195 14.2313

1–8 6 387 369.8391 290.2214 255.5179 176.0771 640.5922
56.6419 48.0679 223.0925 194.3380

1–10 8 954 401.7844 299.7303 249.6374 194.1057 736.9839
35.6192 50.3791 240.8572 214.9912
232.9831 171.9279

1–12 10 1360 386.8981 286.8628 264.6721 195.7548 800.0756
67.2526 39.7566 232.4680 227.8524
266.8375 187.5834 131.9821 252.7745

1–14 12 854 404.4696 294.5210 265.8667 213.4180 882.7606
73.4999 35.6596 254.5520 235.9188
250.0652 191.7257 161.8923 250.0233
267.8237 160.7042

1–16 14 3663 407.5394(*) 290.8398 275.5972 215.0889 945.4555
81.3601 33.5239 248.6281 244.9842
261.4713 197.1172 168.2075 258.6026
259.0489 159.3373 99.1123 294.4601

1–18 15 30326 407.5394(*) 296.5150 265.6089 216.2863 1108.5326
98.2078 44.7847 260.8753 246.8023
248.7318 185.1102 176.9004 270.7481
258.8518 160.6789 101.7151 308.4449
435.4937 358.0457

1–20 18 11037 407.5394(*) 312.4666 258.1156 227.1807 1253.6603
120.1546 49.2651 292.7023 272.3617
244.4578 201.3850 175.7458 279.3872
250.5748 158.5493 100.0581 310.8974
457.7386 356.8083 406.2569 327.4915

Table 5.5.1: Results for problem (5.1.2) from projection Algorithm 5.2.2.



131

methods converge to approximately the same values.

In l1SQP one of the variables in almost every test example is adjusted by a small unit

(< 2.0) so that the matrix Ā + diag x∗ is exactly singular and positive semi–definite for all

methods. The initial value of ρ(0) is 20.0. In l1SQP most cases require a few iterations for

solving (5.3.10) as r increases. For each value of r second order convergence of the iteration

based on (5.3.26) and (5.3.28) is obtained.

The projection method is a very slowly convergent method especially when the bounds

are active. Therefore it will be used only for estimating the rank r. In the Pl1SQP algorithm

the initial value of ρ(0) is 5.0.

Finally the projection method is not very successful in estimating the rank r∗ especially

when n ≥ 12 and a more effective method is required to give a better estimate for r∗ similar

to those methods in Chapter 4.



132

Columns which PM l1SQP Pl1SQP
determine A r∗ NI r(0) NQP NI r(0) NQP

1,2,5,6 3 63 2 10 5 3 4

1,3,4,5 2 115 2 16 6 2 5

1,2,3,6,8,10 5 141 3 11 10 4 9

1,2,4,5,6,8 4 881 3 20 8 4 7

1–6 5 336 3 22 12 5 9

1–8 6 387 5 18 13 5 11

1–10 8 954 6 19 7 8 7

1–12 10 1360 8 27 16 8 24

1–14 12 854 10 30 20 10 14

1–16 14 3663 11 35 27 10 33

1–18 15 30326 13 33 38 12 13

1–20 18 11037 15 45 55 15 27

Table 5.5.2: Numerical comparisons of methods of this chapter.



Chapter 6

Algorithms for solving the

educational testing problem

6.1 Introduction

The problem to be considered here is the educational testing problem. Such optimization

problems come up in many practical situations, particularly in statistics where we have a

matrix F which is usually a covariance matrix with varying elements. The educational testing

problem is; given a symmetric positive definite matrix F how much can be subtracted from

the diagonal of F and still retain a positive semi–definite matrix this can be expressed as

maximize eT θ θ ∈ <n

subject to F − diag θ ≥ 0

θi ≥ 0 i = 1, ..., n (6.1.1)

where e = (1, 1, ..., 1)T . An equivalent form to problem (6.1.1) is

minimize eT x x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (6.1.2)

133



134

where F̄ = F − Diag F, and diag v = Diag F.

An early approach in solving the educational testing problem is due to Bentler [1972].

He writes F − diag θ = CCT , where C is unknown and minimizes trace (CCT ) subject

to certain conditions. He found that there are a large number of variables, and also it does

not account for the bounds θi ≥ 0 ∀ i. Furthermore, some difficulties in convergence to the

optimum solution arise.

Woodhouse and Jackson [1977] have given a method for solving the problem by searching

in the space of θ. However their method does not work efficiently and failed for particular

examples.

Fletcher [1981b] has solved the problem in which the semi–definite constraint is reduced to

an eigenvalue constraint and standard nonlinear programming techniques are used. But still

some difficulties arise with the rates of convergence. Also the presumption that the eigenvalue

constraint would be smooth at the solution, except in rare cases, is not correct and in fact the

majority of such problems are nonsmooth at the solution.

In 1985 Fletcher developed a different algorithm for solving the educational testing problem.

He gives various iterative methods for solving the nonlinear programming problem derived from

the educational testing problem (6.1.2) using sequential quadratic programming techniques.

One of these algorithms is the use of an l1 exact penalty function. This algorithm works

well with second order convergence and the function converging to the optimal solution.

The only problem in these algorithms is the requirement to know the exact rank for the

matrix A∗ = F̄ + diag x∗ where x∗ solves (6.1.2).

Finally, Glunt [1991] describes a projection method for solving the educational testing

problem. His idea is to construct a hyperplane Lτ in <n and then carry out the

method of alternating projections (the von Neumann Algorithm 2.2.2) between the convex

set K = K< ∩ Koff ∩ Kb and the hyperplane Lτ . His method converges globally and the

order of convergence is very slow.

The statistical background involved in the educational testing problem is described in Sec-

tion 6.2. In Section 6.3 the educational testing problem is solved using the theory developed in

Section 2.3. Section 6.4 contains a brief description of the l1 SQP method for solving problem

(6.1.2). Finally in Section 6.5 numerical comparisons of these methods are carried out.

In Chapter 7 hybrid methods are considered. The projection method converges linearly or

slower while the l1 SQP method converges at second order but it requires the correct rank



135

r∗ which can be gained from the projection method. Therefore, hybrid methods that take the

advantage of both projection and l1 SQP methods are described in Chapter 7.

6.2 The educational testing problem

This section explains the educational testing problem which arises from statistics. The problem

is to find lower bounds for the reliability of the total score on a test (or subtests) whose items

are not parallel using data from a single test administration. The educational testing problem

consists of a number of student (N) taking a test or examination consisting of (n) subtests.

The problem is to find how reliable is the students’s total score in the sense of being able to

reproduce the same total on two independent occasions. Specifically it is required to know what

evidence about reliability can be obtained by carrying out a test on one occasion only.

In this thesis we do not develop the entire theory (see Fletcher [1981b]) but just give enough

information to construct the test problem (6.1.1). The data for the problem is an N ×n table

of scores [Xij ] (see Table 6.2.1) such that Xij gives the observed score of student i on

subject j.

Define the mean observed score of subject j by

X̄j =
1
N

∑
i

Xij . (6.2.1)

Then the n × n matrix F given in (6.1.1) is constructed from an N × n data matrix

[Xij ] in the following way

fjk =
1

N − 1

∑
i

(Xij − X̄j)(Xik − X̄k) (6.2.2)

see Guttman [1945]. Then problem (6.1.1) is constructed with θ as the unknown vector. For

more about the statistical background for the educational testing problem and references see

Fletcher [1981b].



136

15 25 20 28 35 50 21 18 22 28 28 12 15 40 18 23 14 16 15 10
21 27 32 32 41 42 30 35 33 32 64 16 24 38 34 13 15 17 28 18
23 35 40 22 55 48 36 40 46 18 38 18 26 37 24 24 17 20 19 26
23 29 50 36 42 52 44 32 24 19 32 24 20 46 32 23 11 12 40 28
34 37 42 19 36 46 17 26 35 28 39 54 21 47 29 42 18 18 30 20
36 60 70 45 55 54 32 30 32 29 41 28 20 47 36 28 20 20 18 24
36 35 46 27 50 40 60 34 39 46 48 63 20 48 40 19 21 24 40 22
38 70 44 50 45 42 20 28 29 16 55 40 22 49 42 25 23 26 30 28
39 46 52 24 37 60 53 30 46 43 54 54 23 46 44 22 35 22 48 30
40 74 65 60 72 41 33 36 24 52 64 36 28 50 46 26 25 23 30 30
40 48 32 23 58 52 23 40 37 24 58 38 29 54 44 28 11 27 41 34
41 12 24 50 47 48 41 42 37 28 56 57 32 51 43 25 17 24 32 39
46 52 76 48 70 58 20 50 28 42 76 58 28 58 45 34 27 35 18 56
46 73 84 63 38 57 33 56 42 18 72 77 31 52 48 32 35 32 32 19
47 42 74 28 60 57 36 42 48 52 63 46 36 53 49 53 29 30 42 40
47 82 72 70 39 64 21 25 44 26 44 44 37 51 46 33 38 35 37 42
47 40 42 50 48 61 40 40 26 29 61 44 30 56 47 52 46 37 48 40
48 70 65 48 42 57 35 58 50 46 60 32 34 58 54 35 36 31 16 18
49 65 60 55 62 56 52 50 52 28 50 48 34 58 53 41 45 40 38 52
50 30 35 28 62 54 41 46 50 21 65 33 32 58 54 38 50 44 43 50
52 42 54 33 42 64 40 40 56 44 64 38 34 60 44 34 38 30 44 38
52 72 70 65 72 68 62 38 56 44 58 46 36 58 46 36 55 20 48 47
52 44 64 72 44 62 35 44 56 46 62 39 30 61 46 38 40 42 24 80
53 25 42 28 68 52 41 45 44 26 28 43 51 62 47 35 42 48 50 40
54 48 60 58 36 51 63 41 64 29 63 49 32 58 47 39 43 58 48 49
55 64 62 30 42 57 34 47 52 34 57 37 43 63 48 38 47 20 54 65
58 30 24 62 51 51 44 36 43 25 36 54 41 65 48 43 40 35 50 42
58 16 40 45 42 58 44 42 58 36 58 52 40 64 49 36 18 45 53 28
58 44 56 51 68 68 46 48 72 38 62 34 32 68 49 42 47 47 28 70
59 58 58 50 74 52 36 58 60 28 44 56 34 72 51 33 48 58 54 58
60 32 35 48 40 56 52 32 40 37 72 57 36 61 52 51 42 46 17 51
60 78 80 62 52 54 58 47 80 32 64 39 45 66 53 42 70 40 50 18
60 38 55 66 42 52 30 54 62 42 90 38 38 63 56 46 62 48 55 44
61 48 64 68 70 53 42 40 38 45 73 56 50 64 54 46 45 42 50 22
62 86 94 50 49 62 48 56 74 33 84 36 52 67 52 47 41 70 57 53
63 35 38 55 38 58 46 59 63 48 62 58 38 68 53 47 48 75 44 25
64 79 65 76 68 57 32 33 52 46 72 62 52 54 54 48 55 35 60 54
64 50 52 35 60 56 52 64 76 36 63 44 48 56 52 49 63 38 48 46

Table 6.2.1:(to be continued in the next page)



137

65 37 42 70 50 58 58 62 66 34 53 64 62 72 53 50 74 45 62 57
65 82 74 63 36 62 60 58 60 38 57 63 58 70 51 51 55 55 64 58
67 44 46 54 52 58 55 68 80 40 28 65 50 71 54 52 65 70 74 68
67 48 56 80 44 64 62 35 70 62 58 72 56 72 60 41 78 38 75 68
68 62 78 56 50 53 62 54 80 64 62 48 54 74 62 76 58 45 80 36
69 39 30 42 38 62 40 32 68 56 68 71 58 73 56 43 79 47 73 70
70 52 20 76 69 61 64 56 69 54 64 66 58 78 52 72 32 47 71 71
72 54 72 38 54 51 66 65 76 72 54 49 60 74 57 42 68 62 22 46
72 42 48 70 70 57 42 40 68 53 62 74 60 78 58 52 55 48 72 75
74 64 66 70 42 60 40 78 53 48 69 67 76 77 59 68 58 55 16 60
78 68 62 63 35 56 63 80 74 43 71 78 62 76 59 68 70 75 72 75
79 37 42 28 64 52 40 38 72 72 56 52 58 82 60 61 75 66 58 58
80 62 30 65 59 51 68 57 74 48 78 71 42 54 61 62 78 69 78 58
82 85 80 52 44 57 70 69 64 71 85 76 64 56 63 67 44 70 60 26
82 40 74 52 52 64 74 64 76 46 64 46 51 80 63 68 65 55 70 67
84 42 76 70 55 61 90 80 56 41 58 82 72 72 67 73 85 60 76 78
84 42 54 60 42 58 42 60 52 70 77 68 68 74 59 71 79 65 44 76
86 85 88 80 37 63 80 72 79 42 73 42 68 82 65 73 85 62 80 82
87 53 51 62 68 56 60 42 78 42 62 74 62 84 65 75 63 75 68 83
89 41 60 40 60 54 88 88 83 57 84 64 64 80 62 65 90 78 88 52
90 73 78 77 52 42 56 50 58 59 72 84 70 84 62 63 82 85 78 87
90 81 74 64 48 38 86 52 80 63 66 68 60 62 63 74 75 81 84 94
96 85 88 90 72 44 58 62 70 74 64 74 72 64 64 84 85 78 88 54
97 56 55 35 68 70 78 76 56 72 83 69 65 86 65 76 82 89 92 90
99 75 65 88 54 42 80 90 88 58 78 88 70 88 63 82 72 71 98 80
100 65 75 70 70 60 83 85 70 62 72 90 72 84 64 78 88 80 80 72

Table 6.2.1: The Woodhouse [1976] data which corresponds to 64 students and 20 subtests.

6.3 A projection algorithm for solving the educational

testing problem

In this section a projection algorithm for solving the educational testing problem is described.

The method described here depends on Algorithm 2.3.1 developed in Section 2.3.

The constraints in problem (6.1.2) can be expressed as

F̄ + diag x ∈ K< ∩ Koff ∩ Kb.

Then problem (6.1.2) can be expressed as

minimize
x

eT x x ∈ <n

subject to F̄ + diag x ∈ K< ∩ Koff ∩ Kb (6.3.1)



138

where K<, Koff and Kb are given in (1.3.1), (1.3.5) and (1.3.6) respectively. Therefore prob-

lem (6.3.1) is a special case of problem (2.1.4) which can be solved by Algorithm 2.3.1. To solve

(6.3.1) in this way we need the hyperplane Lτ given by (2.3.1) and we define K =
⋂m

i=1Ki

by K = K< ∩Koff ∩Kb. However Lτ must be defined on the space of n × n matrices,

and this can be done by

Lτ = {Y = Ȳ + diag y ∈ <n×n| eT y = τ}

= {Y ∈ <n×n| tr(Y ) = τ} (6.3.2)

where Diag Y = diag y and τ is chosen such that

τ < min
x∈K

eT x (6.3.3)

We also need the projection PLτ
(Y ), and following (2.3.8) with e replaced by I we can

write

PLτ
(Y ) = Y +

τ − tr(Y )
n

I. (6.3.4)

In Algorithm 2.3.1 the projection PK(.) in (2.3.4) is given. In particular for problem (6.1.2)

we need the projection PK(A) where K = K< ∩ Koff ∩ Kb for any matrix A. In fact

this projection was solved by Algorithm 5.2.2 and hence we just include Algorithm 5.2.2 as an

inner iteration inside the following algorithm which is a special case of Algorithm 2.3.1. This

algorithm solves the educational testing problem.

Algorithm 6.3.1

Given any positive definite matrix F , let F (0) = F

For k = 1, 2, ...

F (k+1) = PLτ (F (k))

For l = 1, 2, ... (6.3.5)



139

A(0) = F (k+1)

A(l+1) = A(0) + PbPoffP<(A(0)) − P<(A(0))

End (6.3.6)

F (k+1) = F (0) − diag F (0) + diag P<(A∗)

End

where A∗ is the solution for the inner iteration and P<, Poff and Pb are given in

(5.2.3), (5.2.5) and (5.2.6) respectively.

From Theorem 2.3.2 P<(A(k)) and PbPoffP<(A(k)) converges to the solution of problem

(6.3.1). Also in Theorem 2.3.2 x(k)
1 ≡ F (k) and x(k)

2 ≡ A(k). Equations (6.3.5)–(6.3.6) are

the inner loop and they are the same as Algorithm 5.2.2. In Section 6.5 numerical results for

Algorithm 6.3.1 are given.

6.4 The l1SQP method

This section contains a brief description of l1SQP method for solving the educational testing

problem. The l1SQP methods in Section 1.7 are used. This method was given by Fletcher

[1985].

The constraints in problem (6.1.2) can be expressed as

F̄ + diag x ∈ K< ∩ Koff ∩ Kb.

Then problem (6.1.2) can be expressed as

minimize
x

eT x x ∈ <n

subject to Ā + diag x ∈ K< ∩Koff , x ≤ v (6.4.1)

where diag v = Diag A(0). This problem is similar to problem (5.3.1) in Section 5.3, therefore

the method is given in detail in that section. Thus for solving problem (6.4.1) one follows the

details of Section 5.3, changing only the definition of the objective function. However in this

section we give a summary of what has been given in Section 5.3. The first order necessary

conditions for x∗ to solve (6.4.1) are similar to what given in (5.3.4) with the condition (5.3.4a)

replaced by



140

e + b∗ + π∗ = 0.

It is difficult to deal with the matrix cone constraints in (6.4.1), since it is not easy to

specify if the elements are feasible or not. An equivalent problem to (6.4.1) with the constraint

D2 = 0 is considered. This problem is similar to problem (5.3.5) with the objective function

xT x replaced by eT x. This formulation will enable us to derive algorithms with a second

order rate of convergence.

Now using the constraint D2 = 0 in the form (5.3.9), this will produce an equivalent

problem to (6.4.1). The number of variables in this new problem can be reduced to r variables

which gives the new reduced problem

minimize
x

f(x) =
r∑

k=1

xk +
n∑

i=r+1

xi(x)

subject to dij(x) = 0, i 6= j, x ≤ v. i, j = r + 1, . . . , n (6.4.2)

The expressions for the derivatives ∂dij

∂xs
and ∂2dij

∂xs∂xt
given in (5.3.13) and (5.3.14) respec-

tively enable us to finding expressions for ∇ f, ∇2 f and W (k). Then using these expressions

the QP subproblem

minimize
δ

f (k) + ∇f (k)δ + 1
2 δTW (k)δ δ ∈ <r

subject to d
(k)
ij + ∇ d

(k)T
ij δ = 0 i 6= j i, j = r + 1, . . . , n

x(k) + δ ≤ v (6.4.3)

is defined. Thus the SQP method applied to (6.4.2) requires the solution of the QP subproblem

(6.4.3). The matrix W (k) is positive semi–definite see Fletcher [1985].

It is shown in Section 1.7 that the SQP method may not converge globally and it is usually

modified by the exact penalty function (5.3.25). Now a similar technique to what stated in

Section 5.3 is followed to take over the problem of non–globality convergent using the l1 exact

penalty function (5.3.25).

This section is concluded by some restrictions and conditions in similar manner to those

considered at the end of Section 5.3.

For more about the l1 SQP methods for solving the educational testing problems see

Fletcher [1985].



141

6.5 Numerical results and comparisons

In this section numerical problems are obtained from the data given in Table 6.2.1, by Wood-

house [1976]. The Woodhouse data set is a 64 × 20 data which corresponds to 64 students

and 20 subtests. Various selections from the set of subsets of columns are used to give various

test problems to form the matrix A. These subsets are those given in the first columns of Tables

6.5.1–2, the value of n is the number of elements in each subset. Equation (6.2.2) gives the

formula for calculating the educational testing problems from Table 6.2.1.

In Algorithm 6.3.1 τ must satisfy the condition (6.3.3). Since x∗ not known in advance

and with elements fij

'
> 100 then it is clear that the diagonal elements F̄ + diag x(k) is

greater than about 100 so eT x
'
> 100n since F is positive definite. Therefore from (6.3.3)

the choice τ = 100 is recommended. In fact we recommend this choice since the elements

fij are close to each either in magnitude. However, in general the off-diagonal elements can

play a role in making a better estimate for τ . If τ chosen randomly and does not satisfy the

condition (6.3.3) then the matrix F − diag x(k) is not positive semi–definite and the method

is rerun with different τ. In Chapter 7 more information is available and a different strategy

is followed.

Glunt [1991] and Fletcher [1985] tested their methods on the twelve test problems originally

due to Woodhouse [1976]. The same test problems are applied for the methods in this chapter.

This section contains numerical results for the projection method given in Table 6.5.1. Numer-

ical results for the l1 SQP algorithm are given in Table 6.5.2. In all the tables of this section

NOI gives the number of outer iteration when solved by Algorithm 6.3.1, TNII gives the total

number of inner iteration used by Algorithm 5.2.2 in Algorithm 6.3.1 and r(0) gives the

number of positive eigenvalues in the first iteration of Algorithm 6.3.1.

In Table 6.5.1 a comparison between τ = −100 and τ = 100 is given for the same test

problems using Algorithm 6.3.1. We choose τ = −100 for comparison purposes which shows

that when τ is remote from condition (6.3.3) then the method takes more inner iterations. It

is clear that with τ = 100 the method takes fewer inner iterations in most of the examples.

Because of Algorithm 5.2.2 the projection method is very slow and the number of iterations

taken by the projection method is very large especially when the bounds are active. The results

obtained by the l1SQP method of Section 6.4 are tabulated in Table 6.5.2 as given by Fletcher

[1985] and mentioned here for comparison purposes. The iterates converge to essentially the

same values of x∗ in both methods.



142

The projection method is very expensive in the sense that it consumed a large number of

iterations whilst the l1SQP method takes a very small number of iterations.

The NAG routine is used here to find the eigenvalues and eigenvectors for the matrix

F̄ + diag x(k). This matrix is reduced to a real symmetric tridiagonal matrix by House-

holder’s method. Then the eigenvalues and eigenvectors are calculated using the QL algorithm.

The amount of work required by these algorithms is approximately 4
3n

3 multiplications per

one inner iteration (Golub and Van Loan [1989]).

Again the NAG routine is used this time for solving the QP subproblem (6.4.3) which is

one iteration of the SQP method. The method used by the NAG routine to solve the QP

subproblem requires the solution for the system

Z(k) W Z(k)T p(k) = − Z(k)T (c + W x(k)) (6.5.1)

where c = ∇f and Z(k) is a matrix whose columns form a basis for the null space of A(k) (

the matrix of coefficients of the bounds and active constraints). p(k) is a search direction. The

matrix Z(k) is obtained from the TQ factorization of A(k), in which A(k) is represented

as

A(k)

[
Z(k)

Q

]
= [0 T (k) ] . (6.5.2)

The Lagrange multipliers λ(k) are defined as the solution of the system

A(k) λ(k) = c + W x(k). (6.5.3)

Eqautions (6.5.1) and (6.5.2) costs approximately 7
3n

3 multiplications to solve and (6.5.3)

costs approximately 8
3n

3 multiplications to solve (Golub and Van Loan [1989]). Thus one

iteration of the SQP method costs approximately 15
3 n

3 multiplications.

Thus one iteration of the SQP method costs about 6 times greater as one iteration of the

projection method. Nonetheless the SQP method is much better than the projection method

since the number of iterations taken by the projection method is about 60 times greater than

the number of iterations taken by the SQP method. However in Chapter 7 hybrid methods are

carried out which use even fewer iterations.



143

Columns which τ = − 100 τ = 100
determine A NOI TNII NOI TNII

1,2,5,6 3 197 4 240

1,3,4,5 2 224 3 266

1,2,3,6,8,10 3 580 3 522

1,2,4,5,6,8 4 4994 4 4518

1–6 3 1351 3 1243

1–8 4 1948 4 1702

1–10 3 2918 3 2534

1–12 3 2403 3 2442

1–14 3 3196 3 3143

1–16 3 5215 3 4796

1–18 3 14043 3 14171

1–20 3 8255 3 7978

Table 6.5.1: Results for the educational testing problem from the projection Algorithm 6.3.1



144

Columns which
determine A r(0) r∗ NQP

∑
θ∗i

1,2,5,6 2 3 14 542.77356

1,3,4,5 2 2 12 633.15784

1,2,3,6,8,10 3 5 9 305.48170

1,2,4,5,6,8 3 4 13 564.46331

1–6 3 4 14 535.36227

1–8 5 6 29 641.83848

1–10 6 8 34 690.78040

1–12 8 9 29 747.48921

1–14 10 12 36 671.27506

1–16 11 14 42 663.46204

1–18 13 15 27 747.50574

1–20 15 18 39 820.34265

Table 6.5.2: Results for the educational testing problem from the l1SQP method of Section 6.4.



145

Table 6.5.3 investigates the effect of varying τ. It shows the outcome from Algorithm 6.3.1

for the following example

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10


with different τ. From Table 6.5.3 it is clear that small τ increases the total number of

iterations performed by Algorithm 5.2.2, whilst on the other hand bigger τ decreases the

total number of inner iterations and increases the number of outer iterations which are very

cheap to calculate using the projection (6.3.4) which costs approximately n multiplications

while one inner iteration costs approximately 4
3n

3 multiplications. Hence it is recommended

to increase τ to be close to the boundary of the condition (6.3.3) which is compatible with

the choice in Table 6.5.1.



146

τ NOI TNII
∑
x∗i r(0) r∗

-30.0 2 2679 15 0 2

-20.0 2 2215 15 1 2

-10.0 2 1734 15 2 2

-5.0 2 1571 15 2 2

0.0 2 1291 15 2 2

5.0 3 1308 15 2 2

10.0 3 960 15 2 2

14.0 6 787 15 2 2

14.9 15 891 15 2 2

15.0 30 792 15.0051 2 2

Table 6.5.3: Numerical comparisons for same example with different τ .



Chapter 7

Hybrid methods for solving the

educational testing problem

7.1 Introduction

In this chapter new methods for solving the educational testing problem are introduced. The

methods described here depend upon both projection and l1 SQP methods using a hybrid

method. The hybrid method works in two stages. First stage is the projection method which

converges globally so is potentially reliable but often converges at slow order. Meanwhile in

the second stage there is l1 SQP methods, in particular the method described in Section 6.4,

which converges at second order if the correct rank r∗ is given. The main disadvantage of the

l1 SQP methods are that they require the correct r∗. A hybrid method is one which switches

between these methods and aims to combine their best features. To apply an l1 SQP method

requires a knowledge of the rank r∗ and this knowledge can also be gained from the progress

of the projection method. Hybrid methods can work well but there is one disadvantage. If

the positive definite matrix have the same rank as the optimal positive semi–definite matrix in

which the l1 SQP method works well, then most of the time will be taken up in the first stage,

using the projection method. If this converges slowly then the hybrid method will not solve

the problem effectively. Thus it is important to ensure that the second stage method is used to

maximum effect. Hence in the algorithm of Section 7.3 the l1 SQP method is applied first.

In Sections 7.2 and 7.3 two new methods are described. Firstly, there is the projection–

l1SQP method, which starts with the projection method to determine the rank r(k) and

147



148

continues with the l1 SQP method. Secondly, the l1 SQP–projection method is described,

which solves the problem by the l1 SQP method and uses the projection method to update

the rank. Numerical results and comparisons are given in Section 7.4.

As with the methods of Chapter 6 it is easy to move from one method to the other in

either direction. This in contrast to Chapter 4 where some special techniques were developed

to enable this to be done.

7.2 Projection–l1SQP method

The main disadvantage of the l1 SQP method is finding the exact rank r∗, since it is not

known in advance it is necessary to estimate it by an integer r(k). It is suggested that the best

estimate of the matrix rank r(k) is obtained by carrying out some iterations of the projection

method given in Section 6.3. This is because the projection method is a globally convergent

method.

The method in this section follows a similar strategy as that in Section 4.3.

Consider Λr in (5.2.4), then at the solution the number of eigenvalues in Λr is equal to

the rank r∗. Thus

No. Λ∗r = r∗ (7.2.1)

where No. Λ is the number of positive eigenvalues in Λ. A similar equation to (7.2.1) is

used to calculate an estimated rank r(k) given by

No. Λ(k)
r = r(k).

where Λr is given by (5.2.4). The range of error is relatively small. Then the l1 SQP method

will be applied to solve the problem as described in Section 6.4.

Another consideration is τ how to be chosen, if τ is close to the boundary of the condition

(6.3.4) then the equation

No. Λ(k)
r = r∗

may satisfied in the first few iterations. Experiments proved this fact see Table 6.5.1.

The projection–l1 SQP algorithm can be described as follows.



149

Algorithm 7.2.1

Given any positive definite matrix F = FT ∈ <n×n, let s be a positive integer. Then

the following algorithm solves the educational testing problem

i. Let F (0) = F

ii. Choose τ to be close to the boundary of the condition (6.3.3).

iii. Apply Algorithm 6.3.1 until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s (7.2.2)

iv. r(k) = No. Λ(k)
r

v. Use the result vector x from Algorithm 6.3.1 as an initial vector for l1 SQP method

vi. Apply l1 SQP method to solve the problem with r = r(k).

If

‖D2(x)‖ ≤ ε for some small ε

Then

F ∗ = F (k), r∗ = r(k) and terminate

Endif

vii. Apply one inner iteration of the Algorithm 6.3.1.

viii. Go to (iv).

The integer s in Algorithm 7.2.1 can be any positive number. If it is small then the rank

r(k) may not be accurately estimated, however the number of iterations taken by projection

method is small. In the other hand if s is large then a more accurate rank is obtained but the

projection method needs more iterations.

The advantage of using the projection method as the first stage of the projection–l1

SQP method is that if F (0) is positive semi–definite (singular) then the projection method

terminates at the first iteration. Moreover it gives the best estimate to r(k).

Another way of estimating the rank r(k) is suggested by Fletcher [1985] and it was

given in the end of Section 5.4, equation (5.4.3).



150

7.3 l1SQP–Projection method

Starting with projection method has the advantage of knowing if the given matrix is a positive

semi–definite (singular) or not, and it gives the best estimate for the matrix rank r(k). However

sometimes it takes many iterations before equation (7.2.2) is satisfied, especially if τ is chosen

to be small, this means slow convergence since the projection method is slow converges method.

In this method an algorithm starts with the l1SQP method with an estimated rank r(k) is

considered. Then one iteration of the projection method will be calculated after every stage

of the l1SQP–projection algorithm the resulting vector x(k) will be used as an initial vector

to the next stage, thus the vector x(k) is updated at every stage from the previous one.

The method in this section follows a similar strategy as that in Section 4.4.

Now the l1SQP–projection algorithm can be described as follows.

Algorithm 7.3.1

Given any positive definite matrix F = FT ∈ <n×n the following algorithm solves the

educational testing problem

i. Let F (0) = F

ii. Choose r(k) (small as possible based on one of Section 7.2 strategies).

iii. Apply l1 SQP method if ‖D2(x)‖ ≤ ε for some small ε, terminates.

iv. Use the result x(k) as an initial vector for projection method (Algorithm 6.3.1).

v. Choose τ to be close to the boundary of the condition (6.3.3), (τ =
∑
x

(k)
i ).

vi. Apply one iteration of the projection method.

vii. r(k) = No. Λ(k)
r .

viii. Use the result x(k) as an initial vector for l1 SQP method.

ix. Go to (iii).

Another advantage of this algorithm is that if the rank is not correct then instead of adding

one to r(k) it goes back to the projection method to provide a better estimate to r(k).

This will increase or decrease r(k) nearer to r∗, therefore variables will be added to or

subtracted from the problem. The new variables are estimated using the projection method.



151

Another advantage is that at every stage only one iteration of projection method is used giving

a faster converging algorithm.

Example 7.3.2

An example of this algorithm for n = 5

F = F (0) =



0 5 4 3 1

5 0 6 3 3

4 6 0 6 4

3 3 6 0 5

1 3 4 5 0


v =



10

10

10

10

10


.

If we use projection method to estimate r(0) as in the previous section with τ = − 100

then r(0) = 1, apply the l1SQP algorithm then it terminates with

x = [10/3 7.5 4.8 2.7 0.3],
5∑

i=1

xi = 18.6333

∑5
i=1 xi = 18.6333 and D(x) 6∼= 0. Applying one iteration from the projection method

with τ = 18 we find that r(k) = 3 and

x = [3.4671 7.5652 6.1089 4.5908 2.5492].

Apply this as an initial vector for l1 SQP algorithm, after 15 iterations the l1SQP algorithm

terminates with D(x) ∼= 0,

x = [13/3 9.0 6.0 9.0 13/3]

and
∑

x = 32.6667. If we use the initial τ = 18 instead of τ = − 100 in the first stage

of the projection method then r(0) = 3 and the l1SQP algorithm will terminate directly

with the same result.

7.4 Numerical results and comparisons

In this section numerical problems are obtained from the data given in Table 6.2.1, by Wood-

house [1976]. The Woodhouse data set is a 64 × 20 data which corresponds to 64 students



152

Columns which
determine F τ TNII r(0) r∗ NQP

∑
θ∗i

1,2,5,6 400 4 3 3 11 542.77356

1,3,4,5 400 2 2 2 12 633.15784

1,2,3,6,8,10 600 11 4 5 8 305.48170

1,2,4,5,6,8 600 4 4 4 13 564.46331

1–6 600 6 4 4 10 535.36227

1–8 800 13 5 6 14 641.83848

1–10 1000 15 7 8 21 690.78040

1–12 1200 23 9 9 9 747.48921

1–14 1400 25 10 12 34 671.27506

1–16 1600 22 11 14 44 663.46204

1–18 1800 20 12 15 27 747.50574

1–20 2000 29 14 18 39 820.34265

Table 7.4.1: Results for the educational testing problem from the projection–l1SQP method of
Section 7.2.

and 20 subtests. Various selections from the set of subsets of columns are used to give various

test problems to form the matrix F . These subsets are those given in the first columns of Tables

7.4.1–3, the value of n is the number of elements in each subset. Equation (6.2.2) gives the

formula for calculating the educational testing problems from Table 6.2.1.

The result obtained by the new method of Section 7.2 are tabulated in Table 7.4.1. In Table

7.4.1 the columns headed by NQP give the number of times that the major l1SQP is solved.

In the projection–l1SQP method τ needs to be estimated very close to
∑
x∗i , this

will give us a very good estimate of the rank. Since the average size of the educational testing

problem elements are more than 100, τ = n×100 is chosen as an initial value (see Section

6.5). In Table 7.4.1 it is clear that when n > 10 then τ becomes very small comparing

with
∑
x∗i which makes the projection method estimate r(k) very small comparing with the

correct r∗.

The result obtained by the new method of Section 7.3 are tabulated in Table 7.4.2. In the

l1SQP–projection method r(k) updated using one iteration of the projection method. In the



153

projection method τ estimated using the result from the l1SQP method. In the 1–10 case the

projection method estimated r(k) = 10 instead of r(k) = 9.

In both Tables 7.4.1 and 7.4.2 it can be seen that the results we have are exactly the same as

Fletcher [1985]. Also one or two of the variables are adjusted so that the matrix F − diag θ

is exactly singular and positive semi–definite.

Finally in Table 7.4.3 the four methods are compared.



154

Columns which
determine F r(0) NQP PMr(k) NQP

∑
θ∗i

1,2,5,6 2 5 3 6 542.77356

1,3,4,5 2 12 633.15784

1,2,3,6,8,10 3 4 5 5 305.48170

1,2,4,5,6,8 3 6 4 4 564.46331

1–6 3 7 4 4 535.36227

1–8 5 7 6 6 641.83848

1–10 6 9 8 11 690.78040

1–12 8 3 10 9 747.48921

1–14 10 6 12 9 671.27506

1–16 11 9 14 10 663.46204

1–18 13 7 15 16 747.50574

1–20 15 5 18 21 820.34265

Table 7.4.2: Results for the educational testing problem from the l1SQP–projection method of
Section 7.3.

PMr(k) :rank r updated from the projection method.



155

Columns which PM l1SQP Pl1SQP l1SQPP
determine F r∗ TNII r(0) NQP TNII r(0) NQP r(0) TNQP

1,2,5,6 3 197 2 14 4 3 11 2 11

1,3,4,5 2 224 2 12 2 2 12 2 12

1,2,3,6,8,10 5 580 3 9 11 4 8 3 9

1,2,4,5,6,8 4 4994 3 13 4 4 13 3 10

1–6 4 1351 3 14 6 4 10 3 11

1–8 6 1948 5 29 13 5 14 5 13

1–10 8 2918 6 34 15 7 21 6 20

1–12 9 2403 8 29 23 9 9 8 12

1–14 12 3196 10 36 25 10 34 10 15

1–16 14 5215 11 42 22 11 44 11 19

1–18 15 14043 13 27 20 12 27 13 23

1–20 18 8255 15 39 29 14 39 15 26

Table 7.4.3: Comparing the four methods.

Pl1SQP: the projection–l1SQP method.
l1SQPP: the l1SQP–projection method.

TNQP : total number of NQP.



Chapter 8

Conclusions and further work

In this thesis we have studied certain problems involving positive semi–definite matrix con-

straint. We have found that our implementations of the new unconstrained methods for solving

the Euclidean distance matrix problem have performed well in comparison with the projection

method. However, the hybrid methods in Chapter 4 performed even better, with very fast con-

vergence, especially the projection–unconstrained method (Section 4.3) which is much better

than the projection method and Method 3.4.2 from which it is composed. In determining the

correct rank the projection method worked well and found the rank in a few iterations. Also

we have successfully found methods for switching from one method to another.

A number of suggestions for further research about the methods that solves the Euclidean

distance matrix problem are the following.

• It is clear that if the diagonal matrix ∆(k)

in (3.3.11) satisfies PdPM (F + ∆(k)) = PM (F + ∆(k)) then PM (F + ∆(k))

is the required solution where F is a given matrix. Possibly from the structure of the

given matrix F that one can find the required diagonal matrix in one go. It is not clear

how to do this but it might be worth trying.

• The unconstrained methods have a large number of variables (∼ (r − 1)n depending on

the method) which means that the method takes a large number of line searches to solve

the problem. Therefore it is worth trying to restate the problem with only the diagonal

matrix ∆(k) as variables and then finding methods for solving it.

• Method 3.4.3 needs more investigation because the number of variables is less than the

156



157

other unconstrained methods, whilst the number of line searches is larger. However num-

ber of possible reasons have been given in Section 3.6.

For the least distance problem in Chapter 5 two methods are developed, that is the projection

method and the l1 SQP method. The l1 SQP method has performed well in comparison with

the projection method which takes a huge number of iterations to solve the problem. Also

the projection– l1 SQP method (Section 4.3) has worked well in solving the problem. The

few iterations taken by the projection method to determine the rank saves a large number

of iterations taken by the l1 SQP method. The integer s in Algorithm 5.4.1 chosen to be

small (∼ 2) in Table 5.5.2. This reduces the number of iterations taken by projection method

although the rank is not accurately estimated and the lower bound given by Fletcher [1985] has

worked better in the case 1–18.

Two suggestions for further research about the methods that solves the least distance prob-

lem are given in the following.

• By looking at problem (5.4.3), there is a different problems with every different initial

vector a. The projection Algorithm 5.2.2 solves this problem with the initial vector zero

replaced by a. Extending the l1 SQP method to solve problems of this type is worth

investigation.

• A modified projection algorithm similar to Algorithm 4.2.1 is needed for the least distance

problem this enable us to use the result matrix from the l1 SQP method as an initial

matrix for the projection method. Then a more effective hybrid method could be obtained.

Two methods have given for solving the educational testing problem. One is the l1 SQP

method by Fletcher [1985] the other is the projection method by Glunt [1991]. The hybrid

methods developed in Chapter 7 have good rate of convergence specially the l1 SQP–projection

method (Section 7.3) as compared with the methods of Chapter 6. The projection method is

not very effective in determining the rank when n ≥ 12. This is because a small value of

s is shosen in Algorithms 7.2.1 and 7.3.1. In the other hand if s is increased then a large

number of iterations are consumed by the projection method. Hence a suitable way of chosing

the integer s is needs some investigation. Various examples are solved in Sections 6.5 and 7.4

with different τ . The best way to choose τ is given there.



158

References

Al–Baali, M. and Fletcher, R. [1985]. Variational methods for nonlinear least squares, J. Oper.

Res. Soc., 36, pp. 405–421.

Bentler, P. M. [1972]. A lower–bound method for the dimension–free measurement of internal

consistency, Social Sci. Res., 1, pp. 343–357.

Blumenthal, L. M. [1953]. Theory and Applications of Distance Geometry, Oxford Univ. Press,

London.

Boyle, J. P. and Dykstra, R. L. [1986]. A method for finding projections onto the intersection

of convex sets in Hilbert space, in Advances in Order Restricted Statistical Inference,

(Eds. R. Dykstra, T. Robertson, and F. T. Wright), Lecture Notes in Statistics 37,

Springer–Verlag, Berlin, pp. 28–47.

Browne, M. W. [1987]. The Young–Householder algorithm and the least squre multidimen-

sional scaling of squared distance, J. of Classification, 4, pp. 175–190.

Broyden, C. G. [1970]. The convergence of a class of double rank minimization algorithms,

parts I and II, J. Inst. Maths. Applns., 6, pp. 76–90 and 222–231.

Cheney, W. and Goldstein, A. [1959]. Proximity maps for convex sets, Proc. Amer. Math.

Soc., 10, pp. 448–450.

Colledge, R. G. and Rushton, G. [1972]. Multidimensional scaling: review and geographi-

cal applications. Geographic technical papers series, no. 10. Association of American

geographers. Washington.

Crippen, G. M. [1977]. A novel approach to calculation of conformation: distance gemotry. J.

Computational Physics 24, pp. 96–107. *

Crippen, G. M. [1978]. Rapid calculation of coordinates from distance measures. J. Compu-

tational Physics 26, pp. 449–452.



159

De Leeuw, J. and Heiser, W. [1980]. Multidimensional scaling with restrictions on the con-

figuration, in Multivariate Analysis V, (Ed. P. R. Krishnaiah), North Holland Pub. Co.,

pp. 502–522.

Deutsch, F. [1983]. Von Neumann’s alternating method: the rate of convergence, in Approx-

imation Theory IV, (Eds. C. Chui, L. Schumaker and J. Ward), Academic Press, New

York–London, pp. 427–434.

Dykstra, R. L. [1983]. An algorithm for restricted least squares regression, J. Amer. Stat.

Assoc. 78, pp. 839–842.

Fletcher, R. [1970]. A new approach to variable metric algorithms, Computer J., 13, pp.

317–322.

Fletcher, R. [1981a]. Numerical experiments with an exact l1 penalty function method, in

Nonlinear Programming 4, (Eds. O. L. Mangasarian, R. R. Meyer and S. M. Robinson),

Academic Press, New York.

Fletcher, R. [1981b]. A nonlinear programming problem in statistics (educational testing),

SIAM J. Sci. Stat. Comput., 2, pp. 257–267.

Fletcher, R. [1982]. Semi–definite matrix constraints in optimization, Dept. Mathematical

Sciences, Numerical Analysis Report NA/61, Univ. Dundee, Scotland.

Fletcher, R. [1985]. Semi–definite matrix constraints in optimization, SIAM J. Control and

Optimization, 23, pp. 493–513.

Fletcher, R. [1987]. Practical methods of optimization, John Wiley and Sons, Chichester.

Gaffke, N. and Mathar, R. [1989]. A cyclic projection algorithm via duality, Metrika, 36, pp.

29–54.

Gilbert, E. N. [1974]. Distortion in maps, SIAM Review, 16, pp. 47–62.

Glunt, W. [1991]. An alternating projections method for linear convex programming problems,

Ph.D. Thesis, University of Kentucky.



160

Glunt,W. Hayden, T. L. Hong, S. and Wells, J. [1990]. An alternating projections method

for computing the nearest Euclidian distance matrix, SIAM J. Matrix and App. , 4, pp.

589–600.

Goldfarb, D. [1970]. A family of variable metric methods derived by variaional means, Maths.

Comp., 24, pp. 23–26.

Golub, G. H. and Van Loan, C. F. [1989]. Matrix Computations, Johns Hopkins Universty

Press, Baltimore, MD.

Guttman, L. [1945]. A basis for analyzing test–retest reliability, Psychometrika, 10, pp. 255–

282.

Hald, J. and Madsen, K. [1981]. Combined LP and quasi–Newton methods for minmax opti-

mization, Math. Programming, 20, pp. 49–62.

Han, S. P. [1977]. A globally convergent method for nonlinear programming, J. Optim. Theory

Appl., 22, pp. 297–309.

Han, S. P. [1988]. A successive projection method, Math. Programming, 40, pp. 1–14.

Havel, T. Kuntz, I. and Crippen, G. [1983]. The theory and practice of distance geometry,

Bull. Math. Biol., 45, pp. 665–720.

Hayden, T. L. and Wells, J. [1988]. Approximation by matrics positive semi–definite on a

subspace, Linear Alg. and Appl., 109, pp. 115–130.

Higham, N. [1988]. Computing a nearest symmetric positive semi–definite matrix, Linear Alg.

and Appl., 103, pp. 103–118.

Kendall, D. G. [1971]. Construction of maps from ”odd” bits of information, Nature, 231, pp.

158–159.

Lalouel, J. M. [1977]. Linkage mapping from pairwise recombination data, Heredity, 38, pp.

61–77.

Menger, K. [1931]. New foundations of Euclidean geometry, Amer. J. Math., 53, pp. 721–745.



161

Meulman, J. [1986]. A distance approach to nonlinear multivariate analysis, DSWO Press,

Leiden.

Powell, M. J. D. [1970]. A hybrid method for nonlinear equations, in Numerical Methods for

Nonlinear Algebraic Equations, (Ed. P. Rabinowitz), Gordon and Breach, London.

Rockafellar, R. T. [1970]. Convex Analysis, Princeton Univ. Press, Princeton, NJ.

Rockafellar, R. T. [1981]. The Theory of Subgradients and Its Applications to Problems of

Optimization. Convex and Nonconvex Functions, Research and Education in Mathematics

1, Heldermann Verlag, Berlin.

Schoenberg, I. J. [1935]. Remarks to M. Frechet’s article ”Sur la definition axiomatique d’une

classe d’espace distances vectoriellement applicable sur l’espace de Hilbert”, Ann. of

Math., 36, pp. 724–732.

Shanno, D. F. [1970]. Conditioning of quasi–Newton methods for function minimization,

Maths. Comp., 24, pp. 647–656.

Takane, Y. [1977]. On the relations among four methods of multidimensional scaling, Behav-

iormetrika 4, pp. 29–43.

Von Neumann, J. [1950]. Functional Operators II, The geometry of orthogonal spaces, Annals

of Math. Studies No. 22, Princeton Univ. Press.

Woodhouse, B. [1976]. Lower bounds for the reliability of a test, M.Sc. Thesis, Dept of

Statistics, University of Wales, Aberystwyth.

Woodhouse, B. and Jackson, P. H. [1977]. Lower bounds for the reliability of the total score on

a test composed of non–homogeneous items: II. A search procedure to locate the greatest

lower bound, Psychometrika 42, pp. 579–591.

Young, F. W. [1984]. Scaling, Ann. Rev. Psychol. 35, pp. 55–81.

Young, G. and Householder A. S. [1938]. Discussion of a set of points in terms of their mutual

distances, Psychometrika 3, pp. 19–22.


