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Abstract: - Combined methods for minimizing least distance functions with Hankel positive semi—
definite matrix constraints are considered. Our approach is based on (i) a projection algorithm which
converges globally but slowly; and (ii) the filterSQP method which is faster. Hybrid methods that
attempt to combine the best features of both methods are then considered. Comparative numerical

results are reported.
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1 Introduction

Hankel matrices appear naturally in a variety of
problems of engineering interest: comunication,
control engineering, filter design, identification,
model reduction and broadband matching, and
in different fileds of mathematics, e.g., in systems
theory, integral equations, and operator theory.

Hankel matrices possess certain properties
regarding their rank and positive semi-definite
structures depending on the construction or ar-
rangement of their elements. In practical appli-
cations, these matrices are constructed from noisy
observations and hence some of their nice proper-
ties may be destroyed or changed. The signal pro-
cessing problem is to estimate the matrices with
desired properties so that the estimated matrix is
close to the given observation in some reasonable
sense.

We consider the following problem: Given an
arbitrary data matrix F' € IR™*”, find the nearest
positive semi-definite Hankel matrix H to F that
minimizes

minimize ¢ =||F — H|r (1)
where ||.||p denotes the Frobenius norm.

The problem was studied by MacInnes [11]; he
proposed a method for finding the best approxi-
mation of a matrix F' by a full rank Hankel ma-
trix. In [11], the initial problem of best approx-
imation of one matrix by another is transformed
to a problem involving best approximation of a
given vector by a second vector whose elements

are constrained so that its inverse image is a Han-
kel matrix. The alternating projection algorithm
was successfully used in solving similar approxi-
mation problems for distance matrices [3]. Oh et.
al. [12] used the alternating projection onto fuzzy
convex sets when three or more convex sets do not
intersect. Related problems were also studied by
[13, 14] and [15] in relation to signal processing
problems.

Throughout this paper, the real Hilbert space
of all n x n symmetric matrices is denoted by H
and (.,.) an inner product on H. The Frobenius
norm is given by ||A||% = (A, A), and the distance
between A € ‘H and B € H is |A — B||r. The
orthogonal projection from H onto the set Kj is
denoted by P;. The operator P; defined by

Pi(B) =A where BeH and A€ K,
provides a solution to the optimization problem
|A— B| =min{||C —B|; VC € K;}.

Also, A = P;(B) is a unique element in the convex
set K; characterized by

(B—A,C—A) <0 YC € Ki.

A Hankel matrix H is denoted by

aq ag cen Ay

az  ag Apg1
H = .

an  Apyl a2n—1

= Hankel(a;,as,as,...,a9,-1). (2)



2 Alternating Projection Algorithm

In this section, we describe a projection algo-
rithm for solving the Hankel matrix approxima-
tion problem (1). This algorithm is derived from
an alternating projection algorithm due to Dyk-
stra [5] for finding the least distance from a fixed
point to an intersection of convex sets. Along
with this, we give two convex sets and formulas
for certain projection maps that are needed in this
section.

It is convenient to define two convex sets for
the purpose of constructing the probem. The set
of all n x n symmetric positive semi—definite
matrices

Kr = {A:AcR™", AT = Aand
z'Az > 0 VzeR"} (3)

is a convex cone of dimension n(n + 1)/2. Also,
Ky = {H:H e R"™", His a Hankel}. (4)

is a convex set of dimension 2n — 1.

In addition, we need formulae for the projec-
tion maps denoted by Pr(.) and Pg(.) on to KR
and Kp. The projection map Pr(F) formula
on to Ky is given by [9]

Pg (F) =UATUT, (5)

where A
0
+ s
and Ay = diag [M\, Ao, ..., Ag] is the diag-
onal matrix formed from the positive eigenvalues
of F.

The projection map Pg(F)
Ky is given by

formula on to

Py(F) = Hankel(ho, ha,... hop—2), (7)

where

k
1
th%;ka—u, k=1,...,n

1 2n—k
hy= ST ; fr—it1 kti—n;
k=n+1,...,2n— 1. (8)

In other words, Py maps each elements in anti-
diagonal of F' into the average of the elements in
that anti-diagonal of F'.

The Dykstra-Han algorithm solves the prob-
lem

minimize

I —x|2

m
subject to X € ﬂ K,
i=1

where the K; are convex sets in IR” and f is a
given arbitrary point. The algorithm initializes
f0 = f and generates a sequence {f*)} using the
iteration formula

£ — £ L p (P (ER)) ) =Py R (9)

Here P;(f) denotes the ls projection of f on to
K;, that is, the (unique) nearest vector to f in
K;. Tt is shown by Boyle and Dykstra [4] that
Pi(...P(f®)..)) — x* for any i > 1. However
the sequence {f(®¥)} does not in general converge
to x* (see [2]).

In applying Dykstra-Han algorithm to the
Hankel matrix approximation, it is appropriate
to use the Frobenius matrix norm, and to express
(1) as

minimize |F'— H||
subject to  H € KRN Kpy (10)
where K and Ky are given by (3) and (4), re-
spectively. To apply algorithm (9) we need the
formulae for the projection maps Pr(.) and Pg(.),
given by (5) and (7) and corresponding, respec-
tively, to P1(.) and P»(.) in (9). These are the
maps from K = {A: A€ R"™"} on to KR and
K.

Now we use the projection maps Pr(F') and
Py (F) given by (5) and (7) to implement the
Dykstra-Han algorithm (9). Hence, the new algo-
rithm is as follows: Given an arbitrary distance
matrix F € R™*", the algorithm is initialized by
F©) = F and the iteration formula is

FEHD — pO) 4 py(Pr(F®))) - Pr(F®). (11)

The sequences {P]R(F(k))} and {PH(PR((F(k)))}
converge to the solution H of (10) and hence (1).

3 The SQP Algorithms
In the previous section, the alternating projection
algorithm computes a unique solution for (10)



since the sets Kr and Ky are convex. When
SQP methods are applied to solve the problem,
this requires the knowledge of the rank(H); hence
(10) loses convexity and this increases the diffi-
culty. Therefore, in this section, we consider a
different approach to (10). The main idea is to
replace (10) by a smooth nonlinear programming
problem in order to use a second order conver-
gent filterSQP method. Problem (10) is solved
by filterSQP method, also the relevant formulae
for derivatives are given.

It is difficult to deal with the matrix set con-
straint in (3) and (4) since it is not easy to specify
if the elements are feasible. Using partial LDLT
factorization of H, this difficulty can be overcome.
We assume that the rank of H is known to be m.
Permuting rows and columns if necessary, and
partitioning H, then for H sufficiently close to
H*, the partial factors H = LDLT can be calcu-
lated such that

| Ln | D1
L= o= 7l
Hy HL
H = , 12
[Hm Hao (12)

where L11, D1 and Hy; are m X m matrices;
I, Dy and Hoy are n —m X n — m matrices; Loj
and Hoy are n — m X m matrices; D is diagonal
and Dy > 0 and Dy have no particular structure
other than symmetry. At the solution, Dy = 0
and H is symmetric positive semi-definite Hankel
matrix. In general,

Dy(H) = Hyy — HoH'HE. — (13)

Now if the structure of the matrix H is in a Han-
kel form, i.e.,

‘,Ifll DY a’/‘n
H =

Ln - T2p—1
(14)
then (13) enables the constraint H € K = K N
Ky to be written in the form

Dy(H(x)) = 0. (15)
Hence, (1) can now be expressed as

minimize ¢
subject to Do(H(x)) = 0=Z"HZ, (16)

= Hankel(x1,- -+, 22, 1),

—H'HL . . .
where Z = 11 7721 g the basis matrix for

the null space of H when Dy = 0. The Lagrange
multipliers for the constraint (15) are A relative
to the basis Z and the Lagrangian for porblem
(16) is

LxP ARy = ¢ —A:2ZTHZ. — (7)
The above approach has been studied in a similar
way by [6].

The structure of the Hankel matrix D has
been given in (14), then

¢="> (fig—hij)* =D _(fij = wirj1)%,

ij=1 ij=1
(18)

and ¢ = [%"'BT(ZL%]T where V denotes
the gradient operator (9/0x1, ..., 0/0wa, 1)T.
Therefore

d¢ .

. :2;($s_fi s—it1) s=1,...,n

a¢ 2n—s

oz, =2 ; (s — fa—it1 s+i-n)
s=n+1,...,2n —1.(19)

Differentiating again gives

0%¢
= f
0x,0xg it s,
where s,7=1,---,2n — 1, and
2
g—w(g:%, s=1,...,n
2
g—x(§:2(2n —s). s=n+1,...,2n—1(20)

The advantage of formula (15) is that expres-
sions for both first and second derivatives of the
constraints with respect to the elements of H can
be obtained. The simple form of (13) is utilized
by writing the constraints Dyo(H) = 0 in the fol-
lowing form:

m

—1
= Zipj— Y Tk 1 [Hi Tk i1 =0
Ei=1

dij(x)

(21)



where 7,7 = m + 1,---,n and [Hﬁl]kl denotes
the element of Hp;' in kl-position. Thus (16)
can be expressed as

minimize ¢ = Z (fij — ®irj—1)>
ij=1
subject to d;j(x) = 0 (22)

In this problem, since the equivalent constraints
d;j(x) = 0 and d;i(x) = 0 are both present, they
would be stated only for i > j.

In order to write down the SQP method ap-
plied to (22), it is necessay to derive first and
second derivatives of d;; which enable a second
order rate of convergence to be achieved.

Let I; be an m x m matrix given by

I, = Hankel(0,...,0,1,0,...,0),
where the “1" appearing in the first row is in the
sth column and the “1" appearing in the first
column is in the sth row. Hence the matrix I,
is a matrix that contains “1"s in one across anti—
diagonal and zeros elsewhere. Now differentiating

Hy H' = T gives
Hfl
o,y _ ~H' I HY s < 2m. (23)
0%
-1
% =0 s>2m
Oxg

Hence from (13),

0Ds

T IL+VILv+UuT +U, (24)

where

OHao
0x,

VI = —HyHS', U=IILV, II;=
and 111, = 9dn

7

11, and II1; are matrices similar to I, with I
being an n—m xXn—m matrix which contains ones
in one across anti—diagonal and zeros elsewhere,
and III; is an n — m X m matrix which con-
tains ones in one across anti—diagonal and zeros
elsewhere.

Furthermore, differentiating (23), we get

0%Dy
0zs0x,

=Y +Y7,

where
Y=-z'H;'Z, and Z,=LV —1III}.

Table 1 summarizes the state of the gradient and
Hessian of Do with respect to x

e N
VIV LV 0<s<m
VILV +UT +U|LV — III}| m<s<2m
Ul +U —I11r 5=2m
II,+UT+U —IIII 2m<s<n+m
I 0 n+m<s<2n—1

Table 1: Gradient and Hessian formulas for Ds.

Now, let

W = V2L(x,A)

= V% — > Vi (25)

i,j=m+1

where V?¢ is given by (20) and

Y NV

i,j=m+1

)\% )\ﬁL
Z" v) dr10x1 Z" 1) Bx10Ln

S N SNk

Usually, V2L is positive definite, in which
case, if x®) is sufficiently close to x*, the basic
SQP method converges and the rate is second or-
der (Fletcher [7]). Globally, however (22) may
not converge. An algorithm with better conver-
gence properties, when x(¥) is remote from xX*, is
suggested by Fletcher at. al. [8] in which the fil-
terSQP can be used to slove (22). Now since the
gradient and Hessian are both available, therefore
filterSQP can be used to slove the problem.

This description of iterative schemes for solv-
ing (22) has so far ignored an important con-
straint, that, is D; > 0 in which the varibles x(*)
must permit the matrix A®) to be factorized as in
(12). However, since m is identified correctly and
x(*) is near the solution, this restriction will usu-
ally be inactive at the solution. If x*) is remote
from the solution, additional constraints

d® > 0.



are introduced. However, strict inequalities are
not permissible in an optimization problem and
it is also advisable not to allow d..(x(*)) to come
too close to zero, especially for small r, as this is
likely to cause the factorization to fail. Hence the
constraints

md® /r >0 r=1,2....m

are added to problem (22). Finally, it is pos-
sible that partial factors of the matrix H®) in
the form (12) do not exist for some iterates. In
this case, the parameter in the filterSQP method
Pt = ptk) /4 x(k+1) = x(B) and A+ = A(K)
are chosen for the next iteration in the trust re-
gion method.

An advantage of the filterSQP method is that
it allows the spatial dimensions to be chosen by
the user. This is useful when the rank is already
known. For example if the entries in F' are derived
from a matrix that has rank m = 2 or m = 3.

In general, however, the rank of the matrix is
not known, for example the matrix that assumed
has rank m = 3 might be irreducibly embedded in
matrix with rank m =1 or m = 2. We therefore
must consider an algorithm in which we are pre-
pared to revise our estimate of m. A simple strat-
egy is to repeat the entire filterSQP method for
different values of m. If m* denotes the correct
value of m which solves (1), then it is observed
that the filterSQP methodd converges rapidly if
m < m*, and exhibits second order convergence.
On the other hand if m > m* then slow conver-
gence is observed. One reason is that there are
more variables in the problem. Also redundancy
in the parameter space may have an effect. Thus
it makes sense to start with a small value of m,
and increase it by one until the solution is recog-
nised. One way to recognise termination is when
H®) agrees sufficiently well with H*+1 where
H®) denotes the positive semi-definite Hankel
matrix obtained by minimizing ¢.

4 Hybrid Methods

A combination of both algorithms are introduced.
Projection methods are globally convergent and
hence potentially reliable, but often converge
slowly, which can be very inefficient. SQP meth-
ods are reliable and have a second order rate of
convergence, but require that the correct rank m*
is known. We therefore consider hybrid methods

in which the projection algorithm is used spar-
ingly as a way of establishing the correct rank,
whilst the filterSQP method is used to provide
rapid convergence.

In order to ensure that each component
method is used to best effect, it is important
to transfer information from one method to the
other. In particular, the result from one method
is used to provide the initial data for the other,
and vice versa. This mechanism has a fixed point
property so that if one method finds a solution,
then the other method is initialized with an iter-
ate that also corresponds to the solution.

We will evaluate two different algorithms
which differ in respect of how m(© is initialized.
Algorithm 1 is expressed as follows: Given any
data matrix F € R™*", let s be some pre-selected
positive integer number and € some small number.
Then the following algorithm solves (1)

Algorithm 1 (F(©) := F 5, ¢):

repeat projection method
until mW =m=9) j =12, s.
repeat
Apply one iteration of projection method;
m© .= m®;
x(0) .= x®; (x® from PM)
repeat fSQPM;
until || D2 (x)|| < €
until |x® —xD| < e (xFfrom fSQPM)
return (F* := F) x* .= x(®) m* .= m®),
where PM is the projection method and
fSQPM is the filter SQP method. The choice of s
is a compromise between two effects. If s is small
then the rank may not be accurately estimated,
but the number of (expensive) iterations taken
in the projection method is small. On the other
hand if s is large then a more accurate rank is
obtained but the projection method needs more
iterations.

In Algorithm 2, m(©) is supplied by the user.
This approach avoids the initial sequence of pro-
jection iterations, but works well if the user is
able to make a good estimate of the rank, which
is often the case. Thus, we can express Algorithm
2 as follows: Given any data matrix F € R™*",
let € be some small number; also choose m(®
as a small integer number. Then the following
algorithm solves (1)

Algorithm 2 (F(O .= F, m(0) ¢):

repeat



repeat fSQPM;
until || D2 (x)]| < €
x(0) .= x(k); (x®) from fSQPM)
Apply one iteration of projection method;
m(©® = m®;
x(0 .= xO; (x(l) from PM)
until ||x®) — x| < ¢
return (F* := F®) x* .= x(®) m* .= m®),

5 Numerical Results

In this section, we report our numerical results.
Fortran codes have been written to program
solver for (1) using filterSQP. Projection compu-
tations have been coded in Matlab 5.3.

The results were obtained by applying the
methods as follows. Consider the matrix V as
a Vandermonde matrix then

H=VvDVT, (26)
where D is an m x m diagonal matrix with pos-
itive diagonal entries, then H is Hankel positive
semi-definite matrix (see [1, 10]). A matrix H
was formed from (26) by randomly choosing m
weights d; in matrix D, 0 < d; < 1.0 and m
values z;,0 < x; < 1.0 to determine the Vander-
monde matrix V. The matrix thus obtained by
(26) was perturbed by adding random noise ma-
trix S to H, where elements of S vary between
—0.10 and 0.10. The problem is to recover the m
frequencies x; and weights d; that determine the
matrix before the noise was added. The conver-
gence criterion is that the maximum changes of
the matrix H®) should be less than 1 x 1072,

A2

n || m© NL | m® NL

in from in

filterSQP | OPA | filterSQP
5 1 5 3* 6

10 2 12 4* 13
15 2 5* 10
20 3 11 . 17
25 3 7 T 14
30 3 8 9* 12

PA  flterSQP Al A2
nlmNPI|| TNI ||s|NPIm®|NI|TNI
53] 321 13 5] 5 [2]9 [ 11
10| 4 | 447 23 |I5| 6 |5 11 25
15| 5 | 604 32 |10 21 [ 7| 7| 19
20| 7 | 701 8 200 29 | 8 | 17 || 28
25) 7| 828 42 |1Bof 121 | 7| 14 || 21
30/ 9 | 644 57 |[30] 93 [ 9*| 13| 20

Table 2: Comparing the four algorithms.
PA: The projection algorithm (Section 2). Al:
Hybrid Algorithm 1. A2: Hybrid Algorithm 2.

NPI: Number of projection iterations. NI:
Number of iterations in the filterSQP method.

TNI: Total number of iterations in the filterSQP
method.

Table 3: Detailed progress of Algorithm 2.
OPA: One iteration of the projection algorithm.

Table 2 summarizes the results for the four
different approaches, the projection method, fil-
terSQP method, and the hybrid Algorithms 1 and
2.  All four algorithms converge to essentially
the same values. Table 2 shows the compara-
tive results for all methods and Table 3 shows
the progress of Algorithm 2 in more detail. An
asterisk indicates where the correct rank has been
identified. In some cases, with Algorithm 1, the
final rank is m* 4+ 1 or m* + 2 but the solution is
within the required tolerance.

For the projection algorithm, each iteration
involves an eigensolution, which entails relatively
expensive O(n3) calculations; also the number of
iterations is very large. Thus the projection algo-
rithm is not competitive. For other algorithms,
the housekeeping associated with each iteration
is O(n?). Also, if care is taken, it is possible to
calculate the gradient and Hessian in O(n?) oper-
ations. Thus each iteration is much less expensive
than an iteration of the projection method. For
the filterSQP method, the initial value m(©® = 1,
and m is increased by one until the solution is
found. The total number of iterations is tabu-
lated. It can be seen that the total number of
iterations is much greater than is required by the
hybrid methods. Also the initial value m(® is
rather arbitrary: a smaller value of m(® would
have given an even larger number of iterations.

Both hybrid algorithms are seen to be effec-
tive. As n increases, Algorithm 1 takes an in-
creasing number of projection iterations before
the rank settles down. We find it better to in-
crease the value of s as the value of m* increases.
Once the projection iteration has settled down,
the filterSQP method finds the solution rapidly
and no further projection steps are needed. Al-
gorithm 2 requires a relatively large number of



iterations (see Table 3) in the first call of the fil-
terSQP method, after which one projection step
finds the correct rank, and the next call of fil-
terSQP finds the solution in a few iterations. Be-
cause the projection steps in Algorithm 1 are rela-
tively expensive, the difference in computing time
between these algorithms is not very significant.
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