Chapter 4

Error Analysis

4.1 Mixed finite element method for the flow equa-

tion

First let us consider the weak solution (3.10) and (3.11) of the flow equations.
It is known that (3.10)-(3.11) has a unique solution (see, e.g., [20]). Assume that, for

the permeability function, we have

0 < Kpin = k(¢0) < K(¢) < k(o) = Kmax < 0. (4.1)

We also assume that a(¢), fi, and fy are Lipschitz continuous functions in ¢ and ¢,

i.e. for i = 1,2 we have

la(¢1) — a(g2)|| < Kl[¢1 — o2, (4.2)

[ filer, d1) — filea, @2)|| < K([ler — call + [|¢1 — d2l]). (4.3)

Note that (4.2) holds for x(¢) defined by (2.1) and (4.3) is satisfied by (2.6). If we

are given a concentration approximation C' and a porosity approximation ® at a time
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t € J, then the mixed method for pressure and velocity consists of U € VY, and

P € W, such that

@@U,v) = (P,V-V)—<gv-v>p,  veV. (4.4)

(V-Uw) = (—f(C,9),w), w € Wy (4.5)

Existence and uniqueness of U and P is proved in [20]. Using techniques from [21]
and [20], we define a projection of the exact solution into the finite element space.

Define the map (U, P) : J — V,, x W, by:

(a(p)U(t),v) = (P(t),V-V)— < gs, V-V >p,, v EVy, (4.6)

(v ’ U(t)v w) = (_fl(c(t)a 925)7 w)> w e Wy, (47)

where ¢(t) is the exact solution. In [9] and [20] this map is shown to exist. By

Theorem 2.1 of Brezzi [9] and (A4,) we get

lu—Olyqiw + o2l
< K(inf flu= vy + nf o= wl)

veVy

< K([ully + [V -y + [pl)h (4.8)

where the constant K depends on the constants in (4.1), but is independent of h, u, p
and c. We next estimate the difference between the discrete solution (U, P) and the

projection (U, P).
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Lemma 1 Given a concentration approximation C' and a porosity approximation ®

at a time t € J, the mized method solution (U, P) of (4.4)-(4.5) satisfies:

|7 =P+ 11U = Ul vy < K(1® = 8] +[IC —cl)

(4.9)

for some constant K dependent on ||U||«, where U, and P defined in (4.6) and (4.7)

above.

Proof: After subtracting (4.6),(4.7) from (4.4),(4.5) we get

(a(®)U —a(¢)U,v) = (P—P,V-v), vevy
(v : (U - U>7w) = (_f1(07 (I)) + fl(c> ¢)7w)7 w e Wh-
Set v=U— U and w = P — P and add (4.10) and (4.11) to obtain
(a(q))U - a(¢>ﬁ7U - fj) - (_fl(cv CI)) + fl(cv ¢)7P - P)

Adding and subtracting a(®)U to the first term in the LHS of (4.12) gives

(a(®)U —a(p)U,U—-TU) = (a(®)(U—-T),U-"1)

+ ((a(®) —a(9))U,U - U).
Then (4.12) becomes

(a(®)(U—-U),U-U) = (~A(C,®)+ filc,9), P~ P)

— ((a(®) —a(¢))U,U ~ U).

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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By (4.1) we have

(a(®)(U - U),U - 1U) > K||U - U (4.15)

Moreover, using (4.2)

(a(®) —a(@) 0. U~ 1) < K@ o] [U][U-0]
< K(EU-TP+ e - 6P[U). (416
Using (4.3) and Schwartz inequality we get
(“H(C,®)+ file,d), P~ P) < ||~ A(C.®) + file.o)I1P - |
< K(IC |+ ]2 - o7 - P
< K0~ + |®— o])
+ €|P - P|?). (4.17)

To estimate the last term in (4.17), consider the auxiliary problem:

V-(Vg) = P-P in Q
p =0 on 'y
Veo-v = 0 onI'; UTs.

Clearly by the elliptic regularity [10] we have
lells < K||P = PJ. (4.18)
Set 1 = Vi and let IIyp € V), be the interpolant of ¢ in RT0 [10] satisfying

(V- (Ilyp — ), w) =0 Yw € Wi, (4.19)
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The interpolation IT satisfies the following approximation property [10]:
[Ty — || < Khll]h. (4.20)
Then by (4.10) and (4.19) with v =1y € V| we have

|P—P|* = (P—P,V-)

= (a(®)U —a(¢)U, 11y)).
Similarly to (4.12) - (4.17) we get
1P —P|?* < K(|@ — [0l + U = Ul T].

Now,
L[| = [Ty — o + || < ([T — | + [[¢]].

Since, by (4.18) and (4.20),
Ty — || < Kbl < K||P - P,

and

loll = Vel < Kliel < K|IP — P,

then

IP— Pl < K(|@ — ¢ + U~ Ul). (4.23)
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Now (4.17) implies

(~H(C.®) + file,6), P~ P) < K[L(IC—cl + ]2~ o]?)
+ €@ ol + U -] (4.24)
Substituting (4.15), (4.16) and (4.24) into (4.14) we get
IU-U|* < K[%(HC —c? + |2 =ol*) + (|~ | + U - U|*)]. (4.25)
Taking e small enough we get
IU—-U| < K(|® — ¢l +[|C — c]). (4.26)
Furthermore, set now w =V - (U = U) € W} in (4.11) to get
(V- (U-0),V-(U-1)) = (~A(C,P)+ file,$), V- (U-1)),
which implies, using (4.3) and Schwartz inequality,

IV (U-0)|| < K(IC — el + [|© — &]). (4.27)

A combination of (4.23), (4.26), and (4.27) proves the lemma. W

The following result follows from (4.8) and Lemma 1

Theorem 1 For a given approzimation C' and ® at some t € J, the solution (U, P)

of (4.4)-(4.5) satisfies
lp = Pll+ lla = Ull g qiv) < Kb+ [[@ = o] + [|C = cl).

We now proceed with bounding ||C' — ¢|| and ||® — ¢||.
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4.2 'Transport equation

Consider the discretized transport equations (3.20)-(3.21). For n = 0, set

C%(x) = myc®(x) where moc®(z) is the L2-projection of ¢¥; that is
(C% w) = (&, w), w € Wy, (4.28)
Using techniques from [17] we will compare the approximation solution to an elliptic
projection. Let C®(-,t) € W), Q(-,t) € V; denote the mixed method solutions
(unsplit solutions) to the elliptic problem associated with (2.4); that is, for each
t € 10,17,
(D'Q(.,t),v) — (C®(,1),V-v)=<cp,Vv-v>r VEV, (4.29)
(V ’ Q('?t)a ’lU) - (v ' CI('>t), ’lU)
= —((cp)y,w) — (V-F(,t),w) + (fa., 1), w), w € W;.(4.30)
From the standard mixed method theory [34, 10],

leg — CO| < Klleo]1h. (4.31)

Let the data and the solution pair (¢, q) be sufficiently smooth and let e = ¢ — P, £ =
CP—-CP,0=C—-C,andn=Q — Q. Let F =IIF € V,. By (4.19) F satisfies

(V- (F—F)(,t),w)=0, YweW. (4.32)

Moreover, (see [34, 10])

/E(F—F)-Vdazo
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for any edge (face) e of an element 7. Assume that G"~! satisfies the following

approximation result
IG™ = F" M < K[ + flu~" = U] + h® + Ad].

A similar bound without the term |[u"~! — U™ !|| is shown in [17]. This additional

term appears here due to dependence of F on u. Using Theorem 1 we get
IG™ = F" M < K[+ lle™ M+ (107 + b+ Adl. (4.33)

Assume also that 0 < D~! < d*, where d* is a positive constant. Using the above
assumptions and notation, we now state an error estimate for the method described

above.
Theorem 2 For At sufficiently small, we have
N 3
max [|€"] + (Z ||(D")_%7I”||2Atn> < K(d%)(h + At)
n=0
where K(d*) is a constant which depends on d* but not h or At.
Proof: Subtracting (4.29) from (3.20) we get
(D~'p)",v) = (", V -v) =0, (4.34)
and subtracting (4.30) from (3.21) and using (4.32) we get
(@(CP)",w) + (V1" w) = ((cd)f,w) — (V- G",w)

+ (V'anw)—i_(fvzn_f;vw)‘
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Subtract (9;((C®)"),w) from both sides to get

@8 w) + (V" w) = —=(0,(CP)", w) + ((cd);', w)

+ (V- (B = G w) + (f = f5w). (4.35)
We set v = n",w = £" and add (4.34) and (4.35) to obtain

(0€™,¢") + (D7) ") = —(3(CP)", ") + ((c0)y ")

+ (V- (F"=G" ), &)+ (fy — f3.6"). (4.36)

We now estimate the right-hand side of (4.36) term-by-term. First, by (4.20), (4.34),

and (4.33) we have

(V- (B =G, = (D) F -G

IN

1 ny—1+ n\—1 g n—
SO 7" [+ 20| (D7) 72F" — G

IA

1 n\—=% n %\ || TN n—
SN2 I+ K (d) | F" — F" 1|2

+ K(d*)HFn_l _ Gn—lHQ

IN

1 n\—1 n * N n
SN2 I + K(d)(|[F" — F||?
+ ||Fn _Fn_1H2+ ||Fn—l _Fn—lHQ)

+ K(d*)HFn—l . Gn—1H2

1 :
SO 72 |1P + K (@) (1€

+ e T+ R2 o A, (4.37)

IN
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where K (d*) is a constant which is dependent on d* but independent of h and At.

Next,
(=0:(C®)" + (c¢)/,€") < [ = 0(CP)" + (co) || €.
We have
1= 0(C2)" + (co)i | < || = (C2)")e + ()| + KA.
Now, from (4.31) and
I(cd)e = (CO)Il < Kh,
which can be obtained by differencing (4.29)-(4.30) in time, see [35], we get
(=0:(CD)" + (co)y', €") < K(h* + AL + [|€"]]*). (4.38)

Finally, by (4.3) we have

(f3 = f3.€") < K017 + lle"I® + 1€71)- (4.39)
Substituting (4.37),(4.38), and (4.39) into (4.36) and collecting terms we get

@€ + IO P <

< K(d@)(lg"* + [l )1* + b2

oA+ 712+ ). (4.40)
Using
@UEne) = Sar (€I = P + 6" - )
> (e - e )

2At,



and multiplying by 2At,, we get

11 = "M%+ (D™ 2" *At, <
< KH(d)AL (€ + [l * + 2
+ A e+ 107+ 11€" 1)

Summing on n

N

>l PA, <

n=1

€11 + 11€°]

+

N
< K(d)Y At (1€ P+ [1E7)P + 12

n=1

+ A [l 4+ 107]1%).

Using that

10" < K (lle™ [+ 11€" 1D,

and (4.49) we obtain

N

V1P + YD AL, <

n=1

N
K(d) ) Ata((l€ 17 + [1€7]1% + b?

n=1

IA

N-1
+ A ALY EmP).
m=0

We need to bound

N n—1
A=) ALY AL
n=1 m=0
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(4.41)

(4.42)

(4.43)

(4.44)



let F(n) = 374 At?||€™||*> which is an increasing function. Now

N
A = ) At F(n)
n=1

A
B
=
g

L

N-1
= TY A€
m=0
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(4.45)

Substituting (4.45) into (4.42) and applying the discrete analogue of Gronwall’s

Lemma [22] with At sufficiently small gives

2

max |¢"| + (ZH<<D>">-%n”H2At> < K(d) (h+ Af).

4.3 Porosity update
Writing the porosity update equation as
¢t = fi(o,c)
and now from the Taylor series expansion we have:

¢m+1

= ¢+ At + O(A)

= "+ Atfi(¢™, ™) + O(A).

Suppose we use Euler’s method to solve (4.46), then we have

P = ™ + Atf (O™, C™).

(4.46)

(4.47)

(4.48)
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Subtracting (4.48) from (4.47), and letting ™ = ¢™ — ®™ we get
" ="+ AL(fi(¢™, ") — fu(@T,C™)) + O(AL?)

taking norms

le™ M = le™|| < Atllfi(¢™, ™) = f(@™,C™)]

and since by (4.3)
[f1(@™, ¢™) = [u(@™, C™| < K([l¢™ = @™ + [le™ = ™)),

then we have

le™ M1 = lle™ | < B At([le™ (| + 16™]])-

using (4.41) and summing on m

N-1

el =Nl < EAE Y (e ]+ 1€™),

m=0
and by the discrete form of Gronwall’s Lemma we get
N-1
V]| = 6™ — @™ < KAL) [|€™] + KhAt (4.49)

m=0

A combination of (4.49), (4.41), Theorem 1, and Theorem 2 gives

Theorem 3

max([le"|| + (6" + [[p" = P"[| + [lu" = U || i) < K (b + AL).
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4.4 Operator splitting

In this section we bound the error due to operator splitting in the transport
equation. Operator splitting, or fractional steps, methods were developed by N.N.
Yanenko [38] and his collaborators for solving problems in theoretical mechanics nu-
merically. At the present time these methods are widely used in problems of various
kinds.

Theoretically the success of splitting is primarily determined by the split-
ting error. Therefore, we investigate the accuracy of splitting into three nonlinear
operators in an abstract Cauchy problem and show that it is of first order in time
for general evolutionary equations. We also obtain a general formula for the leading
term. This is an extension of the work of Bobylev and Ohwada [8], where only two
nonlinear operators were considered

Consider the initial value problem of the form
9 d
Eu(&,t) = LU), £€R"t>0 (4.50)
u(€7 0) = u0(€)7

where L = A+ B 4+ C and where A, B, and C are nonlinear operators acting from a

Banach space V to V, U € V. The above equation is split into three equations:

aall_ats = A(z), z(0) = U, 0<t<At
d
Y _Bly),  y0)==x(A), 0<t<AL

dt
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dz_

Z=0(), A0 =y, 0<t<A

and the approximate solution is
U(., At) =~ z(At).

For brevity, we express the solution of an abstract Cauchy problem

U

— = LU Ul—g=Uy eV,
dt ()7 |t—0 0 € 9

as
U(t) = S,t4+B+C(UO)-

Then the above splitting is an approximation of the operator S£*:
Shipre = SoTSEISA (4.51)

Theorem 4 Assume that A, B, and C' have continuous second derivatives. Then the

splitting error is

At?
SAt p o — S&8tSEtSA! :-GﬁAB+¢H?+B@
— B'A-C'A-C'B]+0(At) (4.52)

and if A, B, and C' are linear then the error is

At?

—[AB+AC + BC — BA—CA - CB). (4.53)
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Proof: by the assumption of the theorem S4% . can be expressed as:

Stiro(Us) = Us+ At[A(Ug) + B(Uo) + C(Uy)]

At?

—[At, + By, + Ci,J[A(Us) + B(Us) + C ()] + O(AL),

also,

x(At) = Sﬁt(Uo) - U() + AtA(U()) -+ AthA,UOA(Uo) + O(At3),
y(At) = S8 (x(Al)) = z(At) + AtB(x(At)) + %ﬁB;(At)B(x(At)) +0(AtY),

(At = SEU(y(AL) = y(Al) + AtC(y(At)) + %ﬁcg,w)owmt)) +O(AF).
Noting that
Blz(At)] = BlUs+ AtA(Up) +...] = B(Uo) + AtBy, A(Us) + O(A),
;(At)B[x(At)] = B(’JOB(UO) + At[B{}O + B(’]OB(’JOB(UO)] + O(Ab),
we have

SAUSAUUy)) = Uy + At[A(Us) + B(Up)]

At?

+ T[A;JOA(UO) + By, B(Us) + 2By, A(Up)] + O(AE?).

Also note

Cly(At)] = Oy + At[A(Uo) + B(Uo)] + O(At?)]

= C(Uy) + MCY [A(Ug) + B(Up)] + O(Ab),
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and
ChanCly(A1) = C1,C(Uo) + O(A).
Then we get

SEH(SEH(S2H(Un)) = U+ At[A(Up) + B(Uy) + C(Up)]
At?
2
+ 2By, A(Us) + 2C, [A(Us) + B(Up)]] + O(AE).

[A/U()A(UO) + B{JOB(UO) + C{JOC(UO)

Hence, we get

AtQ / !/ /
S prclU0) — SSEUSW) = S AL, B(Uh) + A5, C(U + By Oy

+ O(A#).
If A, B, and C are linear then
A=A B =B,C'"=C,

and the error is

At?

—[AB + AC+BC — BA—CA-CB]. |

Remark 4.4.1 Note that in the linear case if the operators commute then the splitting

error is second-order.





